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Table of Analyses

Samples Categories Tests

1 2 One-sample chi-squared test, binomial test

1 ≥2 One-sample chi-squared test, multinomial test

2 ≥2 Two-sample chi-squared test, G-test, Fisher’s exact test

2† ≥2 Symmetry test

Proportions & Association

Factors Levels Between 
or Within

Parametric Tests Nonparametric Tests

Linear Models Generalized Models

1 2 B Independent-samples t-test Median test Mann-Whitney U test

1 2 W Paired-samples t-test Sign test Wilcoxon signed-rank test

1 ≥2 B One-way ANOVA Kruskal-Wallis test

1 ≥2 W One-way repeated measures ANOVA Friedman test

≥2 ≥2 B Factorial ANOVA
Linear Model (LM)

Aligned Rank Transform (ART)

≥2 ≥2 W Factorial repeated measures ANOVA
Linear Mixed Model (LMM)

Aligned Rank Transform (ART)

Analyses of Variance

Assumptions
Normality:
  Shapiro-Wilk test
Homoscedasticity:
  Levene’s test
Sphericity:
  Mauchly’s test

Generalized Linear Model (GLM)

Generalized Linear Mixed Model (GLMM)©
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Shapiro-Wilk test
Chi-squared GOF test

Distributions

†Dependent samples
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categorical

linear regression†

logistic
regression

analysis of variance

contingency
analysis‡

Credit: This table is adapted 
from the “Fit Y by X” dialog in 
SAS® JMP . http://jmp.com/ 

†All of the parametric tests in 
the previous table are forms of 
linear regression.

‡See the tests of proportion in 
the previous table.
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Proportions & Association
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Samples Response 
Categories

Test Name Exact Test? R Code

1 2 Binomial test Yes, use with N<200 # df is a long-format data table w/columns for participant (PId) and 2-category outcome (Y)
df$PId = factor(df$PId) # participant is nominal (unused)
df$Y = factor(df$Y) # Y is an outcome of 2 categories
xt = xtabs( ~ Y, data=df) # make counts
binom.test(xt, p=0.5, alternative="two.sided")

1 ≥2 Multinomial test Yes, use with N<200 # df is a long-format data table w/columns for participant (PId) and N-category outcome (Y)
library(XNomial) # for xmulti
df$PId = factor(df$PId) # participant is nominal (unused)
df$Y = factor(df$Y) # Y is an outcome of ≥2 categories
xt = xtabs( ~ Y, data=df) # make counts
xmulti(xt, rep(1/length(xt), length(xt)), statName="Prob")

# or, equivalently
library(RVAideMemoire) # for multinomial.test
multinomial.test(df$Y)

One-sample
chi-squared test

No, use with N≥200 # df is a long-format data table w/columns for participant (PId) and N-category outcome (Y)
df$PId = factor(df$PId) # participant is nominal (unused)
df$Y = factor(df$Y) # Y is an outcome of ≥2 categories
xt = xtabs( ~ Y, data=df) # make counts
chisq.test(xt)

Proportions
One sample
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Samples Response 
Categories

Test Name Exact Test? Report

1 2 Binomial test Yes, use with N<200 “Out of 60 responses, 42 were ‘yes’ and 18 were ‘no’. A two-sided exact binomial test indicated that these 
proportions were significantly different from chance (p = . 003).”

1 ≥2 Multinomial test Yes, use with N<200 “Out of 60 outcomes, 17 were ‘yes’, 12 were ‘no’, and 31 were ‘maybe’. An exact multinomial test indicated that 
these proportions were statistically significantly different from chance (p = .009).”

One-sample
chi-squared test

No, use with N≥200 “Out of 60 outcomes, 17 were ‘yes’, 12 were ‘no’, and 31 were ‘maybe’. A one-sample Pearson chi-squared test 
indicated that these proportions were significantly different from chance (χ2(2, N=60) = 9.70, p = .008).”

Proportions
One sample
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Samples Response 
Categories

Test Name Exact Test? R Code

2 ≥2 Fisher’s exact test Yes, use with N<200 # df is a long-format data table w/participant (PId), factor (X), and N-category outcome (Y)
df$PId = factor(df$PId) # participant is nominal (unused)
df$X = factor(df$X) # X is a factor of m ≥ 2 levels
df$Y = factor(df$Y) # Y is an outcome of n ≥ 2 categories
xt = xtabs( ~ X + Y, data=df) # make m×n crosstabs
fisher.test(xt)

G-test No, use with N<200 # df is a long-format data table w/participant (PId), factor (X), and N-category outcome (Y)
library(RVAideMemoire) # for G.test
df$PId = factor(df$PId) # participant is nominal (unused)
df$X = factor(df$X) # X is a factor of m ≥ 2 levels
df$Y = factor(df$Y) # Y is an outcome of n ≥ 2 categories
xt = xtabs( ~ X + Y, data=df) # make m×n crosstabs
G.test(xt)

Two-sample
chi-squared test

No, use with N≥200 # df is a long-format data table w/participant (PId), factor (X), and N-category outcome (Y)
df$PId = factor(df$PId) # participant is nominal (unused)
df$X = factor(df$X) # X is a factor of m ≥ 2 levels
df$Y = factor(df$Y) # Y is an outcome of n ≥ 2 categories
xt = xtabs( ~ X + Y, data=df) # make m×n crosstabs
chisq.test(xt)

Association
Two samples
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Samples Response 
Categories

Test Name Exact Test? Report

2 ≥2 Fisher’s exact test Yes, use with N<200 “Table 1 shows the counts of ‘yes’, ‘no’, and ‘maybe’ responses (Y) for each of ‘a’ and ‘b’ (X). Figure 1 plots these 
proportions. Fisher’s exact test indicated a statistically significant association between X and Y (p = .005).”

G-test No, use with N<200 “Table 1 shows the counts of ‘yes’, ‘no’, and ‘maybe’ responses (Y) for each of ‘a’ and ‘b’ (X). Figure 1 plots these 
proportions. A G-test indicated a statistically significant association between X and Y (G(2) = 10.88, p = .004).”

Two-sample
chi-squared test

No, use with N≥200 “Table 1 shows the counts of ‘yes’, ‘no’, and ‘maybe’ responses (Y) for each of ‘a’ and ‘b’ (X). Figure 1 plots these 
proportions. A two-sample Pearson chi-squared test indicated a statistically significant association between X and 
Y (χ2(2, N=60) = 10.18, p = .006).”

Association
Two samples
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Table 1

Y
yes no maybe

X
a 11 8 11
b 22 6 2
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Figure 1
10

Y by X

X

Y

a b

ye
s

no
m

ay
be



Samples Response 
Categories

Test Name Exact Test? R Code

2† ≥2 Symmetry test No, asymptotic # df is a long-format data table w/columns for participant (PId), a within-Ss. factor (X), 
# and N-category outcome (Y)
library(coin) # for symmetry_test
df$PId = factor(df$PId) # participant is nominal
df$X = factor(df$X)     # X is a within-Ss. factor of ≥2 levels
df$Y = factor(df$Y)     # Y is an outcome of ≥2 categories
symmetry_test(Y ~ X | PId, data=df)

Association
Dependent samples
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Samples Response 
Categories

Test Name Exact Test? Report

2† ≥2 Symmetry test No, asymptotic “Fifteen participants each provided four responses indicating their favorite ice cream flavor in each season (‘fall’, 
‘winter’, ‘spring’, and ‘summer’). Table 2 shows the counts and Figure 2 plots the proportions. Out of the 60 
responses, 16 were ‘vanilla’, 21 were ‘chocolate’, and 23 were ‘strawberry’. A symmetry test shows that the ice 
cream preferences across seasons were significantly different (p = .013).”

Association
Dependent samples
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Table 2

Y
vanilla chocolate strawberry

X

fall 9 4 2
winter 2 7 6
spring 3 2 10
summer 2 8 5
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Figure 2
14
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Proportions & Association
Post hoc comparisons
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Samples Response 
Categories

Omnibus Test Contrast Test R Code

1 ≥2 Multinomial test Pairwise binomial 
tests

# xt holds the yes, no, and maybe counts created for the multinomial test
yn = binom.test(c(xt[1], xt[2]), p=1/2) # yes vs. no
ym = binom.test(c(xt[1], xt[3]), p=1/2) # yes vs. maybe
nm = binom.test(c(xt[2], xt[3]), p=1/2) # no vs. maybe
p.adjust(c(yn$p.value, ym$p.value, nm$p.value), method="holm")

# or, equivalently
library(RVAideMemoire) # for multinomial.multcomp
multinomial.multcomp(xt, p.method="holm") # same results as above

1 ≥2 One-sample
chi-squared test

Pairwise chi-
squared tests

# xt holds the yes, no, and maybe counts created for the chi-squared test
library(RVAideMemoire) # for chisq.multcomp
chisq.multcomp(xt, p.method="holm") # xt shows levels

# to get the chi-squared statistics, use qchisq(1-p, df=1),
# where p is the uncorrected (p.method="none") pairwise p-value:
qchisq(1 - 0.0038, df=1) # 8.376996

1 ≥2 Multinomial test,
one-sample
chi-squared test

Individual binomial 
tests against 
chance

# For Y's response categories, test each proportion against chance.
# xt holds the yes, no, and maybe counts
y = binom.test(xt[1], nrow(df), p=1/length(xt)) # yes
n = binom.test(xt[2], nrow(df), p=1/length(xt)) # no
m = binom.test(xt[3], nrow(df), p=1/length(xt)) # maybe
p.adjust(c(y$p.value, n$p.value, m$p.value), method="holm")

Proportions
Post hoc tests – One sample
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Samples Response 
Categories

Omnibus Test Contrast Test Report

1 ≥2 Multinomial test Pairwise binomial 
tests

“Three post hoc pairwise comparisons using exact binomial tests, corrected with Holm’s sequential Bonferroni 
procedure (Holm 1979), indicated that the proportions of ‘yes’ vs. ‘no’ and ‘yes’ vs. ‘maybe’ were not significantly 
different, but that the proportions of ‘no’ vs. ‘maybe’ were (p = .016).”

1 ≥2 One-sample
chi-squared test

Pairwise chi-
squared tests

“Three post hoc pairwise comparisons using Pearson chi-squared tests, corrected with Holm’s sequential Bonferroni 
procedure (Holm 1979), indicated that only the proportions of ‘no’ vs. ‘maybe’ were significantly different (χ2(1, 
N=43) = 8.38, p = .011).”

1 ≥2 Multinomial test,
one-sample
chi-squared test

Individual binomial 
tests against 
chance

“Three post hoc binomial tests, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), indicated that 
only the number of ‘maybe’ responses was significantly different from chance (p = .011).”

Proportions
Post hoc tests – One sample
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Samples Response 
Categories

Omnibus Test Contrast Test R Code

2 ≥2 Fisher’s exact test Pairwise Fisher’s 
exact tests on 2×2 
tables

# xt is the m×n crosstabs created for Fisher's exact test
yn = fisher.test(xt[,c(1,2)]) # yes vs. no
ym = fisher.test(xt[,c(1,3)]) # yes vs. maybe
nm = fisher.test(xt[,c(2,3)]) # no vs. maybe
p.adjust(c(yn$p.value, ym$p.value, nm$p.value), method="holm")

# or, equivalently
library(RVAideMemoire) # for fisher.multcomp
fisher.multcomp(xt, p.method="holm") # xt shows levels

Binomial tests of 
each table column 
against chance

# xt is the m×n crosstabs created for Fisher's exact test
y = binom.test(xt[,1]) # yes
n = binom.test(xt[,2]) # no
m = binom.test(xt[,3]) # maybe
p.adjust(c(y$p.value, n$p.value, m$p.value), method="holm")

Multinomial tests 
of each table row 
against chance

# xt is the m×n crosstabs created for Fisher's exact test
a = xmulti(xt[1,], rep(1/length(xt[1,]), length(xt[1,])), statName="Prob") # X=a
b = xmulti(xt[2,], rep(1/length(xt[2,]), length(xt[2,])), statName="Prob") # X=b
p.adjust(c(a$pProb, b$pProb), method="holm")

Association
Post hoc tests – Two samples
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Samples Response 
Categories

Omnibus Test Contrast Test Report

2 ≥2 Fisher’s exact test Pairwise Fisher’s 
exact tests on 2×2 
tables

“Three post hoc Fisher’s exact tests, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), were 
conducted on each 2×2 subset of Table 1. Results indicated that there was a significant association between X and Y 
for the ‘yes’ and ‘maybe’ columns (p = .008).”

Binomial tests of 
each table column 
against chance

“Three post hoc binomial tests, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), were 
conducted on each column of Table 1. Results indicated that no column proportions were significantly different from 
chance.”

Multinomial tests 
of each table row 
against chance

“Two post hoc multinomial tests, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), were 
conducted on each row of Table 1. Results indicated that the proportion of ‘yes’, ‘no’, and ‘maybe’ responses within 
‘b’ were significantly different from chance (p < .0001).”

Association
Post hoc tests – Two samples
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Samples Response 
Categories

Omnibus Test Contrast Test R Code

2 ≥2 G-test Pairwise G-tests on 
2×2 tables

# xt is the m×n crosstabs created for the G test
yn = G.test(xt[,c(1,2)]) # yes vs. no
ym = G.test(xt[,c(1,3)]) # yes vs. maybe
nm = G.test(xt[,c(2,3)]) # no vs. maybe
p.adjust(c(yn$p.value, ym$p.value, nm$p.value), method="holm")

Pairwise G-tests 
between table cells

# xt is the m×n crosstabs created for the G test
library(RVAideMemoire) # for G.multcomp
G.multcomp(xt, p.method="holm") # xt shows levels

Association
Post hoc tests – Two samples
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Samples Response 
Categories

Omnibus Test Contrast Test Report

2 ≥2 G-test Pairwise G-tests on 
2×2 tables

“Three post hoc G-tests, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), were conducted on 
each 2×2 subset of Table 1. Results indicated that there was a significant association between X and Y for the ‘yes’ 
and ‘maybe’ columns (G(1) = 10.51, p = .004).”

Pairwise G-tests 
between table cells

“Fifteen post hoc G-tests, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), were conducted on 
each pair of cells in Table 1. Results indicated that there was a significant difference between the counts in cells {b, 
yes} vs. {b, maybe} (p < .001) and {b, yes] vs. {b, no} (p = .026).”

Association
Post hoc tests – Two samples
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Samples Response 
Categories

Omnibus Test Contrast Test R Code

2 ≥2 G-test G-tests on each 
table column (or 
row) against 
chance

# xt is the m×n crosstabs created for the G test
# test column proportions:
y = G.test(xt[,1]) # yes
n = G.test(xt[,2]) # no
m = G.test(xt[,3]) # maybe
p.adjust(c(y$p.value, n$p.value, m$p.value), method="holm")

# test row proportions:
a = G.test(xt[1,]) # a
b = G.test(xt[2,]) # b
p.adjust(c(a$p.value, b$p.value), method="holm")

G-tests on each 
table column (or 
row) against 
expected 
frequencies

# xt is the m×n crosstabs created for the G test
# test column proportions:
ex = G.test(xt)$expected[,1] # expected 'yes'
y = G.test(xt[,1], p=ex/sum(ex))
ex = G.test(xt)$expected[,2] # expected 'no'
n = G.test(xt[,2], p=ex/sum(ex))
ex = G.test(xt)$expected[,3] # expected 'maybe'
m = G.test(xt[,3], p=ex/sum(ex))
p.adjust(c(y$p.value, n$p.value, m$p.value), method="holm")

# test row proportions:
ex = G.test(xt)$expected[1,] # expected 'a'
a = G.test(xt[1,], p=ex/sum(ex))
ex = G.test(xt)$expected[2,] # expected 'b'
b = G.test(xt[2,], p=ex/sum(ex))
p.adjust(c(a$p.value, b$p.value), method="holm")

Association
Post hoc tests – Two samples
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Samples Response 
Categories

Omnibus Test Contrast Test Report

2 ≥2 G-test G-tests on each 
table column (or 
row) against 
chance

“Three post hoc G-tests, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), were conducted on 
each column of Table 1. Results indicated that the proportion of ‘a’ and ‘b’ responses within ‘maybe’ significantly 
differed from chance (G(1) = 6.86, p = .026.)”

“Two post hoc G-tests, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), were conducted on 
each row of Table 1. Results indicated that the proportion of ‘yes’, ‘no’, and ‘maybe’ responses within ‘b’ 
significantly differed from chance (G(2) = 22.12, p < .0001.)”

G-tests on each 
table column (or 
row) against 
expected 
frequencies

“Three post hoc G-tests, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), were conducted on 
each column of Table 1. Results indicated that the proportion of ‘a’ and ‘b’ responses within ‘maybe’ significantly 
differed from expected frequencies (G(1) = 6.86, p = .026.)”

“Two post hoc G-tests, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), were conducted on 
each row of Table 1. Results indicated that the proportion of ‘yes’, ‘no’, and ‘maybe’ responses did not significantly 
differ from expected frequencies.”

Association
Post hoc tests – Two samples
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Samples Response 
Categories

Omnibus Test Contrast Test R Code

2 ≥2 chi-squared test Pairwise chi-
squared tests on 
2×2 tables

# xt is the m×n crosstabs created for the chi-squared test
yn = chisq.test(xt[,c(1,2)]) # yes vs. no
ym = chisq.test(xt[,c(1,3)]) # yes vs. maybe
nm = chisq.test(xt[,c(2,3)]) # no vs. maybe
p.adjust(c(yn$p.value, ym$p.value, nm$p.value), method="holm")

Pairwise chi-
squared tests 
between table cells

# xt is the m×n crosstabs created for the chi-squared test
library(RVAideMemoire) # for chisq.multcomp
chisq.multcomp(xt, p.method="holm") # xt shows levels

# to get the chi-squared statistics, use qchisq(1-p, df=1),
# where p is the uncorrected (p.method="none") pairwise p-value:
qchisq(1 - 4.5e-05, df=1) # 16.6479

Chi-squared tests 
to compare each 
cell to its expected 
frequency

# xt is the m×n crosstabs created for the chi-squared test
library(chisq.posthoc.test) # for chisq.posthoc.test
chisq.posthoc.test(xt, method="holm")

# to get the chi-squared statistics, use qchisq(1-p, df=1),
# where p is the uncorrected (p.method="none") p-value:
qchisq(1 - 0.004311, df=1) # 8.147944

Association
Post hoc tests – Two samples

24



Samples Response 
Categories

Omnibus Test Contrast Test Report

2 ≥2 chi-squared test Pairwise chi-
squared tests on 
2×2 tables

“Three post hoc chi-squared tests, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), were 
conducted on each 2×2 subset of Table 1. Results indicated that there was a significant association between X and Y 
for the ‘yes’ and ‘maybe’ columns (χ2(1, N=46) = 7.88, p = .015).”

Pairwise chi-
squared tests 
between table cells

“Fifteen post hoc chi-squared tests, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), were 
conducted on each pair of cells in Table 1. Results indicated that there was a significant difference between the 
counts in cells {b, yes} vs. {b, maybe} (χ2(1, N=24) = 16.65, p = .001) and {b, yes] vs. {b, no} (χ2(1, N=28) = 9.14, p 
= .035).”

Chi-squared tests 
to compare each 
cell to its expected 
frequency

“Six post hoc chi-squared tests, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), were 
conducted on each cell in Table 1. Results indicated that {a, yes} (χ2(1, N=11) = 8.15, p = .206), {b, yes} (χ2(1, 
N=22) = 8.15, p = .026), {a, maybe} (χ2(1, N=11) = 7.95, p = .026), and {b, maybe} (χ2(1, N=2) = 7.95, p = .026) 
were significantly different from their expected frequencies.”

Association
Post hoc tests – Two samples
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Samples Response 
Categories

Omnibus Test Contrast Test R Code

2 ≥2 chi-squared test chi-squared tests 
on each table 
column (or row) 
against chance

# xt is the m×n crosstabs created for the chi-squared test
# test column proportions:
y = chisq.test(xt[,1]) # yes
n = chisq.test(xt[,2]) # no
m = chisq.test(xt[,3]) # maybe
p.adjust(c(y$p.value, n$p.value, m$p.value), method="holm")

# test row proportions:
a = chisq.test(xt[1,]) # a
b = chisq.test(xt[2,]) # b
p.adjust(c(a$p.value, b$p.value), method="holm")

chi-squared tests 
on each table 
column (or row) 
against expected 
frequencies

# xt is the m×n crosstabs created for the chi-squared test
# test column proportions:
ex = chisq.test(xt)$expected[,1] # expected 'yes'
y = chisq.test(xt[,1], p=ex/sum(ex))
ex = chisq.test(xt)$expected[,2] # expected 'no'
n = chisq.test(xt[,2], p=ex/sum(ex))
ex = chisq.test(xt)$expected[,3] # expected 'maybe'
m = chisq.test(xt[,3], p=ex/sum(ex))
p.adjust(c(y$p.value, n$p.value, m$p.value), method="holm")

# test row proportions:
ex = chisq.test(xt)$expected[1,] # expected 'a'
a = chisq.test(xt[1,], p=ex/sum(ex))
ex = chisq.test(xt)$expected[2,] # expected 'b'
b = chisq.test(xt[2,], p=ex/sum(ex))
p.adjust(c(a$p.value, b$p.value), method="holm")

Association
Post hoc tests – Two samples
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Samples Response 
Categories

Omnibus Test Contrast Test Report

2 ≥2 chi-squared test chi-squared tests 
on each table 
column (or row) 
against chance

“Three post hoc chi-squared tests, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), were 
conducted on each column of Table 1. Results indicated that the proportion of ‘a’ and ‘b’ responses within ‘maybe’ 
significantly differed from chance (χ2(1, N=13) = 6.23, p = .038.)”

“Two post hoc chi-squared tests, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), were 
conducted on each row of Table 1. Results indicated that the proportion of ‘yes’, ‘no’, and ‘maybe’ responses within 
‘b’ were significantly different from chance (χ2(2, N=30) = 22.40, p < .0001).”

chi-squared tests 
on each table 
column (or row) 
against expected 
frequencies

“Three post hoc chi-squared tests, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), were 
conducted on each column of Table 1. Results indicated that the proportion of ‘a’ and ‘b’ responses within ‘maybe’ 
significantly differed from expected frequencies (χ2(1, N=13) = 6.23, p = .038.)”

“Two post hoc chi-squared tests, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), were 
conducted on each row of Table 1. Results indicated that the proportion of ‘yes’, ‘no’, and ‘maybe’ responses were 
not significantly different from expected frequencies.”

Association
Post hoc tests – Two samples
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Samples Response 
Categories

Omnibus Test Contrast Test R Code

2 ≥2 Symmetry test Pairwise symmetry 
tests

# df is a long-format data table w/columns for participant (PId), a within-Ss. factor (X), 
# and N-category outcome (Y)
library(coin) # for symmetry_test, pvalue
pairwise.symmetry.test <- function(s1, s2, data=df) { # compare seasons s1, s2
  df2 <- df[df$X == s1 | df$X == s2,] # table subset  
  df2$X = factor(df2$X) # update factor levels
  return (pvalue(symmetry_test(Y ~ X | PId, data=df2)))
}
fa.wi = pairwise.symmetry.test("fall", "winter", data=df)
fa.sp = pairwise.symmetry.test("fall", "spring", data=df)
fa.su = pairwise.symmetry.test("fall", "summer", data=df)
wi.sp = pairwise.symmetry.test("winter", "spring", data=df)
wi.su = pairwise.symmetry.test("winter", "summer", data=df)
sp.su = pairwise.symmetry.test("spring", "summer", data=df)
p.adjust(c(fa.wi, fa.sp, fa.su, wi.sp, wi.su, sp.su), method="holm")

2 ≥2 Symmetry test Pairwise sign tests # df is a long-format data table w/columns for participant (PId), a within-Ss. factor (X), 
# and N-category outcome (Y)
library(coin) # for sign_test, pvalue
pairwise.sign.test <- function(flavor, s1, s2, data=df) { # compare flavor in seasons s1, s2
  df$chose.flavor.in.s1 = ifelse(df$Y == flavor & df$X == s1, 1, 0)
  df$chose.flavor.in.s2 = ifelse(df$Y == flavor & df$X == s2, 1, 0)
  return (pvalue(sign_test(chose.flavor.in.s1 ~ chose.flavor.in.s2, data=df)))
}
fa.wi = pairwise.sign.test("vanilla", "fall", "winter", data=df)
fa.sp = pairwise.sign.test("vanilla", "fall", "spring", data=df)
fa.su = pairwise.sign.test("vanilla", "fall", "summer", data=df)
wi.sp = pairwise.sign.test("vanilla", "winter", "spring", data=df)
wi.su = pairwise.sign.test("vanilla", "winter", "summer", data=df)
sp.su = pairwise.sign.test("vanilla", "spring", "summer", data=df)
p.adjust(c(fa.wi, fa.sp, fa.su, wi.sp, wi.su, sp.su), method="holm")

Association
Post hoc tests – Dependent samples
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Samples Response 
Categories

Omnibus Test Contrast Test Report

1 ≥2 Symmetry test Pairwise symmetry 
tests

“Six post hoc pairwise comparisons, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), were 
conducted between all four seasons using symmetry tests. Flavor preferences for no two seasons were significantly 
different.”

2 ≥2 Symmetry test Pairwise sign tests “The pairwise preferences for vanilla ice cream were compared among the four seasons using six post hoc sign tests 
corrected with Holm’s sequential Bonferroni procedure (Holm 1979). The preferences for vanilla in fall, winter, 
spring, and summer did not significantly differ.”

Association
Post hoc tests – Dependent samples
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Assumption Test Name Context of Use R Code

Normality Shapiro-Wilk test 
(on the response in 
each condition)

t-test, ANOVA # df has two factors (X1,X2) each w/two levels (a,b) and continuous response Y
shapiro.test(df[df$X1 == "a" & df$X2 == "a",]$Y) # condition a,a
shapiro.test(df[df$X1 == "a" & df$X2 == "b",]$Y) # condition a,b
shapiro.test(df[df$X1 == "b" & df$X2 == "a",]$Y) # condition b,a
shapiro.test(df[df$X1 == "b" & df$X2 == "b",]$Y) # condition b,b

Normality Shapiro-Wilk test
(on residuals)

t-test, ANOVA # df has two factors (X1,X2) each w/two levels (a,b) and continuous response (Y)
library(afex) # for aov_ez
library(EnvStats) # for gofTest
library(performance) # for check_normality
m = aov_ez(dv="Y", within="X1", between="X2", id="PId", type=3, data=df) # build model
r = residuals(m$lm) # extract residuals 

## Common code - see below... ##
mean(r); sum(r) # both should be ~0
plot(r[1:length(r)], main="Residuals"); abline(h=0) # should look random
qqnorm(r); qqline(r) # Q-Q plot
hist(r, main="Histogram of residuals", freq=FALSE)  # should look normal
f = gofTest(r, distribution="norm") # GOF test
curve(dnorm(x, mean=f$distribution.parameters[1], sd=f$distribution.parameters[2]), 

lty=1, lwd=3, col="blue", add=TRUE)
print(f) # display fit
shapiro.test(r) # Shapiro-Wilk test
print(check_normality(m)) # same

Normality Shapiro-Wilk test
(on residuals)

Linear mixed model (LMM) # df has two factors (X1,X2) each w/two levels (a,b) and continuous response (Y)
library(lme4) # for lmer
library(lmerTest)
m = lmer(Y ~ X1*X2 + (1|PId), data=df) # make linear mixed model
r = residuals(m) # extract residuals

## Continue with "common code," above ... ##

ANOVA Assumptions
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Assumption Test Name Context of Use Report

Normality Shapiro-Wilk test 
(on the response in 
each condition)

t-test, ANOVA “To test the normality assumption, a Shapiro-Wilk test was run on the response Y for each combination of levels of 
factors X1 and X2. All combinations were found to be statistically non-significant, indicating compliance with the 
normality assumption.”

Normality Shapiro-Wilk test
(on residuals)

t-test, ANOVA “To test the normality assumption, a Shapiro-Wilk test was run on the residuals of a between-subjects full-factorial 
ANOVA model. The test was statistically non-significant (W = .984, p = .627), indicating compliance with the 
normality assumption. A plot of residuals, histogram of residuals, and Q-Q plot all visually confirm the same (Figure 
3).”

Normality Shapiro-Wilk test
(on residuals)

Linear mixed model (LMM) “To test the normality assumption, a Shapiro-Wilk test was run on the residuals of a within-subjects linear mixed model 
(LMM). The test was statistically non-significant (W = .984, p = .627), indicating compliance with the normality 
assumption. A plot of residuals, histogram of residuals, and Q-Q plot all visually confirm the same (Figure 3).”

ANOVA Assumptions
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Assumption Test Name Context of Use R Code

Homogeneity of 
variance

Levene’s test Any ANOVA model with at 
least one between-subjects 
factor

# df has one between-Ss factor (X1), one within-Ss factor (X2), and continuous response (Y)
library(afex) # for aov_ez
library(performance) # for check_homogeneity
library(lme4) # for lmer
Library(lmerTest)
library(car)  # for Anova

m = aov_ez(dv="Y", between="X1", within="X2", id="PId", type=3, data=df)
print(check_homogeneity(m)) # Levene's test

# if a violation occurs (p<.05), use a Welch t-test for one factor of 2 levels...
t.test(Y ~ X1, data=df, var.equal=FALSE)

# ...or a Welch ANOVA for one factor of >2 levels...
oneway.test(Y ~ X1, data=df, var.equal=FALSE)

# ...or a White-adjusted ANOVA for >1 factor (with within-Ss. factors, use an LMM)
m = lmer(Y ~ X1*X2 + (1|PId), data=df)
Anova(m, type=3, test.statistic="F", white.adjust=TRUE)

Sphericity Mauchly’s test of 
sphericity

Any ANOVA model with at 
least one within-subjects 
factor

# df has one between-Ss factor (X1), one within-Ss factor (X2), and continuous response (Y)
library(afex) # for aov_ez
library(performance) # for check_sphericity

m = aov_ez(dv="Y", between="X1", within="X2", id="PId", type=3, data=df)

summary(m)$sphericity.tests # Mauchly's test of sphericity
print(check_sphericity(m))  # same

anova(m, correction="none") # use if p≥.05, no violation of sphericity
anova(m, correction="GG")   # use if p<.05, sphericity violation

ANOVA Assumptions
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Assumption Test Name Context of Use Report

Homogeneity of 
variance

Levene’s test Any ANOVA model with at 
least one between-subjects 
factor

“To test the homogeneity of variance assumption, Levene’s test was run on a mixed factorial ANOVA with a between-
subjects factor X1 and a within-subjects factor X2. The test was statistically non-significant (p = .753), indicating no 
violation.”

Sphericity Mauchly’s test of 
sphericity

Any ANOVA model with at 
least one within-subjects 
factor

“To test the sphericity assumption, Mauchly’s test of sphericity was run on a mixed factorial ANOVA with a between-
subjects factor X1 and a within-subjects factor X2. The test was statistically non-significant (p = .999), indicating no 
sphericity violation.”

ANOVA Assumptions
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Distribution Parameterization R Distribution Fns R Code

Normal mean (µ): mean
standard deviation (σ): sd

_norm:
dnorm
pnorm
qnorm
rnorm

# df has one factor (X) w/two levels (a,b) and continuous response Y
library(EnvStats) # for gofTest
hist(df[df$X == "a",]$Y, main="Histogram of Y for X=a", col="pink", freq=FALSE) # X=a
fa = gofTest(df[df$X == "a",]$Y, distribution="norm")
curve(dnorm(x, mean=fa$distribution.parameters[1], sd=fa$distribution.parameters[2]), 

lty=1, lwd=3, col="red", add=TRUE)
print(fa) # Shapiro-Wilk GOF

hist(df[df$X == "b",]$Y, main="Histogram of Y for X=b", col="lightblue", freq=FALSE) # X=b
fb = gofTest(df[df$X == "b",]$Y, distribution="norm")
curve(dnorm(x, mean=fb$distribution.parameters[1], sd=fb$distribution.parameters[2]), 

lty=1, lwd=3, col="blue", add=TRUE)
print(fb) # Shapiro-Wilk GOF

Lognormal mean (µ): meanlog
standard deviation (σ): sdlog

_lnorm:
dlnorm
plnorm
qlnorm
rlnorm

# df has one factor (X) w/two levels (a,b) and positively skewed response Y
library(EnvStats) # for gofTest
hist(df[df$X == "a",]$Y, main="Histogram of Y for X=a", col="pink", freq=FALSE) # X=a
fa = gofTest(df[df$X == "a",]$Y, distribution="lnorm")
curve(dlnorm(x, meanlog=fa$distribution.parameters[1], sdlog=fa$distribution.parameters[2]), 

lty=1, lwd=3, col="red", add=TRUE)
print(fa) # Shapiro-Wilk GOF

hist(df[df$X == "b",]$Y, main="Histogram of Y for X=b", col="lightblue", freq=FALSE) # X=b
fb = gofTest(df[df$X == "b",]$Y, distribution="lnorm")
curve(dlnorm(x, meanlog=fb$distribution.parameters[1], sdlog=fb$distribution.parameters[2]), 

lty=1, lwd=3, col="blue", add=TRUE)
print(fb) # Shapiro-Wilk GOF

Distributions
39



Distribution Parameterization R Distribution Fns Report

Normal mean (µ): mean
standard deviation (σ): sd

_norm:
dnorm
pnorm
qnorm
rnorm

“Figure 4 shows the distributions of response Y for both levels of factor X. To test whether these distributions were 
normally distributed, a Shapiro-Wilk goodness-of-fit test was run on Y for both levels of X. The test for level ‘a’ 
was statistically non-significant (W = .979, p = .796), as was the test for level ‘b’ (W = .987, p = .961), indicating 
no detectable departure from a normal distribution for either level of X.”

Lognormal mean (µ): meanlog
standard deviation (σ): sdlog

_lnorm:
dlnorm
plnorm
qlnorm
rlnorm

“Figure 5 shows the distributions of response Y for both levels of factor X. To test whether these distributions were 
lognormally distributed, a Shapiro-Wilk goodness-of-fit test was run on Y for both levels of X. The test for level 
‘a’ was statistically non-significant (W = .979, p = .796), as was the test for level ‘b’ (W = .987, p = .961), 
indicating no detectable departure from a lognormal distribution for either level of X.”

Distributions
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Figure 5
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Distribution Parameterization R Distribution Fns R Code

Poisson mean, variance (λ): lambda _pois:
dpois
ppois
qpois
rpois

# df has one factor (X) w/two levels (a,b) and integer count response Y
library(fitdistrplus) # for fitdist, gofstat

hist(df[df$X == "a",]$Y, main="Histogram of Y for X=a", col="pink", freq=FALSE) # X=a
fa = fitdist(df[df$X == "a",]$Y, distr="pois")
curve(dpois(round(x,0), lambda=fa$estimate[1]), lty=1, lwd=3, col="red", add=TRUE)
xa = seq(floor(min(df[df$X == "a",]$Y)), ceiling(max(df[df$X == "a",]$Y)), by=1)
lines(xa, dpois(xa, lambda=fa$estimate[1]), lty=1, lwd=3, col="darkred")
gofstat(fa) # chi-squared GOF

hist(df[df$X == "b",]$Y, main="Histogram of Y for X=b", col="lightblue", freq=FALSE) # X=b
fb = fitdist(df[df$X == "b",]$Y, distr="pois")
curve(dpois(round(x,0), lambda=fb$estimate[1]), lty=1, lwd=3, col="blue", add=TRUE)
xb = seq(floor(min(df[df$X == "b",]$Y)), ceiling(max(df[df$X == "b",]$Y)), by=1)
lines(xb, dpois(xb, lambda=fb$estimate[1]), lty=1, lwd=3, col="darkblue")
gofstat(fb) # chi-squared GOF

# if var/|mean| > 1.15, we have overdispersion; use quasipoisson or an nbinom GL(M)M
var(df[df$X == "a",]$Y) / abs(mean(df[df$X == "a",]$Y)) > 1.15
var(df[df$X == "b",]$Y) / abs(mean(df[df$X == "b",]$Y)) > 1.15
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Distribution Parameterization R Distribution Fns Report

Poisson mean, variance (λ): lambda _pois:
dpois
ppois
qpois
rpois

“Figure 6 shows the distributions of response Y for both levels of factor X. To test whether these distributions were 
Poisson distributed, a chi-squared goodness-of-fit test was run on Y for both levels of X. The test for level ‘a’ was 
statistically non-significant (χ2(4, N=30) = 0.56, p = .967), as was the test for level ‘b’ (χ2(4, N=30) = 3.89, p = 
.422), indicating no detectable departure from a Poisson distribution for either level of X.”
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Distribution Parameterization R Distribution Fns R Code

Negative Binomial dispersion (θ): size
mean (µ): mu

_nbinom:
dnbinom
pnbinom
qnbinom
rnbinom

# df has one factor (X) w/two levels (a,b) and integer count response Y
library(fitdistrplus) # for fitdist, gofstat
hist(df[df$X == "a",]$Y, main="Histogram of Y for X=a", col="pink", freq=FALSE) # X=a
fa = fitdist(df[df$X == "a",]$Y, distr="nbinom")
curve(dnbinom(round(x,0), size=fa$estimate[1], mu=fa$estimate[2]), 

lty=1, lwd=3, col="red", add=TRUE)
xa = seq(floor(min(df[df$X == "a",]$Y)), ceiling(max(df[df$X == "a",]$Y)), by=1)
lines(xa, dnbinom(xa, size=fa$estimate[1], mu=fa$estimate[2]), lty=1, lwd=3, col="darkred")
gofstat(fa) # chi-squared GOF

hist(df[df$X == "b",]$Y, main="Histogram of Y for X=b", col="lightblue", freq=FALSE) # X=b
fb = fitdist(df[df$X == "b",]$Y, distr="nbinom")
curve(dnbinom(round(x,0), size=fb$estimate[1], mu=fb$estimate[2]), 

lty=1, lwd=3, col="blue", add=TRUE)
xb = seq(floor(min(df[df$X == "b",]$Y)), ceiling(max(df[df$X == "b",]$Y)), by=1)
lines(xb, dnbinom(xb, size=fb$estimate[1], mu=fb$estimate[2]), lty=1, lwd=3, col="darkblue")
gofstat(fb) # chi-squared GOF
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Distribution Parameterization R Distribution Fns Report

Negative Binomial dispersion (θ): size
mean (µ): mu

_nbinom:
dnbinom
pnbinom
qnbinom
rnbinom

“Figure 7 shows the distributions of response Y for both levels of factor X. To test whether these distributions were 
negative binomially distributed, a chi-squared goodness-of-fit test was run on Y for both levels of X. The test for 
level ‘a’ was statistically non-significant (χ2(4, N=30) = 0.88, p = .927), as was the test for level ‘b’ (χ2(2, N=30) = 
0.81, p = .666), indicating no detectable departure from a negative binomial distribution for either level of X.”
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Distribution Parameterization R Distribution Fns R Code

Exponential rate (λ): rate _exp:
dexp
pexp
qexp
rexp

# df has one factor (X) w/two levels (a,b) and exponential response Y
library(EnvStats) # for gofTest
hist(df[df$X == "a",]$Y, main="Histogram of Y for X=a", col="pink", freq=FALSE) # X=a
fa = gofTest(df[df$X == "a",]$Y, distribution="exp")
curve(dexp(x, rate=fa$distribution.parameters[1]), lty=1, lwd=3, col="red", add=TRUE)
print(fa) # Shapiro-Wilk-Chen-Balakrishnan GOF

hist(df[df$X == "b",]$Y, main="Histogram of Y for X=b", col="lightblue", freq=FALSE) # X=b
fb = gofTest(df[df$X == "b",]$Y, distribution="exp")
curve(dexp(x, rate=fb$distribution.parameters[1]), lty=1, lwd=3, col="blue", add=TRUE)
print(fb) # Shapiro-Wilk-Chen-Balakrishnan GOF

Gamma shape (α): shape
scale (β): scale

_gamma:
dgamma
pgamma
qgamma
rgamma

# df has one factor (X) w/two levels (a,b) and positively skewed response Y
library(EnvStats) # for gofTest
hist(df[df$X == "a",]$Y, main="Histogram of Y for X=a", col="pink", freq=FALSE) # X=a
fa = gofTest(df[df$X == "a",]$Y, distribution="gamma")
curve(dgamma(x, shape=fa$distribution.parameters[1], scale=fa$distribution.parameters[2]),

lty=1, lwd=3, col="red", add=TRUE)
print(fa) # Shapiro-Wilk-Chen-Balakrishnan GOF

hist(df[df$X == "b",]$Y, main="Histogram of Y for X=b", col="lightblue", freq=FALSE) # X=b
fb = gofTest(df[df$X == "b",]$Y, distribution="gamma")
curve(dgamma(x, shape=fa$distribution.parameters[1], scale=fa$distribution.parameters[2]), 

lty=1, lwd=3, col="blue", add=TRUE)
print(fb) # Shapiro-Wilk-Chen-Balakrishnan GOF

Distribution Tests
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Distribution Parameterization R Distribution Fns Report

Exponential rate (λ): rate _exp:
dexp
pexp
qexp
rexp

“Figure 8 shows the distributions of response Y for both levels of factor X. To test whether these distributions were 
exponentially distributed, a Shapiro-Wilk goodness-of-fit test was run on Y for both levels of X. The test for level 
‘a’ was statistically non-significant (W = .966, p = .428), as was the test for level ‘b’ (W = .952, p = .190), 
indicating no detectable departure from an exponential distribution for either level of X.”

Gamma shape (α): shape
scale (β): scale

_gamma:
dgamma
pgamma
qgamma
rgamma

“Figure 9 shows the distributions of response Y for both levels of factor X. To test whether these distributions were 
gamma distributed, a Shapiro-Wilk goodness-of-fit test was run on Y for both levels of X. The test for level ‘a’ was 
statistically non-significant (W = .968, p = .483), as was the test for level ‘b’ (W = .967, p = .459), indicating no 
detectable departure from a gamma distribution for either level of X.”

Distribution Tests
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Figure 8
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Figure 9
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Parametric Tests
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Factors Levels Between or 
Within Subjects

Test Name R Code

1 2 Between Independent-
samples t-test

# df has one between-Ss. factor (X) w/levels (a,b) and continuous response (Y)
library(car) # for leveneTest
df$PId = factor(df$PId) # participant is nominal (unused)
df$X = factor(df$X) # X is a 2-level factor
contrasts(df$X) <- "contr.sum"

leveneTest(Y ~ X, data=df, center=mean) # check homogeneity of variance

t.test(Y ~ X, data=df, var.equal=TRUE)  # if p≥.05, no violation of homogeneity
t.test(Y ~ X, data=df, var.equal=FALSE) # if p<.05, Welch t-test

1 ≥2 Between One-way ANOVA # df has one between-Ss. factor (X) w/levels (a,b,c) and continuous response (Y)
library(afex) # for aov_ez
library(performance) # for check_homogeneity
library(car) # for Anova
df$PId = factor(df$PId) # participant is nominal
df$X = factor(df$X)     # X is a 3-level factor
contrasts(df$X) <- "contr.sum"

m = aov_ez(dv="Y", between="X", id="PId", type=3, data=df) # fit model
leveneTest(Y ~ X, data=df, center=mean) # Levene's test
print(check_homogeneity(m)) # same

anova(m) # use if p≥.05, no violation of homoscedasticity, else use...
oneway.test(Y ~ X, data=df, var.equal=FALSE) # Welch ANOVA
Anova(m$lm, type=3, white.adjust=TRUE)       # White-adjusted ANOVA

Parametric Tests
One between-Ss. factor
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Factors Levels Between or 
Within Subjects

Test Name Report

1 2 Between Independent-
samples t-test

“The mean of ‘a’ was 29.29 (SD = 14.72) and of ‘b’ was 47.68 (SD = 12.53). This difference was statistically significant 
according to an independent-samples t-test (t(58) = -5.21, p < .0001).”

1 ≥2 Between One-way ANOVA “The mean of ‘a’ was 32.12 (SD = 14.59), of ‘b’ was 44.23 (SD = 12.45), and of ‘c’ was 41.60 (SD = 14.36). These differences 
were statistically significant according to a one-way ANOVA (F(2, 57) = 4.24, p = .019).”

Parametric Tests
One between-Ss. factor

NB. “SD” stands for “standard deviation,” i.e., the spread of  values around the mean.
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Factors Levels Between or 
Within Subjects

Test Name R Code

1 2 Within Paired-samples 
t-test

# df has one within-Ss. factor (X) w/levels (a,b) and continuous response (Y)
library(reshape2) # for dcast
df$PId = factor(df$PId) # participant is nominal
df$X = factor(df$X) # X is a 2-level factor
contrasts(df$X) <- "contr.sum"

df2 <- dcast(df, PId ~ X, value.var="Y") # make wide-format table
t.test(df2$a, df2$b, paired=TRUE) # neither homoscedasticity nor sphericity applies to a paired t-test

1 ≥2 Within One-way repeated 
measures ANOVA

# df has one within-Ss. factor (X) w/levels (a,b,c) and continuous response (Y)
library(afex) # for aov_ez
library(performance) # for check_sphericity
df$PId = factor(df$PId) # participant is nominal
df$X = factor(df$X) # X is a 3-level factor
contrasts(df$X) <- "contr.sum"

m = aov_ez(dv="Y", within="X", id="PId", type=3, data=df) # fit model
summary(m)$sphericity.tests # Mauchly's test of sphericity
print(check_sphericity(m))  # same

anova(m, correction="none") # if p≥.05, no violation of sphericity
anova(m, correction="GG")   # if p<.05, violation of sphericity

Parametric Tests
One within-Ss. factor
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Factors Levels Between or 
Within Subjects

Test Name Report

1 2 Within Paired-samples 
t-test

“The mean of ‘a’ was 29.29 (SD = 14.72) and of ‘b’ was 47.68 (SD = 12.53). This difference was statistically significant 
according to a paired-samples t-test (t(29) = -4.85, p < .0001).”

1 ≥2 Within One-way repeated 
measures ANOVA

“The mean of ‘a’ was 32.12 (SD = 14.59), of ‘b’ was 44.23 (SD = 12.45), and of ‘c’ was 41.60 (SD = 14.36). These differences 
were statistically significant (F(2, 38) = 4.06, p = .025).”

Parametric Tests
One within-Ss. factor
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Factors Levels Between or 
Within Subjects

Test Name R Code

≥2 ≥2 Between Factorial ANOVA # df has two between-Ss. factors (X1,X2) each w/levels (a,b) and continuous response (Y)
library(afex) # for aov_ez
library(performance) # for check_homogeneity
library(car)  # for Anova
df$PId = factor(df$PId) # participant is nominal
df$X1 = factor(df$X1)   # X1 is a 2-level factor
df$X2 = factor(df$X2)   # X2 is a 2-level factor
contrasts(df$X1) <- "contr.sum"
contrasts(df$X2) <- "contr.sum"

m = aov_ez(dv="Y", between=c("X1","X2"), id="PId", type=3, data=df) # fit model
leveneTest(Y ~ X1*X2, data=df, center=mean) # Levene's test
print(check_homogeneity(m)) # same

anova(m) # use if p≥.05, no violation of homogeneity, else use...
Anova(m$lm, type=3, white.adjust=TRUE) # White-adjusted ANOVA

Linear model (LM) # df has two between-Ss. factors (X1,X2) each w/levels (a,b) and continuous response (Y)
library(performance) # for check_homogeneity
library(car) # for Anova
df$PId = factor(df$PId) # participant is nominal (unused)
df$X1 = factor(df$X1)   # X1 is a 2-level factor
df$X2 = factor(df$X2)   # X2 is a 2-level factor
contrasts(df$X1) <- "contr.sum"
contrasts(df$X2) <- "contr.sum"

m = lm(Y ~ X1*X2, data=df)  # fit model
leveneTest(Y ~ X1*X2, data=df, center=mean) # Levene's test
print(check_homogeneity(m)) # same

anova(m) # use if p≥.05, no violation of homogeneity, else use...
Anova(m, type=3, white.adjust=TRUE) # White-adjusted ANOVA

Parametric Tests
Multiple between-Ss. factors
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Factors Levels Between or 
Within Subjects

Test Name Report

≥2 ≥2 Between Factorial ANOVA “Figure 10 shows an interaction plot with ±1 standard deviation error bars for X1 and X2. Levene’s test indicated a violation of 
the assumption of homogeneity of variance (F(3, 56) = 6.86, p = .001). Therefore, a White-adjusted factorial ANOVA was used. 
It indicated a significant effect on Y of X1 (F(1, 56) = 20.51, p < .0001), no significant effect of X2 (F(1, 56) = 0.09, p = .766), 
and a significant X1×X2 interaction (F(1, 56) = 7.15, p = .010).”

Linear model (LM) “Figure 10 shows an interaction plot with ±1 standard deviation error bars for X1 and X2. Levene’s test indicated a violation of 
the assumption of homogeneity of variance (F(3, 56) = 6.86, p = .001). Therefore, a White-adjusted factorial ANOVA was used. 
It indicated a significant effect on Y of X1 (F(1, 56) = 20.51, p < .0001), no significant effect of X2 (F(1, 56) = 0.09, p = .766), 
and a significant X1×X2 interaction (F(1, 56) = 7.15, p = .010).”

Parametric Tests
Multiple between-Ss. factors
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Factors Levels Between or 
Within Subjects

Test Name R Code

≥2 ≥2 Within Factorial repeated 
measures ANOVA

# df has two within-Ss. factors (X1,X2) each w/levels (a,b) and continuous response (Y)
library(afex) # for aov_ez
library(performance) # for check_sphericity
df$PId = factor(df$PId) # participant is nominal
df$X1 = factor(df$X1) # X1 is a 2-level factor
df$X2 = factor(df$X2) # X2 is a 2-level factor
contrasts(df$X1) <- "contr.sum"
contrasts(df$X2) <- "contr.sum"

m = aov_ez(dv="Y", within=c("X1","X2"), id="PId", type=3, data=df) # fit model
summary(m)$sphericity.tests # Mauchly's test of sphericity
print(check_sphericity(m))  # same
anova(m, correction="none") # use if p≥.05, no violation of sphericity
anova(m, correction="GG")   # Greenhouse-Geisser correction

≥2 ≥2 Within Linear mixed model 
(LMM)*

# df has two within-Ss. factors (X1,X2) each w/levels (a,b) and continuous response (Y)
library(lme4) # for lmer
library(lmerTest)
library(car)  # for Anova
df$PId = factor(df$PId) # participant is nominal
df$X1 = factor(df$X1) # X1 is a 2-level factor
df$X2 = factor(df$X2) # X2 is a 2-level factor
contrasts(df$X1) <- "contr.sum"
contrasts(df$X2) <- "contr.sum"

m = lmer(Y ~ X1*X2 + (1|PId), data=df) # sphericity is N/A for LMMs
Anova(m, type=3, test.statistic="F")

Parametric Tests
Multiple within-Ss. factors
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*NB. The LMM sample code uses a random intercept for participant (PId). There are also random slope models, which are used when the response changes at different rates for each PId over a 
repeated factor. A 2-minute random slope example of  county population growth over time can be seen here (https://www.youtube.com/watch?v=YDe6F7CXjWw). A free webinar on the topic of  
random intercept and random slope models is available here (https://craft.theanalysisfactor.com/webinar-recording-signup/?cosid=502).
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Factors Levels Between or 
Within Subjects

Test Name Report

≥2 ≥2 Within Factorial repeated 
measures ANOVA

“Figure 10 shows an interaction plot with ±1 standard deviation error bars for X1 and X2. A factorial repeated measures 
ANOVA indicated a significant effect on Y of X1 (F(1, 14) = 29.58, p < .0001), no significant effect of X2 (F(1, 14) = 0.08, p = 
.785), and a significant X1×X2 interaction (F(1, 14) = 5.11, p = .040).”

≥2 ≥2 Within Linear mixed model 
(LMM)

“Figure 10 shows an interaction plot with ±1 standard deviation error bars for X1 and X2. An analysis of variance based on a 
linear mixed model (LMM) indicated a significant effect on Y of X1 (F(1, 42) = 21.98, p < .0001), no significant effect of X2 
(F(1, 42) = 0.10, p = .758), and a significant X1×X2 interaction (F(1, 42) = 7.66, p = .008).”

Parametric Tests
Multiple within-Ss. factors
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Figure 10
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Parametric Tests
Post hoc pairwise comparisons
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Factors Levels Omnibus Test Test Name B/W R Code

1 >2 One-way ANOVA Independent 
samples t-test

Btwn # df has one between-Ss. factor (X) w/levels (a,b,c) and continuous response (Y)
library(emmeans) # for emmeans
emmeans(m, pairwise ~ X, adjust="holm") # m is from afex::aov_ez

1 >2 One-way repeated 
measures ANOVA

Paired samples 
t-test

Within # df has one within-Ss. factor (X) w/levels (a,b,c) and continuous response (Y)
library(emmeans) # for emmeans
emmeans(m, pairwise ~ X, adjust="holm") # m is from afex::aov_ez

Parametric Tests
Post hoc pairwise comparisons – One factor
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Factors Levels Omnibus Test Test Name B/W Report

1 ≥2 One-way ANOVA Independent 
samples t-test

Btwn “Three post hoc pairwise comparisons using independent-samples t-tests, corrected with Holm’s sequential Bonferroni 
procedure (Holm 1979), indicated that ‘a’ vs. ‘b’ was significantly different (t(57) = -2.77, p = .023), but ‘a’ vs. ‘c’ and 
‘b’ vs. ‘c’ were not.”

1 ≥2 One-way repeated 
measures ANOVA

Paired samples 
t-test

Within “Three post hoc pairwise comparisons using paired-samples t-tests, corrected with Holm’s sequential Bonferroni 
procedure (Holm 1979), indicated that ‘a’ vs. ‘b’ was significantly different (t(19) = -2.70, p = .042), but ‘a’ vs. ‘c’ and 
‘b’ vs. ‘c’ were not.”

Parametric Tests
Post hoc pairwise comparisons – One factor
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Factors Levels Omnibus Test Test Name B/W R Code

≥2 ≥2 Factorial ANOVA, 
linear model (LM)

Independent 
samples t-test

Btwn # df has two between-Ss. factors (X1,X2) each w/levels (a,b) and continuous response (Y)
library(emmeans) # for emmeans
emmeans(m, pairwise ~ X1*X2, adjust="holm") # m is from lm, aov, or afex::aov_ez

≥2 ≥2 Factorial repeated 
measures ANOVA, 
linear mixed 
model (LMM)

Paired 
samples t-test

Within # df has two within-Ss. factors (X1,X2) each w/levels (a,b) and continuous response (Y)
library(emmeans) # for emmeans
emmeans(m, pairwise ~ X1*X2, adjust="holm") # m is from afex::aov_ez or lme4::lmer

Parametric Tests
Post hoc pairwise comparisons – Multiple factors
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Factors Levels Omnibus Test Test Name B/W Report

≥2 ≥2 Factorial ANOVA, 
Linear model (LM)

Independent 
samples t-test

Btwn “Six post hoc pairwise comparisons using independent-samples t-tests, corrected with Holm’s sequential Bonferroni procedure 
(Holm 1979), indicated that {a,a} vs. {b,b} (t(56) = 3.53, p = .004), {b,a} vs. {a,b} (t(56) = -3.10, p = .012), and {a,b} vs. 
{b,b} (t(56) = 5.27, p < .0001) were significantly different. The other three pairwise comparisons were not detectably 
different.”

≥2 ≥2 Factorial repeated 
measures ANOVA

Paired 
samples t-test

Within “Six post hoc pairwise comparisons using paired-samples t-tests, corrected with Holm’s sequential Bonferroni procedure 
(Holm 1979), indicated that {a,a} vs. {b,b} (t(14) = 4.82, p = .002), {b,a} vs. {b,b} (t(14) = 3.27, p = .023), {a,b} vs. {b,b} 
(t(14) = 4.25, p = .004) were significantly different. The other three pairwise comparisons were not detectably different.”

≥2 ≥2 Linear mixed 
model (LMM)

Paired 
samples t-test

Within “Six post hoc pairwise comparisons using paired-samples t-tests, corrected with Holm’s sequential Bonferroni procedure 
(Holm 1979), indicated that {a,a} vs. {b,b} (t(42) = 3.53, p = .005), {b,a} vs. {a,b} (t(42) = -3.10, p = .014), and {a,b} vs. 
{b,b} (t(42) = 5.27, p < .0001) were significantly different. The other three pairwise comparisons were not detectably 
different.”

Parametric Tests
Post hoc pairwise comparisons – Multiple factors
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Variance-Covariance Structures
(for use with nlme::lme instead of lme4::lmer)
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Covariance Structures
72

Abbreviation Name Description R Code

ID Scaled identity All variances are equal, and all 
covariances are zero.

# df has one within-Ss. factor (X) w/levels (a,b,c) and continuous response (Y)
library(nlme)           # for lme
library(car)            # for Anova
library(emmeans)        # for emmeans
df$PId = factor(df$PId) # participant is nominal
df$X = factor(df$X)     # X is a 3-level factor
contrasts(df$X) <- "contr.sum"
m = lme(Y ~ X, random=~1|PId, data=df)   # ID
getVarCov(m, type="marginal")            # get VCV matrix
anova(m, type="marginal")                # for F-test
Anova(m, type=3, test.statistic="Chisq") # for chisq test
emmeans(m, pairwise ~ X, adjust="holm", mode="containment") # post hoc tests

DIAG Diagonal All variances can differ; otherwise, 
like ID.

# See R Code for ID. Only the blue model-building line changes to:
m = lme(Y ~ X, random=~1|PId, data=df, weights=varIdent(form=~1|X)) # DIAG

CS Compound 
symmetry

All variances are equal, and all 
covariances are equal.

# See R Code for ID. Only the blue model-building line changes to:
m = lme(Y ~ X, random=~1|PId, data=df, correlation=corCompSymm(form=~1|PId)) # CS

CSH Heterogeneous 
compound 
symmetry

All variances can differ; otherwise, 
like CS.

# See R Code for ID. Only the blue model-building line changes to:
m = lme(Y ~ X, random=~1|PId, data=df, correlation=corCompSymm(form=~1|PId), 

weights=varIdent(form=~1|X)) # CSH

NB. The lme4::lmer function does not allow specifying common variance-covariance (VCV) structures for repeated factors or residuals. Therefore, we must use nlme::lme for this. For a list of  
common VCV structures, see https://www.ibm.com/docs/en/spss-statistics/30.0.0?topic=mixed-covariance-structure-list-command. For their matrix formulations, see 
https://www.ibm.com/docs/en/spss-statistics/30.0.0?topic=statistics-covariance-structures. For a treatment in R, see https://rpubs.com/samuelkn/CovarianceStructuresInR. 

NB. The correlation parameter sets covariances (matrix off-diagonal) and the weights parameter sets variances (matrix on-diagonal). When correlation=NULL or is unspecified, the off-
diagonal values are zero. When weights=NULL or is unspecified, the on-diagonal variances are equal. The R help pages called up with ?corClasses and ?varClasses explain these parameters.

Optional when fitting linear mixed models (LMMs)

https://www.ibm.com/docs/en/spss-statistics/30.0.0?topic=mixed-covariance-structure-list-command
https://www.ibm.com/docs/en/spss-statistics/30.0.0?topic=statistics-covariance-structures
https://rpubs.com/samuelkn/CovarianceStructuresInR


Covariance Structures
73

Abbreviation Name Description R Code

AR1 First-order 
autoregressive

All variances are equal, and all 
covariances decrease with distance.

# See R Code for ID. Only the blue model-building line changes to:
m = lme(Y ~ X, random=~1|PId, data=df, correlation=corAR1(form=~1|PId)) # AR1

ARH1 Heterogeneous 
first-order 
autoregressive

All variances can differ; otherwise, 
like AR1.

# See R Code for ID. Only the blue model-building line changes to:
m = lme(Y ~ X, random=~1|PId, data=df, correlation=corAR1(form=~1|PId), 

weights=varIdent(form=~1|X)) # ARH1

ARMA11 Autoregressive 
moving average

All variances are equal, and all 
covariances decrease with distance, 
influenced by a moving average.

# See R Code for ID. Only the blue model-building line changes to:
m = lme(Y ~ X, random=~1|PId, data=df, correlation=corARMA(form=~1|PId, p=1, q=1)) # ARMA11 
# Note that (p,q)=(1,0) is AR1. The 'q' parameter determines the moving average.

TP Toeplitz All variances are equal, and 
covariances are equal across adjacent 
pairs, equal again across skip-
adjacent pairs, and so on. 

# See R Code for ID. Only the blue model-building line changes to:
m = lme(Y ~ X, random=~1|PId, data=df, correlation=corARMA(form=~1|PId, p=2, q=0)) # TP

TPH Heterogeneous 
Toeplitz

All variances can differ; otherwise, 
like TP.

# See R Code for ID. Only the blue model-building line changes to:
m = lme(Y ~ X, random=~1|PId, data=df, correlation=corARMA(form=~1|PId, p=2, q=0), 

weights=varIdent(form=~1|X)) # TPH

UN Unstructured All variances and covariances can 
differ.

# See R Code for ID. Only the blue model-building line changes to:
m = lme(Y ~ X, random=~1|PId, data=df, correlation=corSymm(form=~1|PId), 

weights=varIdent(form=~1|X)) # UN

Optional when fitting linear mixed models (LMMs)

NB. See ?corClasses and ?varClasses for additional variance-covariance structures. Or see https://rdrr.io/cran/nlme/man/corClasses.html and https://rdrr.io/cran/nlme/man/varClasses.html.

https://rdrr.io/cran/nlme/man/corClasses.html
https://rdrr.io/cran/nlme/man/varClasses.html
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Factors Levels Between or 
Within Subjects

Test Name R Code

1 2 Between Median test # df has one between-Ss. factor (X) w/levels (a,b) and a (1,0) response
library(coin) # for median_test
df$PId = factor(df$PId) # participant is nominal (unused)
df$X = factor(df$X) # X is a 2-level factor
contrasts(df$X) <- "contr.sum"
median_test(Y ~ X, data=df)

1 2 Between Mann-Whitney U test # df has one between-Ss. factor (X) w/levels (a,b) and continuous response (Y)
library(coin) # for wilcox_test
df$PId = factor(df$PId) # participant is nominal (unused)
df$X = factor(df$X) # X is a 2-level factor
contrasts(df$X) <- "contr.sum"
wilcox_test(Y ~ X, data=df, distribution="exact")

1 2 Within Sign test # df has one within-Ss. factor (X) w/levels (a,b) and a (1,0) response
library(coin) # for sign_test
df$PId = factor(df$PId) # participant is nominal
df$X = factor(df$X) # X is a 2-level factor
contrasts(df$X) <- "contr.sum"
sign_test(Y ~ X | PId, data=df)

1 2 Within Wilcoxon signed-rank test # df has one within-Ss. factor (X) w/levels (a,b) and continuous response (Y)
library(coin) # for wilcoxsign_test
df$PId = factor(df$PId) # participant is nominal
df$X = factor(df$X) # X is a 2-level factor
contrasts(df$X) <- "contr.sum"
wilcoxsign_test(Y ~ X | PId, data=df, distribution="exact")

Nonparametric Tests
One factor with 2 levels

NB. The Mann-Whitney U test is also known as the Wilcoxon-Mann-Whitney test and the Wilcoxon rank-sum test, neither to be confused with the Wilcoxon signed-rank test.
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Factors Levels Between or 
Within Subjects

Test Name Report

1 2 Between Median test “The sum of ‘a’ was 20 and of ‘b’ was 8. This difference was statistically significant according to a median test (Z = 
3.08, p = .002).”

1 2 Between Mann-Whitney U test “The median of ‘a’ was 29.12 (IQR = 13.92) and of ‘b’ was 45.72 (IQR = 15.91). This difference was statistically 
significant according to a Mann-Whitney U test (Z = -4.70, p < .0001).”

1 2 Within Sign test “The sum of ‘a’ was 20 and of ‘b’ was 8. This difference was statistically significant according to a sign test (Z = 
2.83, p = .005).”

1 2 Within Wilcoxon signed-rank test “The median of ‘a’ was 29.12 (IQR = 13.92) and of ‘b’ was 45.72 (IQR = 15.91). This difference was statistically 
significant according to a Wilcoxon signed-rank test (Z = -3.92, p < .0001).”

Nonparametric Tests
One factor with 2 levels

NB. “IQR” stands for “interquartile range,” i.e., the distance between the top and bottom of  the box in a boxplot (25% - 75% quartile range).
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Factors Levels Between or 
Within Subjects

Test Name R Code

1 ≥2 Between Kruskal-Wallis test # df has one between-Ss. factor (X) w/levels (a,b,c) and continuous response (Y)
library(coin) # for kruskal_test
df$PId = factor(df$PId) # participant is nominal (unused)
df$X = factor(df$X) # X is a 3-level factor
contrasts(df$X) <- "contr.sum"
kruskal_test(Y ~ X, data=df, distribution="asymptotic")

1 ≥2 Within Friedman test # df has one within-Ss. factor (X) w/levels (a,b,c), and continuous response (Y)
library(coin)
df$PId = factor(df$PId) # participant is nominal
df$X = factor(df$X) # X is a 3-level factor
friedman_test(Y ~ X | PId, data=df, distribution="asymptotic")

Nonparametric Tests
One factor with ≥2 levels
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Factors Levels Between or 
Within Subjects

Test Name Report

1 ≥2 Between Kruskal-Wallis test “The median of ‘a’ was 31.44 (IQR = 12.50), of ‘b’ was 42.90 (IQR = 20.60), and of ‘c’ was 39.50 (IQR = 14.73). 
These differences were statistically significant according to a Kruskal-Wallis test (χ2(2, N=60) = 9.36, p = .009).”

1 ≥2 Within Friedman test “The median of ‘a’ was 31.44 (IQR = 12.50), of ‘b’ was 42.90 (IQR = 20.60), and of ‘c’ was 39.50 (IQR = 14.73). 
These differences were statistically significant according to a Friedman test (χ2(2, N=60) = 12.90, p = .002).”

Nonparametric Tests
One factor with ≥2 levels
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Factors Levels Between or 
Within Subjects

Test Name R Code

≥2 ≥2 Between Aligned Rank 
Transform (ART)

# df has two between-Ss. factors (X1,X2) each w/levels (a,b) and continuous response (Y)
library(ARTool)
df$PId = factor(df$PId) # participant is nominal (unused)
df$X1 = factor(df$X1)   # X1 is a 2-level factor
df$X2 = factor(df$X2)   # X2 is a 2-level factor
contrasts(df$X1) <- "contr.sum"
contrasts(df$X2) <- "contr.sum"
m = art(Y ~ X1*X2, data=df)
anova(m)

≥2 ≥2 Within Aligned Rank 
Transform (ART)*

# df has two within-Ss. factors (X1,X2) each w/levels (a,b) and continuous response (Y)
library(ARTool)
df$PId = factor(df$PId) # participant is nominal
df$X1 = factor(df$X1)   # X1 is a 2-level factor
df$X2 = factor(df$X2)   # X2 is a 2-level factor
contrasts(df$X1) <- "contr.sum"
contrasts(df$X2) <- "contr.sum"
m = art(Y ~ X1*X2 + (1|PId), data=df) # PId is a random factor
anova(m)

Nonparametric Tests
Multiple factors

*NB. The within-subjects ART sample code uses a random intercept for participant (PId). There are also random slope models, which are used when the response changes at different rates for each 
participant over a repeated factor. A 2-minute random slope example of  county population growth over time can be seen here (https://www.youtube.com/watch?v=YDe6F7CXjWw). A free webinar 
on the topic of  random intercept and random slope models is available here (https://craft.theanalysisfactor.com/webinar-recording-signup/?cosid=502).
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Factors Levels Between or 
Within Subjects

Test Name Report

≥2 ≥2 Between Aligned Rank 
Transform (ART)

“Figure 11 shows an interaction plot for Y by X1, X2 with ±1 SD error bars. A nonparametric analysis of variance based on the 
Aligned Rank Transform indicated a significant effect on Y of X1 (F(1, 56) = 24.85, p < .0001) and of X2 (F(1, 56) = 19.54, p < 
.0001), but no significant X1×X2 interaction (F(1, 56) = 0.98, p = .327).”

≥2 ≥2 Within Aligned Rank 
Transform (ART)

“Figure 11 shows an interaction plot for Y by X1, X2 with ±1 SD error bars. A nonparametric analysis of variance based on the 
Aligned Rank Transform indicated a significant effect on Y of X1 (F(1, 42) = 24.85, p < .0001) and of X2 (F(1, 42) = 19.54, p < 
.0001), but no significant X1×X2 interaction (F(1, 42) = 0.98, p = .328).”

Nonparametric Tests
Multiple factors
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Nonparametric Tests
Post hoc pairwise comparisons
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Factors Levels Omnibus Test Test Name B/W R Code

1 ≥2 Kruskal-Wallis 
test

Mann-Whitney U 
test

Btwn # df has one between-Ss. factor (X) w/levels (a,b,c) and continuous response (Y)
library(rcompanion) # for wilcoxonZ
ab = wilcox.test(df[df$X == "a",]$Y, df[df$X == "b",]$Y, exact=FALSE) # a vs. b
ac = wilcox.test(df[df$X == "a",]$Y, df[df$X == "c",]$Y, exact=FALSE) # a vs. c
bc = wilcox.test(df[df$X == "b",]$Y, df[df$X == "c",]$Y, exact=FALSE) # b vs. c
p.adjust(c(ab$p.value, ac$p.value, bc$p.value), method="holm") # p-values

wilcoxonZ(df[df$X == "a",]$Y, df[df$X == "b",]$Y) # Z-scores
wilcoxonZ(df[df$X == "a",]$Y, df[df$X == "c",]$Y)
wilcoxonZ(df[df$X == "b",]$Y, df[df$X == "c",]$Y)

1 ≥2 Friedman test Wilcoxon signed-rank 
test

Within # df has one within-Ss. factor (X) w/levels (a,b,c) and continuous response (Y)
library(reshape2)   # for dcast
library(rcompanion) # for wilcoxonZ
df2 <- dcast(df, PId ~ X, value.var="Y") # make wide-format table
ab = wilcox.test(df2$a, df2$b, paired=TRUE, exact=FALSE) # a vs. b
ac = wilcox.test(df2$a, df2$c, paired=TRUE, exact=FALSE) # a vs. c
bc = wilcox.test(df2$b, df2$c, paired=TRUE, exact=FALSE) # b vs. c
p.adjust(c(ab$p.value, ac$p.value, bc$p.value), method="holm") # p-values

wilcoxonZ(df2$a, df2$b, paired=TRUE) # Z-scores
wilcoxonZ(df2$a, df2$c, paired=TRUE)
wilcoxonZ(df2$b, df2$c, paired=TRUE)

Nonparametric Tests
Post hoc pairwise comparisons – One factor
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Factors Levels Omnibus Test Test Name B/W Report

1 ≥2 Kruskal-Wallis 
test

Mann-Whitney U 
test

Btwn “Three post hoc Mann-Whitney U tests, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), indicated 
that ‘a’ vs. ‘b’ (Z = -2.89, p = .012) was significantly different, but that ‘a’ vs. ‘c’ and ‘b’ vs. ‘c’ were not.”

1 ≥2 Friedman test Wilcoxon signed-rank 
test

Within “Three post hoc Wilcoxon signed-rank tests, corrected with Holm’s sequential Bonferroni procedure  (Holm 1979), 
indicated that ‘a’ vs. ‘b’ (Z = -2.87, p = .013) was significantly different, but that ‘a’ vs. ‘c’ and ‘b’ vs. ‘c’ were not.”

Nonparametric Tests
Post hoc pairwise comparisons – One factor
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Factors Levels Omnibus Test Test Name B/W R Code

≥2 ≥2 Aligned Rank 
Transform (ART)

Aligned Rank 
Transform 
Contrasts
(ART-C)

Btwn, 
Within

# df has two factors (X1,X2) each w/levels (a,b) and continuous response (Y)
library(plyr)  # for mutate
library(dplyr) # for %>%
art.con(m, ~ X1*X2, adjust="holm") %>%  # run ART-C for X1×X2
  summary() %>%  # (optional) add significance stars to the output
  plyr::mutate(sig. = symnum(p.value, corr=FALSE, na=FALSE,
                             cutpoints = c(0, .001, .01, .05, .10, 1),
                             symbols = c("***", "**", "*", ".", " ")))

Nonparametric Tests
Post hoc pairwise comparisons – Multiple factors
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Factors Levels Omnibus Test Test Name B/W Report

≥2 ≥2 Aligned Rank 
Transform (ART)

Aligned Rank 
Transform 
Contrasts
(ART-C)

Btwn “Six post hoc pairwise comparisons conducted with the ART-C procedure (Elkin et al. 2021), and corrected with Holm’s 
sequential Bonferroni procedure (Holm 1979), indicated that {a,a} vs. {b,a} (t(56) = 4.37, p < .001), {a,b} vs. {b,a} (t(56) = 
6.67, p < .0001), {a,b} vs. {b,b} (t(56) = 2.67, p = .030), and {b,a} vs. {b,b} (t(56) = -4.00, p = .001) were significantly 
different. The two other pairwise comparisons were not detectably different.”

Within “Six post hoc pairwise comparisons conducted with the ART-C procedure (Elkin et al. 2021), and corrected with Holm’s 
sequential Bonferroni procedure (Holm 1979), indicated that {a,a} vs. {b,a} (t(42) = 4.37, p < .001), {a,b} vs. {b,a} (t(42) = 
6.67, p < .0001), {a,b} vs. {b,b} (t(42) = 2.67, p = .032), and {b,a} vs. {b,b} (t(42) = -4.00, p = .001). The two other pairwise 
comparisons were not detectably different.”

Nonparametric Tests
Post hoc pairwise comparisons – Multiple factors

87



Bibliography (one-way nonparametric tests, aligned rank transform)

• Brown, G.W. and Mood, A.M. (1948). Homogeneity of  several samples. The American Statistician 2 (3), p. 22. 
https://doi.org/10.2307/2682087 

• Brown, G.W. and Mood, A.M. (1951). On median tests for linear hypotheses. In Proceedings of  the Second Berkeley Symposium on 
Mathematical Statistics and Probability. Berkeley, CA: University of  California Press, pp. 159-166. 
https://projecteuclid.org/ebooks/berkeley-symposium-on-mathematical-statistics-and-probability/Proceedings-of-the-Second-
Berkeley-Symposium-on-Mathematical-Statistics-and/chapter/On-Median-Tests-for-Linear-Hypotheses/bsmsp/1200500226 

• Conover, W.J. (1999). The sign test. In Practical Nonparametric Statistics (3rd ed.). New York, NY: John Wiley & Sons, pp. 157-165. 
https://www.wiley.com/en-us/Practical+Nonparametric+Statistics%2C+3rd+Edition-p-9780471160687 

• Elkin, L.A., Kay, M., Higgins, J. and Wobbrock, J.O. (2021). An aligned rank transform procedure for multifactor contrast tests. 
Proceedings of  the ACM Symposium on User Interface Software and Technology (UIST ’21). New York, NY: ACM Press, pp. 754-768. 
https://doi.org/10.1145/3472749.3474784 

• Friedman, M. (1937). The use of  ranks to avoid the assumption of  normality implicit in the analysis of  variance. Journal of  the 
American Statistical Association 32 (200), pp. 675-701. https://doi.org/10.2307/2279372 

• Higgins, J.J., Blair, R.C. and Tashtoush, S. (1990). The aligned rank transform procedure. Proceedings of  the Conference on Applied Statistics 
in Agriculture. Manhattan, Kansas: New Prairie Press, pp. 185-195. 
http://newprairiepress.org/agstatconference/1990/proceedings/18/ 

• Higgins, J.J. and Tashtoush, S. (1994). An aligned rank transform test for interaction. Nonlinear World 1 (2), pp. 201-211.

• Hodges, J.L. and Lehmann, E.L. (1962). Rank methods for combination of  independent experiments in the analysis of  variance. 
Annals of  Mathematical Statistics 33 (2), pp. 482-497. https://www.jstor.org/stable/2237528 

88

https://doi.org/10.2307/2682087
https://projecteuclid.org/ebooks/berkeley-symposium-on-mathematical-statistics-and-probability/Proceedings-of-the-Second-Berkeley-Symposium-on-Mathematical-Statistics-and/chapter/On-Median-Tests-for-Linear-Hypotheses/bsmsp/1200500226
https://projecteuclid.org/ebooks/berkeley-symposium-on-mathematical-statistics-and-probability/Proceedings-of-the-Second-Berkeley-Symposium-on-Mathematical-Statistics-and/chapter/On-Median-Tests-for-Linear-Hypotheses/bsmsp/1200500226
https://www.wiley.com/en-us/Practical+Nonparametric+Statistics%2C+3rd+Edition-p-9780471160687
https://doi.org/10.1145/3472749.3474784
https://doi.org/10.2307/2279372
http://newprairiepress.org/agstatconference/1990/proceedings/18/
https://www.jstor.org/stable/2237528


Bibliography (one-way nonparametric tests, aligned rank transform)

• Kruskal, W.H. and Wallis, W.A. (1952). Use of  ranks in one-criterion variance analysis. Journal of  the American Statistical Association 47 
(260), pp. 583-621. https://doi.org/10.2307/2280779 

• Mann, H.B. and Whitney, D.R. (1947). On a test of  whether one of  two random variables is stochastically larger than the other. 
Annals of  Mathematical Statistics 18 (1), pp. 50-60. https://www.jstor.org/stable/2236101 

• Salter, K.C. and Fawcett, R.F. (1985). A robust and powerful rank test of  treatment effects in balanced incomplete block designs. 
Communications in Statistics: Simulation and Computation 14 (4), pp. 807-828. https://doi.org/10.1080/03610918508812475 

• Salter, K.C. and Fawcett, R.F. (1993). The ART test of  interaction: A robust and powerful rank test of  interaction in factorial models. 
Communications in Statistics: Simulation and Computation 22 (1), pp. 137-153. https://doi.org/10.1080/03610919308813085 

• Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin 1 (6), pp. 80-83. 
https://doi.org/10.2307/3001968 

• Wobbrock, J.O., Findlater, L., Gergle, D. and Higgins, J.J. (2011). The aligned rank transform for nonparametric factorial analyses 
using only ANOVA procedures. Proceedings of  the ACM Conference on Human Factors in Computing Systems (CHI ’11). New York, NY: 
ACM Press, pp. 143-146. https://doi.org/10.1145/1978942.1978963 

89

https://doi.org/10.2307/2280779
https://www.jstor.org/stable/2236101
https://doi.org/10.1080/03610918508812475
https://doi.org/10.1080/03610919308813085
https://doi.org/10.2307/3001968
https://doi.org/10.1145/1978942.1978963


Generalized Linear (Mixed) Models

90



Terminology
Generalize to Responses Unsuitable to ANOVA?

Co
nt

ai
n 

Ra
nd

om
 F

ac
to

rs
?*

Yes

N
o

Ye
s

No

(General) Linear Model (LM)
(Sometimes abbreviated GLM)

lm in R 
(see also aov)

Generalized Linear Model (GLM)
(Sometimes abbreviated GZLM or GLIM)

glm in R

(General) Linear Mixed Model (LMM)
lme4::lmer in R 

(see also nlme::lme)

Generalized Linear Mixed Model (GLMM)
lme4::glmer in R

*NB. Random factors enable the modeling of  correlated responses, i.e., within-subjects data, repeated measures data, longitudinal data, panel data, etc.

Betw
een-Ss.

W
ithin-Ss.

Normal, lognormal, 
binomial, multinomial, ordinal, 

Poisson, negative binomial, zero-inflated models, 
exponential, gamma

Normal and lognormal
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Distribution GLM GLMM

Gaussian lm()[1]

glm() family=gaussian
lme4::lmer()[2]

lme4::glmer() family=gaussian

Binomial glm() family=binomial lme4::glmer() family=binomial

Multinomial[3] nnet::multinom() or
multpois::glm.mp()
multpois::Anova.mp()

multpois::glmer.mp()
multpois::Anova.mp()

Ordinal MASS::polr() ordinal::clmm()
RVAideMemoire::Anova.clmm()

Poisson glm() family=poisson lme4::glmer() family=poisson

Quasi-Poisson[4] glm() family=quasipoisson N/A

Zero-inflated 
Poisson (ZIP)[5]

glmmTMB::glmmTMB()family=poisson 
ziformula=~1

glmmTMB::glmmTMB() family=poisson 
ziformula=~1 REML=TRUE

Negative binomial MASS::glm.nb() lme4::glmer.nb()

Zero-inflated 
negative binomial (ZINB)[5]

glmmTMB::glmmTMB() family=nbinom2 
ziformula=~1

glmmTMB::glmmTMB() family=nbinom2 
ziformula=~1 REML=TRUE

Exponential glm() family=Gamma(link="log") lme4::glmer() family=Gamma(link="log")

Gamma[6] glm() family=Gamma lme4::glmer() family=Gamma



Footnotes
[1] lm and glm are from the base stats package in R.
[2] lmer and glmer are both from the lme4 package. A glmer call with family=gaussian will fail to run with 

a message that one should just call lmer, which is equivalent.
[3] Multinomial logistic regression can be achieved via the multinomial-Poisson transformation (Baker 1994), 

which converts a multinomial regression into a Poisson model. See NB below.
[4] Use family=quasipoisson with mild overdispersion. With more overdisperson, use negative binomial 

regression. Unfortunately, family=quasipoisson is not available for glmer.
[5] Use zero-inflated Poisson (ZIP) or zero-inflated negative binomial (ZINB) regression models when 

distributions show excessive zeroes. To test for zero-inflation, use  
performance::check_zeroinflation(m), where m is a glm or glmer model with family=poisson, or a 
glm.nb or glmer.nb model.

[6] The canonical link function for Gamma regression is the inverse function. If this fails, using 
family=Gamma(link="log") is a common alternative.

NB. There is no family=multinomial option in lme4::glmer. There is also no GLMM equivalent to the 
nnet::multinom function for GLMs. There are a handful of options for polytomous responses with repeated 
measures, e.g., based on Markov Chain Monte-Carlo (MCMC) simulations, but these deviate considerably from 
the consistent GLMM approaches herein. Fortunately, Baker (1994) showed the equivalence of multinomial 
logistic regression and Poisson regression via the multinomial-Poisson transformation (Baker 1994). The 
multpois package implements functions to carry out multinomial logistic regression using this “trick.”
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Distribution Link Typical Uses R code for GLM (between-Ss.) R code for GLMM (within-Ss.)

Normal identity Linear regression:
Normally distributed 
responses; equivalent to the 
linear model (LM) or linear 
mixed model (LMM)

library(car) # for Anova
library(performance) # for check_*
df$PId = factor(df$PId)
df$X1 = factor(df$X1)
df$X2 = factor(df$X2)
contrasts(df$X1) <- "contr.sum"
contrasts(df$X2) <- "contr.sum"
m = lm(Y ~ X1*X2, data=df)
print(check_normality(m))
print(check_homogeneity(m))
Anova(m, type=3, test.statistic="F")

library(lme4) # for lmer
library(lmerTest)
library(car)  # for Anova
library(performance) # for check_*
df$PId = factor(df$PId)
df$X1 = factor(df$X1)
df$X2 = factor(df$X2)
contrasts(df$X1) <- "contr.sum"
contrasts(df$X2) <- "contr.sum"
m = lmer(Y ~ X1*X2 + (1|PId), data=df)
print(check_normality(m))
print(check_homogeneity(m))
Anova(m, type=3, test.statistic="F")

Lognormal identity Linear regression:
Lognormally distributed 
responses (e.g., time 
measurements)

library(car) # for Anova
library(performance) # for check_*
df$PId = factor(df$PId)
df$X1 = factor(df$X1)
df$X2 = factor(df$X2)
contrasts(df$X1) <- "contr.sum"
contrasts(df$X2) <- "contr.sum"
m = lm(log(Y) ~ X1*X2, data=df)
print(check_normality(m))
print(check_homogeneity(m))
Anova(m, type=3, test.statistic="F")

library(lme4) # for lmer
library(lmerTest)
library(car)  # for Anova
library(performance) # for check_*
df$PId = factor(df$PId)
df$X1 = factor(df$X1)
df$X2 = factor(df$X2)
contrasts(df$X1) <- "contr.sum"
contrasts(df$X2) <- "contr.sum"
m = lmer(log(Y) ~ X1*X2 + (1|PId), data=df)
print(check_normality(m))
print(check_homogeneity(m))
Anova(m, type=3, test.statistic="F")

GLM / GLMM
Distributions and canonical links

NB. A normal distribution is also known as a Gaussian distribution. The GLMM sample code uses a random intercept for participant (PId). There are also random slope models, which are used 
when the response changes at different rates for each subject over the repeated factor(s). A random slope example of  county population growth over time can be seen here 
(https://www.youtube.com/watch?v=YDe6F7CXjWw). A free webinar on the topic of  random intercept and random slope models is available here 
(https://craft.theanalysisfactor.com/webinar-recording-signup/?cosid=502).
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Distribution Link Typical Uses Report for GLM (between-Ss.) Report for GLMM (within-Ss.)

Normal identity Linear regression:
Normally distributed 
responses; equivalent to the 
linear model (LM) or linear 
mixed model (LMM)

“Figure 12 shows an interaction plot with ±1 standard 
deviation error bars for X1 and X2. An analysis of variance 
based on a linear model indicated a statistically significant 
X1×X2 interaction (F(1, 56) = 8.05, p = .006).”

“Figure 12 shows an interaction plot with ±1 standard deviation error bars 
for X1 and X2. An analysis of variance based on a linear mixed model 
indicated a statistically significant X1×X2 interaction (F(1, 42) = 8.05, p = 
.007).”

Lognormal identity Linear regression:
Lognormally distributed 
responses (e.g., time 
measurements)

“Figure 13 shows four lognormal histograms for each X1×X2 
condition. An analysis of variance based on a linear model 
indicated no statistically significant effects on log(Y) of X1, 
X2, or the X1×X2 interaction.”

“Figure 13 shows four lognormal histograms for each X1×X2 condition. An 
analysis of variance based on a linear mixed model indicated no 
statistically significant effects on log(Y) of X1, X2, or the X1×X2 
interaction.”

GLM / GLMM
Distributions and canonical links
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Distribution Link Typical Uses R code for GLM (between-Ss.) R code for GLMM (within-Ss.)

Binomial logit Logistic regression:
Dichotomous responses (i.e., 
nominal responses with two 
categories)

library(car) # for Anova
df$PId = factor(df$PId)
df$X1 = factor(df$X1)
df$X2 = factor(df$X2)
df$Y = factor(df$Y) # dichotomous response
contrasts(df$X1) <- "contr.sum"
contrasts(df$X2) <- "contr.sum"
m = glm(Y ~ X1*X2, data=df, family=binomial)
Anova(m, type=3)

library(lme4) # for glmer
library(lmerTest)
library(car)  # for Anova
df$PId = factor(df$PId)
df$X1 = factor(df$X1)
df$X2 = factor(df$X2)
df$Y = factor(df$Y) # dichotomous response
contrasts(df$X1) <- "contr.sum"
contrasts(df$X2) <- "contr.sum"
m = glmer(Y ~ X1*X2 + (1|PId), data=df, family=binomial)
Anova(m, type=3)

Multinomial logit Multinomial logistic regression:
Polytomous responses (i.e., 
nominal responses with more 
than two categories)

library(multpois) # for glm.mp, Anova.mp
df$PId = factor(df$PId)
df$X1 = factor(df$X1)
df$X2 = factor(df$X2)
df$Y = factor(df$Y) # polytomous response
contrasts(df$X1) <- "contr.sum"
contrasts(df$X2) <- "contr.sum"
m = glm.mp(Y ~ X1*X2, data=df) # *
Anova.mp(m, type=3)            # *

# This also can be used in place of '*' above:
library(nnet) # for multinom
library(car)  # for Anova
m = multinom(Y ~ X1*X2, data=df, trace=FALSE)
Anova(m, type=3)

library(multpois) # for glmer.mp, Anova.mp
df$PId = factor(df$PId)
df$X1 = factor(df$X1)
df$X2 = factor(df$X2)
df$Y = factor(df$Y) # polytomous response
contrasts(df$X1) <- "contr.sum"
contrasts(df$X2) <- "contr.sum"
m = glmer.mp(Y ~ X1*X2 + (1|PId), data=df)
Anova.mp(m, type=3)

GLM / GLMM
Distributions and canonical links

NB. Logistic regression is also known as binomial regression. Multinomial logistic regression is also known as nominal logistic regression. It is carried out here using the multinomial-Poisson 
transformation (Baker 1994). An alternative from the nnet package is also shown, but post hoc pairwise comparisons will be more conservative.
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Distribution Link Typical Uses Report for GLM (between-Ss.) Report for GLMM (within-Ss.)

Binomial logit Logistic regression:
Dichotomous responses (i.e., 
nominal responses with two 
categories)

“Figure 14 shows the number of ‘yes’ and ‘no’ responses for each 
X1×X2 condition. An analysis of variance based on logistic 
regression indicated a statistically significant effect of X2 on Y 
(χ2(1, N=60) = 11.69, p = .001).”

“Figure 14 shows the number of ‘yes’ and ‘no’ responses for each 
X1×X2 condition. An analysis of variance based on mixed logistic 
regression indicated a statistically significant effect of X2 on Y (χ2(1, 
N=60) = 9.13, p = .003).”

Multinomial logit Multinomial logistic regression:
Polytomous responses (i.e., 
nominal responses with more 
than two categories)

“Figure 15 shows the number of ‘yes’, ‘no’, and ‘maybe’ 
responses for each X1×X2 condition. An analysis of variance 
based on multinomial logistic regression, implemented using the 
multinomial-Poisson transformation (Baker 1994), indicated a 
statistically significant effect of X1 on Y (χ2(2, N=60) = 10.33, p 
= .006).”

“Figure 15 shows the number of ‘yes’, ‘no’, and ‘maybe’ responses for 
each X1×X2 condition. An analysis of variance based on mixed 
multinomial logistic regression, implemented using the multinomial-
Poisson transformation (Baker 1994), indicated a statistically 
significant effect of X1 on Y (χ2(2, N=60) = 9.28, p = .010).”

GLM / GLMM
Distributions and canonical links
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Distribution Link Typical Uses R code for GLM (between-Ss.) R code for GLMM (within-Ss.)

Ordinal cumulative
logit

Ordinal logistic regression:
Ordinal responses (e.g., 
Likert-type scales)

library(MASS) # for polr
library(car)  # for Anova
df$PId = factor(df$PId)
df$X1 = factor(df$X1)
df$X2 = factor(df$X2)
df$Y = ordered(df$Y) # ordinal response
contrasts(df$X1) <- "contr.sum"
contrasts(df$X2) <- "contr.sum"
m = polr(Y ~ X1*X2, data=df, Hess=TRUE)
Anova(m, type=3)

library(ordinal)       # for clmm
library(RVAideMemoire) # for Anova.clmm
dt$PId = factor(dt$PId)
dt$X1 = factor(dt$X1)
dt$X2 = factor(dt$X2)
dt$Y = ordered(dt$Y) # ordinal response
contrasts(dt$X1) <- "contr.sum"
contrasts(dt$X2) <- "contr.sum"
# Anova.clmm fails if 'data' is 'df'; use 'dt' instead
m = clmm(Y ~ X1*X2 + (1|PId), data=dt, Hess=TRUE, link="logit")
# logit, probit, cloglog, loglog, and cauchit links are options
Anova.clmm(m)

GLM / GLMM
Distributions and canonical links

NB. Ordinal logistic regression is also known as cumulative logistic regression. 
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Distribution Link Typical Uses Report for GLM (between-Ss) Report for GLMM (within-Ss)

Ordinal cumulative 
logit

Ordinal logistic regression:
Ordinal responses (e.g., 
Likert-type scales)

“Figure 16 shows the distribution of Likert responses (1-7) 
for each X1×X2 condition. An analysis of variance based on 
ordinal logistic regression indicated a statistically 
significant effect on Y of X1 (χ2(1, N=60) = 15.28, p < 
.0001), X2(χ2(1, N=60) = 8.39, p = .004), and an X1×X2 
interaction (χ2(1, N=60) = 7.60, p = .006).”

“Figure 16 shows the distribution of Likert responses (1-7) for each X1×X2 
condition. An analysis of variance based on mixed ordinal logistic regression 
indicated a statistically significant effect on Y of X1 (χ2(1, N=60) = 13.75, p 
< .001), X2(χ2(1, N=60) = 6.86, p = .009), and an X1×X2 interaction (χ2(1, 
N=60) = 7.60, p = .006).”

GLM / GLMM
Distributions and canonical links
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GLM / GLMM
Distributions and canonical links

Distribution Link Typical Uses R code for GLM (between-Ss.) R code for GLMM (within-Ss.)

Poisson log Poisson regression:
Count responses

library(car) # for Anova
library(performance) # for check_overdispersion
df$PId = factor(df$PId)
df$X1 = factor(df$X1)
df$X2 = factor(df$X2)
contrasts(df$X1) <- "contr.sum"
contrasts(df$X2) <- "contr.sum"
m = glm(Y ~ X1*X2, data=df, family=poisson)
print(check_overdispersion(m))
# use family=quasipoisson or negative binomial
# regression if overdispersed
Anova(m, type=3)

library(lme4) # for glmer
library(lmerTest)
library(car)  # for Anova
library(performance) # for check_overdispersion
df$PId = factor(df$PId)
df$X1 = factor(df$X1)
df$X2 = factor(df$X2)
contrasts(df$X1) <- "contr.sum"
contrasts(df$X2) <- "contr.sum"
m = glmer(Y ~ X1*X2 + (1|PId), data=df, family=poisson)
print(check_overdispersion(m))
# use mixed negative binomial regression if overdispersed
Anova(m, type=3)

Zero-Inflated 
Poisson

log Zero-inflated Poisson 
regression:
Zero-inflated count 
responses

library(glmmTMB) # for glmmTMB
library(car) # for Anova
library(performance) # for check_zeroinflation
df$PId = factor(df$PId)
df$X1 = factor(df$X1)
df$X2 = factor(df$X2)
contrasts(df$X1) <- "contr.sum"
contrasts(df$X2) <- "contr.sum"
m0 = glm(Y ~ X1*X2, data=df, family=poisson)
print(check_zeroinflation(m0))
m = glmmTMB(Y ~ X1*X2, data=df, family=poisson,

ziformula=~1)
Anova(m, type=3)

library(lme4) # for glmer
library(lmerTest)
library(glmmTMB) # for glmmTMB
library(car) # for Anova
library(performance) # for check_zeroinflation
df$PId = factor(df$PId)
df$X1 = factor(df$X1)
df$X2 = factor(df$X2)
contrasts(df$X1) <- "contr.sum"
contrasts(df$X2) <- "contr.sum“
m0 = glmer(Y ~ X1*X2 + (1|PId), data=df, family=poisson)
print(check_zeroinflation(m0))
m = glmmTMB(Y ~ X1*X2 + (1|PId), data=df, family=poisson, 

ziformula=~1, REML=TRUE)
Anova(m, type=3)

NB. When count data is overdispersed, it means the variance of  the response in each condition is greater than its mean. To test for overdispersion, one can use 
performance::check_overdispersion(m), where “m” is a fitted model with family=poisson. One can also use var(Y)/abs(mean(Y)) > 1.15, where “Y” is the response in 
each condition. For mildly overdispersed count data, family=quasipoisson can be used with glm but not with lme4::glmer. With high overdispersion, use negative binomial regression.
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GLM / GLMM
Distributions and canonical links

Distribution Link Typical Uses Report for GLM (between-Ss.) Report for GLMM (within-Ss.)

Poisson log Poisson regression:
Count responses

“Figure 17 shows histograms of count responses in each 
X1×X2 condition. An analysis of variance based on Poisson 
regression indicated a statistically significant effect of X1 on Y 
(χ2(1, N=60) = 4.47, p = .034) and a significant X1×X2 
interaction (χ2(1, N=60) = 5.59, p = .018).”

“Figure 17 shows histograms of count responses in each X1×X2 condition. 
An analysis of variance based on mixed Poisson regression indicated a 
statistically significant effect of X1 on Y (χ2(1, N=60) = 4.44, p = .035) and 
a significant X1×X2 interaction (χ2(1, N=60) = 5.54, p = .019).”

Zero-Inflated 
Poisson

log Zero-inflated Poisson 
regression:
Zero-inflated count 
responses

“Figure 18 shows histograms of zero-inflated count responses 
in each X1×X2 condition. An analysis of variance based on 
zero-inflated Poisson regression indicated a statistically 
significant X1×X2 interaction (χ2(1, N=60) = 7.34, p = .007).”

“Figure 18 shows histograms of zero-inflated count responses in each 
X1×X2 condition. An analysis of variance based on mixed zero-inflated 
Poisson regression indicated a statistically significant X1×X2 interaction 
(χ2(1, N=60) = 7.34, p = .007).”
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GLM / GLMM
Distributions and canonical links

Distribution Link Typical Uses R code for GLM (between-Ss.) R code for GLMM (within-Ss.)

Negative 
Binomial

log Negative binomial 
regression:
Overdispersed count 
responses

library(MASS) # for glm.nb
library(car)  # for Anova
df$PId = factor(df$PId)
df$X1 = factor(df$X1)
df$X2 = factor(df$X2)
contrasts(df$X1) <- "contr.sum"
contrasts(df$X2) <- "contr.sum"
m = glm.nb(Y ~ X1*X2, data=df)
Anova(m, type=3)

library(lme4) # for glmer.nb
library(lmerTest)
library(car)  # for Anova
df$PId = factor(df$PId)
df$X1 = factor(df$X1)
df$X2 = factor(df$X2)
contrasts(df$X1) <- "contr.sum"
contrasts(df$X2) <- "contr.sum"
m = glmer.nb(Y ~ X1*X2 + (1|PId), data=df)
Anova(m, type=3)

Zero-Inflated 
Negative 
Binomial

log Zero-inflated negative 
binomial regression:
Overdispersed zero-inflated 
count responses

library(MASS) # for glm.nb
library(glmmTMB) # for glmmTMB
library(car) # for Anova
library(performance) # for check_zeroinflation
df$PId = factor(df$PId)
df$X1 = factor(df$X1)
df$X2 = factor(df$X2)
contrasts(df$X1) <- "contr.sum"
contrasts(df$X2) <- "contr.sum"
m0 = glm.nb(Y ~ X1*X2, data=df)
print(check_zeroinflation(m0))
m = glmmTMB(Y ~ X1*X2, data=df, family=nbinom2, 

ziformula=~1)
Anova(m, type=3)

library(lme4) # for glmer.nb
library(lmerTest)
library(glmmTMB) # for glmmTMB
library(car) # for Anova
library(performance) # for check_zeroinflation
df$PId = factor(df$PId)
df$X1 = factor(df$X1)
df$X2 = factor(df$X2)
contrasts(df$X1) <- "contr.sum"
contrasts(df$X2) <- "contr.sum"
m0 = glmer.nb(Y ~ X1*X2 + (1|PId), data=df)
print(check_zeroinflation(m0))
m = glmmTMB(Y ~ X1*X2 + (1|PId), data=df, family=nbinom2, 

ziformula=~1, REML=TRUE)
Anova(m, type=3)
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GLM / GLMM
Distributions and canonical links

Distribution Link Typical Uses Report for GLM (between-Ss.) Report for GLMM (within-Ss.)

Negative 
Binomial

log Negative binomial 
regression:
Overdispersed count 
responses

“Figure 19 shows histograms of count responses in each 
X1×X2 condition. An analysis of variance based on 
negative binomial regression indicated a statistically 
significant effect of X1 on Y (χ2(1, N=60) = 4.20, p = 
.040).”

“Figure 19 shows histograms of count responses in each X1×X2 
condition. An analysis of variance based on mixed negative binomial 
regression indicated a statistically significant effect of X1 on Y (χ2(1, 
N=60) = 4.21, p = .040).”

Zero-Inflated 
Negative 
Binomial

log Zero-inflated negative 
binomial regression:
Overdispersed zero-inflated 
count responses

“Figure 20 shows histograms of zero-inflated count 
responses in each X1×X2 condition. An analysis of 
variance based on zero-inflated negative binomial 
regression indicated a statistically significant effect of X1 
on Y (χ2(1, N=60) = 6.25, p = .012).”

“Figure 20 shows histograms of zero-inflated count responses in each 
X1×X2 condition. An analysis of variance based on mixed zero-inflated 
negative binomial regression indicated a statistically significant effect of 
X1 on Y (χ2(1, N=60) = 5.52, p = .019).”
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GLM / GLMM
Distributions and canonical links

Distribution Link Typical Uses R code for GLM (between-Ss.) R code for GLMM (within-Ss.)

Exponential log Exponential regression:
Exponentially distributed 
responses (e.g., income)

library(car) # for Anova
df$PId = factor(df$PId)
df$X1 = factor(df$X1)
df$X2 = factor(df$X2)
contrasts(df$X1) <- "contr.sum"
contrasts(df$X2) <- "contr.sum"
m = glm(Y ~ X1*X2, data=df, 

family=Gamma(link="log"))
Anova(m, type=3)

library(lme4) # for glmer
library(lmerTest)
library(car) # for Anova
df$PId = factor(df$PId)
df$X1 = factor(df$X1)
df$X2 = factor(df$X2)
contrasts(df$X1) <- "contr.sum"
contrasts(df$X2) <- "contr.sum"
m = glmer(Y ~ X1*X2 + (1|PId), data=df, 

family=Gamma(link="log"))
Anova(m, type=3)

Gamma inverse Gamma regression:
Skewed continuous 
responses (e.g., time 
measurements)

library(car) # for Anova
df$PId = factor(df$PId)
df$X1 = factor(df$X1)
df$X2 = factor(df$X2)
contrasts(df$X1) <- "contr.sum"
contrasts(df$X2) <- "contr.sum"
m = glm(Y ~ X1*X2, data=df, family=Gamma)
Anova(m, type=3)

library(lme4) # for glmer
library(lmerTest)
library(car) # for Anova
df$PId = factor(df$PId)
df$X1 = factor(df$X1)
df$X2 = factor(df$X2)
contrasts(df$X1) <- "contr.sum"
contrasts(df$X2) <- "contr.sum"
m = glmer(Y ~ X1*X2 + (1|PId), data=df, family=Gamma)
Anova(m, type=3)

NB. Gamma distributions are parameterized by shape and scale (or sometimes rate, which is 1/scale). Exponential distributions are special cases of  gamma distributions where shape always equals 1. The log 
link function is used with the exponential distribution to fix the dispersion parameter at 1.0.
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GLM / GLMM
Distributions and canonical links

Distribution Link Typical Uses Report for GLM (between-Ss.) Report for GLMM (within-Ss.)

Exponential log Exponential regression:
Exponentially distributed 
responses (e.g., income)

“Figure 21 shows exponential histograms for each X1×X2 
condition. An analysis of variance based on exponential 
regression indicated a statistically significant effect of X2 
on Y (χ2(1, N=60) = 20.96, p < .0001).”

“Figure 21 shows exponential histograms for each X1×X2 condition. An 
analysis of variance based on mixed exponential regression indicated a 
statistically significant effect of X2 on Y (χ2(1, N=60) = 31.00, p < 
.0001).”

Gamma inverse Gamma regression:
Skewed continuous 
responses (e.g., time 
measurements)

“Figure 22 shows gamma histograms for each X1×X2 
condition. An analysis of variance based on gamma 
regression indicated a statistically significant effect of X2 
on Y (χ2(1, N=60) = 24.22, p < .0001) and an X1×X2 
interaction (χ2(1, N=60) = 7.97, p = .005).”

“Figure 22 shows gamma histograms for each X1×X2 condition. An 
analysis of variance based on mixed gamma regression indicated a 
statistically significant effect of X2 on Y (χ2(1, N=60) = 25.36, p < 
.0001) and an X1×X2 interaction (χ2(1, N=60) = 8.86, p = .003).”
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Generalized Linear (Mixed) Models
Post hoc pairwise comparisons
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Factors Levels Omnibus Model Test B/W R Code

1 ≥2 Linear regression t-test Btwn, 
Within

# df has one factor (X) w/levels (a,b,c) and continuous response (Y)
library(emmeans) # for emmeans
emmeans(m, pairwise ~ X, adjust="holm") # m is from lm or lme4::lmer

1 ≥2 Logistic regression Z-test Btwn,
Within

# df has one factor (X) w/levels (a,b,c) and dichotomous response (Y)
library(emmeans) # for emmeans
emmeans(m, pairwise ~ X, adjust="holm") # m is from glm or lme4::glmer with family=binomial

1 ≥2 Multinomial logistic 
regression

Chi-squared 
test

Btwn # df has one between-Ss. factor (X) w/levels (a,b,c) and polytomous response (Y)
library(multpois) # for glm.mp.con
glm.mp.con(m, pairwise ~ X, adjust="holm") # m is from multpois::glm.mp

# if m is built using nnet::multinom, emmeans can be used this way:
library(emmeans) # for emmeans, test
emmeans::test(
contrast(emmeans(m, ~ X | Y, mode="latent"), method="pairwise", ref=1),
joint=TRUE, by="contrast"

)

Within # df has one within-Ss. factor (X) w/levels (a,b,c) and polytomous response (Y)
library(multpois) # for glmer.mp.con
glmer.mp.con(m, pairwise ~ X, adjust="holm") # m is from multpois::glmer.mp

1 ≥2 Ordinal logistic 
regression

Z-test Btwn, 
Within

# df has one factor (X) w/levels (a,b,c) and ordinal response (1-7)
library(emmeans) # for emmeans
emmeans(m, pairwise ~ X, adjust="holm") # m is from MASS::polr or ordinal::clmm

GLM / GLMM
Post hoc pairwise comparisons – One factor

NB. Between-subjects models are from GLMs, within-subjects models are from GLMMs. Multinomial logistic regression is implemented via the multinomial-Poisson transformation (Baker 1994).
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Factors Levels Omnibus Model Test B/W Report

1 ≥2 Linear regression t-test Btwn “Three post hoc pairwise comparisons, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), indicated 
that ‘a’ vs. ‘b’ (t(57) = -3.16, p = .008) and ‘a’ vs. ‘c’ (t(57) = -2.47, p = .033) were significantly different, but not ‘b’ vs. 
‘c’.”

Within “Three post hoc pairwise comparisons, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), indicated 
that ‘a’ vs. ‘b’ (t(38) = -3.16, p = .009) and ‘a’ vs. ‘c’ (t(38) = -2.47, p = .036) were significantly different, but not ‘b’ vs. 
‘c’.”

1 ≥2 Logistic regression Z-test Btwn “Three post hoc pairwise comparisons, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), indicated 
that ‘a’ vs. ‘c’ was significantly different (Z = -2.46, p = .041), but not ‘a’ vs. ‘b’ or ‘b’ vs. ‘c’.”

Within “Three post hoc pairwise comparisons, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), indicated 
that no two levels were significantly different.”

1 ≥2 Multinomial logistic 
regression

Chi-squared 
test

Btwn “Three post hoc pairwise comparisons, conducted using the multinomial-Poisson transformation (Baker 1994), and 
corrected with Holm’s sequential Bonferroni procedure (Holm 1979), indicated that ‘a’ vs. ‘c’ (χ2(2, N=40) = 14.71, p = 
.001) and ‘b’ vs. ‘c’ (χ2(2, N=40) = 17.65, p < .001) were significantly different, but not ‘a’ vs. ‘b’.”

Within “Three post hoc pairwise comparisons, conducted using the multinomial-Poisson transformation (Baker 1994), and 
corrected with Holm’s sequential Bonferroni procedure (Holm 1979), indicated that ‘a’ vs. ‘c’ (χ2(2, N=40) = 12.22, p = 
.007) and ‘b’ vs. ‘c’ (χ2(2, N=40) = 10.73, p = .009) were significantly different, but not ‘a’ vs. ‘b’.”

1 ≥2 Ordinal logistic 
regression

Z-test Btwn, 
Within

“Three post hoc pairwise comparisons, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), indicated 
that ‘b’ vs. ‘c’ was significantly different (Z = 2.40, p = .049), but not ‘a’ vs. ‘b’ or ‘a’ vs. ‘c’.”

GLM / GLMM
Post hoc pairwise comparisons – One factor
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Factors Levels Omnibus Model Test B/W R Code

1 ≥2 Poisson regression Z-test Btwn, 
Within

# df has one factor (X) w/levels (a,b,c) and count response (Y)
library(emmeans) # for emmeans
emmeans(m, pairwise ~ X, adjust="holm") # m is from glm or lme4::glmer with family=poisson

1 ≥2 Zero-inflated Poisson 
regression

Z-test Btwn,
Within

# df has one factor (X) w/levels (a,b,c) and zero-inflated count response (Y)
library(emmeans) # for emmeans
emmeans(m, pairwise ~ X, adjust="holm") # m is from glmmTMB::glmmTMB with family=poisson

1 ≥2 Negative binomial 
regression

Z-test Btwn,
Within

# df has one factor (X) w/levels (a,b,c) and overdispersed count response (Y)
library(emmeans) # for emmeans
emmeans(m, pairwise ~ X, adjust="holm") # m is from MASS::glm.nb or lme4::glmer.nb

1 ≥2 Zero-inflated 
negative binomial 
regression

Z-test Btwn,
Within

# df has one factor (X) w/levels (a,b,c) and zero-inflated overdispersed count response (Y)
library(emmeans) # for emmeans
emmeans(m, pairwise ~ X, adjust="holm") # m is from glmmTMB::glmmTMB with family=nbinom2

GLM / GLMM
Post hoc pairwise comparisons – One factor
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Factors Levels Omnibus Model Test B/W Report

1 ≥2 Poisson regression Z-test Btwn, 
Within

“Three post hoc pairwise comparisons, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), indicated 
that ‘a’ vs. ‘b’ (Z = -2.92, p = .007) and ‘b’ vs. ‘c’ (Z = 3.28, p = .003) were significantly different, but not ‘a’ vs. ‘c’.”

1 ≥2 Zero-inflated Poisson 
regression

Z-test Btwn “Three post hoc pairwise comparisons, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), indicated 
that ‘a’ vs. ‘b’ (Z = -2.81, p = .010) and ‘b’ vs. ‘c’ (Z = 2.98, p = .009) were significantly different, but not ‘a’ vs. ‘c’.”

Within “Three post hoc pairwise comparisons, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), indicated 
that ‘a’ vs. ‘b’ (Z = -2.81, p = .010) and ‘b’ vs. ‘c’ (Z = 2.99, p = .009) were significantly different, but not ‘a’ vs. ‘c’.”

1 ≥2 Negative binomial 
regression

Z-test Btwn,
Within

“Three post hoc pairwise comparisons, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), indicated 
that ‘a’ vs. ‘b’ was significantly different (Z = -2.50, p = .038), but not ‘a’ vs. ‘c’ or ‘b’ vs. ‘c’.”

1 ≥2 Zero-inflated 
negative binomial 
regression

Z-test Btwn “Three post hoc pairwise comparisons, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), indicated 
that ‘a’ vs. ‘b’ (Z = -4.37, p < .0001) and ‘b’ vs. ‘c’ (Z = 4.47, p < .0001) were significantly different, but not ‘a’ vs. ‘c’.”

Within “Three post hoc pairwise comparisons, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), indicated 
that ‘a’ vs. ‘b’ (Z = -4.24, p < .0001) and ‘b’ vs. ‘c’ (Z = 4.32, p < .0001) were significantly different, but not ‘a’ vs. ‘c’.”

GLM / GLMM
Post hoc pairwise comparisons – One factor
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Factors Levels Omnibus Model Test B/W R Code

1 ≥2 Exponential 
regression

Z-test Btwn, 
Within

# df has one factor (X) w/levels (a,b,c) and exponential response (Y)
library(emmeans) # for emmeans
emmeans(m, pairwise ~ X, adjust="holm") # m is from glm or lme4::glmer with
                                        # family=Gamma(link="log")

1 ≥2 Gamma regression Z-test Btwn,
Within

# df has one factor (X) w/levels (a,b,c) and skewed continuous response (Y)
library(emmeans) # for emmeans
emmeans(m, pairwise ~ X, adjust="holm") # m is from glm or lme4::glmer with family=Gamma

GLM / GLMM
Post hoc pairwise comparisons – One factor
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Factors Levels Omnibus Model Test B/W Report

1 ≥2 Exponential 
regression

Z-test Btwn “Three post hoc pairwise comparisons, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), indicated 
that ‘a’ vs. ‘b’ (Z = -3.15, p = .008) and ‘b’ vs. ‘c’ (Z = 2.36, p = .044) were significantly different, but not ‘a’ vs. ‘c’.”

Within “Three post hoc pairwise comparisons, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), indicated 
that ‘a’ vs. ‘b’ (Z = -3.64, p = .001) and ‘b’ vs. ‘c’ (Z = 2.86, p = .008) were significantly different, but not ‘a’ vs. ‘c’.”

1 ≥2 Gamma regression Z-test Btwn “Three post hoc pairwise comparisons, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), indicated 
that ‘a’ vs. ‘b’ (Z = -5.44, p < .0001), ‘a’ vs. ‘c’ (Z = -3.20, p = .005), and ‘b’ vs. ‘c’ (Z = 3.00, p = .005) were all 
significantly different.”

Within “Three post hoc pairwise comparisons, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), indicated 
that ‘a’ vs. ‘b’ (Z = -6.15, p < .0001), ‘a’ vs. ‘c’ (Z = -3.58, p = .001), and ‘b’ vs. ‘c’ (Z = 3.48, p = .001) were all 
significantly different.”

GLM / GLMM
Post hoc pairwise comparisons – One factor
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Factors Levels Omnibus Model Test B/W R Code

≥2 ≥2 Linear regression t-test Btwn, 
Within

# df has two factors (X1,X2) each w/levels (a,b) and continuous response (Y)
library(emmeans) # for emmeans
emmeans(m, pairwise ~ X1*X2, adjust="holm") # m is from lm or lme4::lmer

≥2 ≥2 Logistic regression Z-test Btwn,
Within

# df has two factors (X1,X2) each w/levels (a,b) and dichotomous response (Y)
library(emmeans) # for emmeans
emmeans(m, pairwise ~ X1*X2, adjust="holm") # m is from glm or lme4::glmer with family=binomial

≥2 ≥2 Multinomial logistic 
regression

Chi-squared 
test

Btwn # df has two between-Ss. factors (X1,X2) each w/levels (a,b) and polytomous response (Y)
library(multpois) # for glm.mp.con
glm.mp.con(m, pairwise ~ X1*X2, adjust="holm") # m is from multpois::glm.mp

# if m is built using nnet::multinom, emmeans can be used this way:
library(emmeans) # for emmeans, test
emmeans::test(
contrast(emmeans(m, ~ X1*X2 | Y, mode="latent"), method="pairwise", ref=1),
joint=TRUE, by="contrast"

)

Within # df has two within-Ss. factors (X1,X2) each w/levels (a,b) and polytomous response (Y)
library(multpois) # for glmer.mp.con
glmer.mp.con(m, pairwise ~ X1*X2, adjust="holm") # m is from multpois::glmer.mp

≥2 ≥2 Ordinal logistic 
regression

Z-test Btwn, 
Within

# df has two factors (X1,X2) each w/levels (a,b) and ordinal response (1-7)
library(emmeans) # for emmeans
emmeans(m, pairwise ~ X1*X2, adjust="holm") # m is from MASS::polr or ordinal::clmm

GLM / GLMM
Post hoc pairwise comparisons – Multiple factors

NB. Between-subjects models are from GLMs, within-subjects models are from GLMMs. Multinomial logistic regression is implemented via the multinomial-Poisson transformation (Baker 1994).
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Factors Levels Omnibus Model Test B/W Report

≥2 ≥2 Linear regression t-test Btwn “Six post hoc pairwise comparisons, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), indicated that 
{a,a} vs. {b,a} was significantly different (t(56) = -2.75, p = .048). All other pairwise comparisons were not detectably 
different.”

Within “Six post hoc pairwise comparisons, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), indicated that 
no pairwise comparison was detectably different.”

≥2 ≥2 Logistic regression Z-test Btwn,
Within

“Six post hoc pairwise comparisons, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), indicated that 
no pairwise comparisons were detectably different.”

≥2 ≥2 Multinomial logistic 
regression

Chi-squared 
test

Btwn, 
Within

“Six post hoc pairwise comparisons, conducted using the multinomial-Poisson transformation (Baker 1994), and corrected 
with Holm’s sequential Bonferroni procedure (Holm 1979), indicated that no pairwise comparisons were detectably 
different.”

≥2 ≥2 Ordinal logistic 
regression

Z-test Btwn, 
Within

“Six post hoc pairwise comparisons, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), indicated that 
{a,a} vs. {b,a} (Z = 4.17, p < .001), {a,a} vs. {a,b} (Z = 3.53, p = .002), and {a,a} vs. {b,b} (Z = 4.29, p < .001) were 
significantly different. No other pairwise comparisons were detectably different.”

GLM / GLMM
Post hoc pairwise comparisons – Multiple factors
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Factors Levels Omnibus Model Test B/W R Code

≥2 ≥2 Poisson regression Z-test Btwn, 
Within

# df has two factors (X1,X2) each w/levels (a,b) and count response (Y)
library(emmeans) # for emmeans
emmeans(m, pairwise ~ X1*X2, adjust="holm") # m is from glm or lme4::glmer with family=poisson

≥2 ≥2 Zero-inflated Poisson 
regression

Z-test Btwn,
Within

# df has two factors (X1,X2) each w/levels (a,b) and zero-inflated count response (Y)
library(emmeans) # for emmeans
emmeans(m, pairwise ~ X1*X2, adjust="holm") # m is from glmmTMB::glmmTMB with family=poisson

≥2 ≥2 Negative binomial 
regression

Z-test Btwn,
Within

# df has two factors (X1,X2) each w/levels (a,b) and overdispersed count response (Y)
library(emmeans) # for emmeans
emmeans(m, pairwise ~ X1*X2, adjust="holm") # m is from MASS::glm.nb or lme4::glmer.nb

≥2 ≥2 Zero-inflated 
negative binomial 
regression

Z-test Btwn,
Within

# df has two factors (X1,X2) each w/levels (a,b) and zero-inflated overdispersed count response (Y)
library(emmeans) # for emmeans
emmeans(m, pairwise ~ X1*X2, adjust="holm") # m is from glmmTMB::glmmTMB with family=nbinom2

GLM / GLMM
Post hoc pairwise comparisons – Multiple factors
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Factors Levels Omnibus Model Test B/W Report

≥2 ≥2 Poisson regression Z-test Btwn, 
Within

“Six post hoc pairwise comparisons, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), indicated that 
{a,b} vs. {b,b} was significantly different (Z = 3.21, p = .008). All other pairwise comparisons were not detectably 
different.”

≥2 ≥2 Zero-inflated Poisson 
regression

Z-test Btwn “Six post hoc pairwise comparisons, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), indicated that 
{a,a} vs. {a,b} (Z = -3.10, p = .012) and {a,b} vs. {b,b} (Z = 3.01, p = .013) were significantly different. Other pairwise 
comparisons were not detectably different.”

Within “Six post hoc pairwise comparisons, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), indicated that 
{a,a} vs. {a,b} (Z = -3.10, p = .011) and {a,b} vs. {b,b} (Z = 3.01, p = .013) were significantly different. Other pairwise 
comparisons were not detectably different.”

≥2 ≥2 Negative binomial 
regression

Z-test Btwn “Six post hoc pairwise comparisons, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), indicated that 
{a,a} vs. {b,b} was significantly different (Z = 2.82, p = .029). All other pairwise comparisons were not detectably 
different.”

Within “Six post hoc pairwise comparisons, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), indicated that 
{a,a} vs. {b,b} was significantly different (Z = 2.83, p = .028). All other pairwise comparisons were not detectably 
different.”

≥2 ≥2 Zero-inflated 
negative binomial 
regression

Z-test Btwn “Six post hoc pairwise comparisons, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), indicated that 
{a,a} vs. {b,a} (Z = 2.99, p = .017) and {a,a} vs. {b,b} (Z = 2.66, p = .040) were significantly different. Other pairwise 
comparisons were not detectably different.”

Within “Six post hoc pairwise comparisons, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), indicated that 
{a,a} vs. {b,a} was significantly different (Z = 2.82, p = .029). All other pairwise comparisons were not detectably 
different.”

GLM / GLMM
Post hoc pairwise comparisons – Multiple factors
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Factors Levels Omnibus Model Test B/W R Code

≥2 ≥2 Exponential 
regression

Z-test Btwn, 
Within

# df has two factors (X1,X2) each w/levels (a,b) and exponential response (Y)
library(emmeans) # for emmeans
emmeans(m, pairwise ~ X1*X2, adjust="holm") # m is from glm or lme4::glmer with
                                            # family=Gamma(link="log")

≥2 ≥2 Gamma regression Z-test Btwn,
Within

# df has two factors (X1,X2) each w/levels (a,b) and skewed continuous response (Y)
library(emmeans) # for emmeans
emmeans(m, pairwise ~ X1*X2, adjust="holm") # m is from glm or lme4::glmer with family=Gamma

GLM / GLMM
Post hoc pairwise comparisons – Multiple factors
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Factors Levels Omnibus Model Test B/W Report

≥2 ≥2 Exponential 
regression

Z-test Btwn “Six post hoc pairwise comparisons, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), indicated that 
{a,a} vs. {a,b} (Z = -3.97, p = .001), {a,a} vs. {b,b} (Z = -4.31, p < .001), and {b,a} vs. {b,b} (Z = -2.70, p = .037) were 
significantly different. Other pairwise comparisons were not detectably different.”

Within “Six post hoc pairwise comparisons, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), indicated that 
{a,a} vs. {a,b} (Z = -4.66, p < .0001), {a,a} vs. {b,b} (Z = -5.06, p < .0001), {b,a} vs. {a,b} (Z = -2.86, p = .013), and {b,a} 
vs. {b,b} (Z = -3.27, p = .004) were significantly different. The other two pairwise comparisons were not detectably 
different.”

≥2 ≥2 Gamma regression Z-test Btwn “Six post hoc pairwise comparisons, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), indicated that 
{a,a} vs. {a,b} (Z = -4.77, p < .001), {a,a} vs. {b,b} (Z = -2.65, p = .042), {b,a} vs. {a,b} (Z = -3.87, p = .001), and {a,b} 
vs. {b,b} (Z = 2.52, p = .044) were significantly different. The other two pairwise comparisons were not detectably 
different.”

Within “Six post hoc pairwise comparisons, corrected with Holm’s sequential Bonferroni procedure (Holm 1979), indicated that 
{a,a} vs. {a,b} (Z = -5.13, p < .0001), {a,a} vs. {b,b} (Z = -2.85, p = .018), {b,a} vs. {a,b} (Z = -4.16, p < .001), and {a,b} 
vs. {b,b} (Z = 2.71, p = .020) were significantly different. The other two pairwise comparisons were not detectably 
different.”

GLM / GLMM
Post hoc pairwise comparisons – Multiple factors
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