Step 1. Resample a *points* path into *n* evenly spaced points. We use n=64. For gestures serving as templates, Steps 1-3 should be carried out once on the raw input points. For candidates, Steps 1-4 should be used just after the candidate is articulated. RESAMPLE(*points*, *n*) $I \leftarrow \text{PATH-LENGTH}(points) / (n-1)$ 1 2 $D \leftarrow 0$ 3 *newPoints* \leftarrow *points*₀ 4 **foreach** point p_i for $i \ge 1$ in *points* **do** $d \leftarrow \text{DISTANCE}(p_{i-1}, p_i)$ 5 6 if $(D+d) \ge I$ then 7 $q_x \leftarrow p_{i-1_x} + ((I-D) / d) \times (p_{i_x} - p_{i-1_x})$ 8 $q_y \leftarrow p_{i-1_y} + ((I-D)/d) \times (p_{i_y} - p_{i-1_y})$ 9 APPEND(*newPoints*, q) 10 INSERT(*points*, *i*, *q*) // *q* will be the next p_i 11 $D \leftarrow 0$ else $D \leftarrow D + d$ 12 13 return newPoints PATH-LENGTH(A) 1 $d \leftarrow 0$ for *i* from 1 to |A| step 1 do 2 3 $d \leftarrow d + \text{DISTANCE}(A_{i-1}, A_i)$ 4 return d Step 2. Find and save the indicative angle ω from the *points*' centroid to first point. Then rotate by $-\omega$ to set this angle to 0°. INDICATIVE-ANGLE(points) $c \leftarrow \text{CENTROID}(points)$ // computes (\bar{x}, \bar{y}) 1 **return** ATAN($c_y - points_0, c_x - points_0$) // for $-\pi \le \omega \le \pi$ 2 ROTATE-BY(*points*, ω) 1 $c \leftarrow \text{CENTROID}(points)$ 2 foreach point p in points do $q_x \leftarrow (p_x - c_x) \cos \omega - (p_y - c_y) \sin \omega + c_x$ 3 4 $q_y \leftarrow (p_x - c_x) \operatorname{SIN} \omega + (p_y - c_y) \operatorname{Cos} \omega + c_y$ 5 $\overrightarrow{APPEND}(newPoints, q)$ return newPoints 6 Step 3. Scale *points* so that the resulting bounding box will be of size² size. We use size=250. Then translate points to the origin k=(0,0). BOUNDING-BOX returns a rectangle defined by (min_x, min_y) min_y), (max_x, max_y) . SCALE-TO(points, size) $B \leftarrow \text{BOUNDING-BOX}(points)$ 1 2 foreach point p in points do 7 $q_x \leftarrow p_x \times size \mid B_{width}$ 8 $q_v \leftarrow p_v \times size \mid B_{height}$ $\overrightarrow{APPEND}(newPoints, q)$ 9 10 return newPoints TRANSLATE-TO(*points*, k) 1 $c \leftarrow \text{CENTROID}(points)$ 2 foreach point p in points do r_{x}

$$q_x \leftarrow p_x + k_x - c_y$$

4
$$q_y \leftarrow p_y + k_y - c_y$$

5 APPEND(*newPoints*,
$$q$$
)

Step 4. Match *points* against a set of *templates*. The *size* variable on line 7 of RECOGNIZE refers to the size passed to SCALE-TO in Step 3. The symbol φ equals $\frac{1}{2}(-1 + \sqrt{5})$. We use $\theta = \pm 45^{\circ}$ and $\theta_{\Lambda}=2^{\circ}$ on line 3 of RECOGNIZE. Due to using RESAMPLE, we can assume that A and B in PATH-DISTANCE contain the same number of points, i.e., |A| = |B|.

RECOGNIZE(*points*, *templates*)

- $b \leftarrow +\infty$ 1 2
 - foreach template T in templates do
- 3 $d \leftarrow \text{DISTANCE-AT-BEST-ANGLE}(points, T, -\theta, +\theta, \theta_{\Delta})$
- 4 if d < b then
- 5 $b \leftarrow d$
- $T' \leftarrow T$ 6
- $score \leftarrow 1 b / 0.5 \sqrt{(size^2 + size^2)}$ 7
- 8 **return** $\langle T', score \rangle$
- DISTANCE-AT-BEST-ANGLE(*points*, *T*, θ_a , θ_b , θ_{Δ})
 - $x_1 \leftarrow \varphi \theta_a + (1 \varphi) \theta_b$ 1
 - $f_1 \leftarrow \text{DISTANCE-AT-ANGLE}(points, T, x_1)$ 2
 - 3
 - $x_{2} \leftarrow (1 \varphi)\theta_{a} + \varphi\theta_{b}$ $f_{2} \leftarrow \text{DISTANCE-AT-ANGLE}(points, T, x_{2})$ 4
 - 5 while $|\theta_b - \theta_a| > \theta_\Delta$ do
 - 6 if $f_1 < f_2$ then
 - 7 $\theta_b \leftarrow x_2$
 - 8 $x_2 \leftarrow x_1$ 9
 - $f_2 \leftarrow f_1$
 - $x_1 \leftarrow \varphi \theta_a + (1 \varphi) \theta_b$ 10
 - $f_1 \leftarrow \text{DISTANCE-AT-ANGLE}(points, T, x_1)$ 11
- else 12
 - 13 $\theta_a \leftarrow x_1$
 - $\begin{array}{c} x_1 \leftarrow x_2 \\ f_1 \leftarrow f_2 \end{array}$ 14
 - 15
 - 16
 - $\begin{aligned} x_2 \leftarrow (1 \varphi)\theta_a + \varphi\theta_b \\ f_2 \leftarrow \text{DISTANCE-AT-ANGLE}(points, T, x_2) \end{aligned}$ 17
- 18 return $MIN(f_1, f_2)$
- DISTANCE-AT-ANGLE(*points*, T, θ)
 - *newPoints* \leftarrow ROTATE-BY(*points*, θ) 1
 - 2 $d \leftarrow \text{PATH-DISTANCE}(newPoints, T_{points})$

3 return d PATH-DISTANCE(A, B)

- $d \leftarrow 0$ 1
- 2 for *i* from 0 to |A| step 1 do
- 3 $d \leftarrow d + \text{DISTANCE}(A_i, B_i)$
- 4 **return** *d* / |*A*|

¹This pseudocode is modified slightly from that which appears in the original ACM UIST 2007 publication by Wobbrock, Wilson and Li to be parallel to the more recent \$N multistroke recognizer. This algorithm's logic remains unchanged.