
$P Recognizer, http://depts.washington.edu/aimgroup/proj/dollar/pdollar.html

$P Point-Cloud Gesture Recognizer Pseudocode
Radu-Daniel Vatavu

University Stefan cel Mare of Suceava
Suceava 720229, Romania

vatavu@eed.usv.ro

Lisa Anthony
UMBC Information Systems

1000 Hilltop Circle
Baltimore MD 21250
lanthony@umbc.edu

Jacob O. Wobbrock
Information School | DUB Group

University of Washington
Seattle, WA 98195-2840 USA

wobbrock@uw.edu

In the following pseudocode, Point is a structure that ex-
poses x, y, and strokeId properties. strokeId is the stroke
index a point belongs to (1, 2, ...) and is filled by counting
pen down/up events. Points is a list of points and Tem-
plates a list of Points with gesture class data.

Recognizer main function. Match points against a set of
templates by employing the Nearest-Neighbor classification rule.
Returns a normalized score in [0..1] with 1 denoting perfect match.

$P-Recognizer (Points points, Templates templates)

1: n← 32 // number of points
2: Normalize(points, n)
3: score←∞
4: for each template in templates do
5: Normalize(template, n) // should be pre-processed
6: d← Greedy-Cloud-Match(points, template, n)
7: if score > d then
8: score← d
9: result← template

10: score← Max((2.0− score)/2.0, 0.0) // normalize score in [0..1]
11: return 〈result, score〉

Cloud matching function. Match two clouds (points and
template) by performing repeated alignments between their points
(each new alignment starts with a different starting point index i).
Parameter ε ∈ [0..1] controls the number of tested alignments
(nε ∈ {1, 2, ...n}). Returns the minimum alignment cost.

Greedy-Cloud-Match (Points points, Points template, int n)

1: ε← .50
2: step←

⌊
n1−ε⌋

3: min←∞
4: for i = 0 to n step step do
5: d1 ← Cloud-Distance(points, template, n, i)
6: d2 ← Cloud-Distance(template, points, n, i)
7: min← Min(min, d1, d2)
8: return min

Distance between two clouds. Compute the minimum-cost
alignment between points and tmpl starting with point start. As-
sign decreasing confidence weights ∈ [0..1] to point matchings.

Cloud-Distance (Points points, Points tmpl, int n, int start)

1: matched← new bool[n]
2: sum← 0
3: i← start // start matching with pointsi
4: do
5: min←∞
6: for each j such that not matched[j] do
7: d← Euclidean-Distance(pointsi, tmplj)
8: if d < min then
9: min← d

10: index← j
11: matched[index]← true
12: weight← 1− ((i− start+ n) MOD n)/n
13: sum← sum+ weight ·min
14: i← (i+ 1) MOD n
15: until i == start // all points are processed
16: return sum

The following pseudocode addresses gesture preprocessing
(or normalization) which includes resampling, scaling with
shape preservation, and translation to origin. The code is

similar to $1 and $N recognizers1,2 and we repeat it here for
completeness. We highlight minor changes.

Gesture normalization. Gesture points are resampled, scaled
with shape preservation, and translated to origin.

Normalize (Points points, int n)

1: points← Resample(points, n)
2: Scale(points)
3: Translate-to-Origin(points, n)

Points resampling. Resample a points path into n evenly spaced
points. We use n = 32.

Resample (Points points, int n)

1: I ← Path-Length(points) / (n− 1)
2: D ← 0
3: newPoints← points0
4: for each pi in points such that i ≥ 1 do
5: if pi.strokeId == pi−1.strokeId then

6: d← Euclidean-Distance(pi−1, pi)
7: if (D + d) ≥ I then
8: q.x ← pi−1.x +((I −D)/d) · (pi.x - pi−1.x)
9: q.y ← pi−1.y +((I −D)/d) · (pi.y - pi−1.y)

10: q.strokeId ← pi.strokeId

11: Append(newPoints, q)
12: Insert(points, i, q) // q will be the next pi
13: D ← 0
14: else D ← D + d
15: return newPoints

Path-Length (Points points)

1: d← 0
2: for each pi in points such that i ≥ 1 do
3: if pi.strokeId == pi−1.strokeId then

4: d← d + Euclidean-Distance(pi−1, pi)
5: return d

Points rescale. Rescale points with shape preservation so that
the resulting bounding box will be ⊆ [0..1]× [0..1].

Scale (Points points)

1: xmin ←∞, xmax ← 0, ymin ←∞, ymax ← 0
2: for each p in points do
3: xmin ← Min(xmin, p.x)
4: ymin ← Min(ymin, p.y)
5: xmax ← Max(xmax, p.x)
6: ymax ← Max(ymax, p.y)
7: scale← Max(xmax − xmin, ymax − ymin)
8: for each p in points do
9: p← ((p.x −xmin)/scale, (p.y −ymin)/scale, p.strokeId )

Points translate. Translate points to the origin (0, 0).

Translate-to-Origin (Points points, int n)

1: c← (0, 0) // will contain centroid
2: for each p in points do
3: c← (c.x + p.x, c.y + p.y)
4: c← (c.x/n, c.y/n)
5: for each p in points do
6: p← (p.x - c.x, p.y - c.y, p.strokeId )

1
http://depts.washington.edu/aimgroup/proj/dollar/index.html

2
http://depts.washington.edu/aimgroup/proj/dollar/ndollar.html

This pseudocode is modified slightly from that which appears in the original ACM ICMI 2012 publication by Vatavu, Anthony, and Wobbrock
(http://dx.doi.org/10.1145/2388676.2388732) to better highlight the use of the strokeId property and to provide a normalized matching score.
It also contains more comments to assist the implementation. This algorithm’s logic remains unchanged.

http://depts.washington.edu/aimgroup/proj/dollar/pdollar.html
http://depts.washington.edu/aimgroup/proj/dollar/index.html
http://depts.washington.edu/aimgroup/proj/dollar/ndollar.html
http://dx.doi.org/10.1145/2388676.2388732

