
$1 Unistroke Recognizer1 http://depts.washington.edu/aimgroup/proj/dollar/

1 This pseudocode is modified slightly from that which appears in the original ACM UIST 2007 publication by Wobbrock, Wilson and Li
to be parallel to the more recent $N multistroke recognizer. This algorithm’s logic remains unchanged.

RESAMPLE(points, n)

1 I ← PATH-LENGTH(points) / (n – 1)
2 D ← 0
3 newPoints ← points0
4 foreach point pi for i ≥ 1 in points do
5 d ← DISTANCE(pi-1, pi)
6 if (D + d) ≥ I then
7 qx ← pi-1x

 + ((I – D) / d) × (pix
 – pi-1x

)
8 qy ← pi-1y

 + ((I – D) / d) × (piy
 – pi-1y

)
9 APPEND(newPoints, q)
10 INSERT(points, i, q) // q will be the next pi
11 D ← 0
12 else D ← D + d
13 return newPoints

PATH-LENGTH(A)
1 d ← 0
2 for i from 1 to |A| step 1 do
3 d ← d + DISTANCE(Ai-1, Ai)
4 return d

INDICATIVE-ANGLE(points)

1 c ← CENTROID(points) // computes (x̄, ȳ)
2 return ATAN(cy – points0y

, cx – points0x
) // for -π ≤ ω ≤ π

ROTATE-BY(points, ω)
1 c ← CENTROID(points)
2 foreach point p in points do
3 qx ← (px – cx) COS ω – (py – cy) SIN ω + cx
4 qy ← (px – cx) SIN ω + (py – cy) COS ω + cy
5 APPEND(newPoints, q)
6 return newPoints

SCALE-TO(points, size)

1 B ← BOUNDING-BOX(points)
2 foreach point p in points do
7 qx ← px × size / Bwidth
8 qy ← py × size / Bheight
9 APPEND(newPoints, q)
10 return newPoints

TRANSLATE-TO(points, k)
1 c ← CENTROID(points)
2 foreach point p in points do
3 qx ← px + kx – cx
4 qy ← py + ky – cy
5 APPEND(newPoints, q)
6 return newPoints

RECOGNIZE(points, templates)

1 b ← +∞
2 foreach template T in templates do
3 d ← DISTANCE-AT-BEST-ANGLE(points, T, –θ, +θ, θ∆)
4 if d < b then
5 b ← d
6 T′ ← T
7 score ← 1 – b / 0.5√(size2 + size2)
8 return 〈T′, score〉

DISTANCE-AT-BEST-ANGLE(points, T, θa, θb, θ∆)
1 x1 ← ϕθa + (1 – ϕ)θb
2 f1 ← DISTANCE-AT-ANGLE(points, T, x1)
3 x2 ← (1 – ϕ)θa + ϕθb
4 f2 ← DISTANCE-AT-ANGLE(points, T, x2)
5 while |θb – θa| > θ∆ do
6 if f1 < f2 then
7 θb ← x2
8 x2 ← x1
9 f2 ← f1
10 x1 ← ϕθa + (1 – ϕ)θb
11 f1 ← DISTANCE-AT-ANGLE(points, T, x1)
12 else
13 θa ← x1
14 x1 ← x2
15 f1 ← f2
16 x2 ← (1 – ϕ)θa + ϕθb
17 f2 ← DISTANCE-AT-ANGLE(points, T, x2)
18 return MIN(f1, f2)

DISTANCE-AT-ANGLE(points, T, θ)
1 newPoints ← ROTATE-BY(points, θ)
2 d ← PATH-DISTANCE(newPoints, Tpoints)
3 return d

PATH-DISTANCE(A, B)
1 d ← 0
2 for i from 0 to |A| step 1 do
3 d ← d + DISTANCE(Ai, Bi)
4 return d / |A|

Step 4. Match points against a set of templates. The size variable
on line 7 of RECOGNIZE refers to the size passed to SCALE-TO in
Step 3. The symbol ϕ equals ½(-1 + √5). We use θ=±45° and
θ∆=2° on line 3 of RECOGNIZE. Due to using RESAMPLE, we can
assume that A and B in PATH-DISTANCE contain the same number
of points, i.e., |A|=|B|.

Step 3. Scale points so that the resulting bounding box will be of
size2 size. We use size=250. Then translate points to the origin
k=(0,0). BOUNDING-BOX returns a rectangle defined by (minx,
miny), (maxx, maxy).

Step 2. Find and save the indicative angle ω from the points’
centroid to first point. Then rotate by –ω to set this angle to 0°.

Step 1. Resample a points path into n evenly spaced points. We
use n=64. For gestures serving as templates, Steps 1-3 should be
carried out once on the raw input points. For candidates, Steps 1-4
should be used just after the candidate is articulated.

