$P Recognizer, http://depts.washington.edu/aimgroup/proj/dollar/pdollar.html

$P Point-Cloud Gesture Recognizer Pseudocode

Radu-Daniel Vatavu Lisa Anthony Jacob O. Wobbrock
University Stefan cel Mare of Suceava UMBC Information Systems Information School | DUB Group
Suceava 720229, Romania 1000 Hilltop Circle University of Washington
vatavu@eed.usv.ro Baltimore MD 21250 Seattle, WA 98195-2840 USA
lanthony@umbc.edu wobbrock@uw.edu

In the following pseudocode, POINT is a structure that ex-
poses z, y, and strokeld properties. strokeld is the stroke
index a point belongs to (1, 2, ...) and is filled by counting
pen down/up events. POINTS is a list of points and TEM-
PLATES a list of POINTS with gesture class data.

" Recognizer main function. Match points against a set of |
. templates by employing the Nearest-Neighbor classification rule.
i Returns a normalized score in [0..1] with 1 denoting perfect match.

$P-RECOGNIZER (POINTS points, TEMPLATES templates)

1: n <+ 32
2: NORMALIZE(points, n)
1 score <= 00
for each template in templates do
NORMALIZE(template, n)
d < GREEDY-CLOUD-MATCH(points, template, n)
if score > d then
score < d
result + template
: score < Max((2.0 — score)/2.0, 0.0)
: return (result, score)

SOV UE W

=

. Cloud matching function. Match two clouds (points and :
template) by performing repeated alignments between their points :
¢ (each new alignment starts with a different starting point index).
. Parameter € € [0..1] controls the number of tested alignments
...n}). Returns the minimum alignment cost.

GREEDY-CLOUD-MATCH (POINTS points, POINTS template, int n)

€+ .50

: step +— |_n1_€J

min < oo

for i = 0 to n step step do
dy < CLOUD-DISTANCE(points, template, n, 1)
do <+ CLOUD-DISTANCE(template, points, n, 1)
min < MIN(min, di, d2)

: return min

RPADITRBE

: Distance between two clouds. Compute the minimum-cost
. alignment between points and tmpl starting with point start. As-
: sign decreasing confidence weights € [0..1] to point matchings.

CLOUD-DISTANCE (POINTS points, POINTS tmpl, int n, int start)

1: matched < new bool[n]
2: sum <0

3: i < start

4: do

5 min <— oo

6 for each j such that not matched[j] do
7: d <+ EUCLIDEAN-DISTANCE(points;, tmpl;)
8 if d < min then

9 min < d

10 index <+ j

11: matched[index] < true

12: weight < 1 — ((¢2 — start +n) MOD n)/n
13: sum <— sum + weight - min

14: i+ (i+1) MOD n

15: until i == start

16: return sum

The following pseudocode addresses gesture preprocessing
(or normalization) which includes resampling, scaling with
shape preservation, and translation to origin. The code is

similar to $1 and $N recognizers''? and we repeat it here for

. Gesture normalization. Gesture points are resampled, scaled .
. with shape preservation, and translated to origin. :

NORMALIZE (POINTS points, int n)

1: points < RESAMPLE(points, n)
2: SCALE(points)
3: TRANSLATE-TO-ORIGIN(points, n)

. Points resampling. Resample a points path into n evenly spaced
. points. We use n = 32.

RESAMPLE (POINTS points, int n)

1: I < PATH-LENGTH(points) / (n — 1)

2: D+ 0

3: newPoints < pointsg

4: for each p; in points such that ¢ > 1 do

5: if [pi.strokeld == pi,l.strokeld‘ then

6: d < EUCLIDEAN-DISTANCE(p;—1, pi)

7 if (D +d) > I then

8: ¢-x + pi—1.x +((I = D)/d) - (pi-x - pi—1.X)
9: q.y < pi-1.y +((= D)/d) - (pi-y - pi—1-y)
10: [q.strokeld <— pi.strokeld‘

11: APPEND(newPoints, q)

12: INSERT (points, i, q)

13: D+ 0

14: else D < D +d

15: return newPoints

PATH-LENGTH (POINTS points)

1: d+ 0

2: for each p; in points such that i > 1 do

3 if [pi.strokeld == pi,l.strokeld‘ then

4: d < d + EUCLIDEAN-DISTANCE(p;—1, P:)
5: return d

. Points rescale. Rescale points with shape preservation so that :
. the resulting bounding box will be C [0..1] x [0..1].

ScALE (POINTS points)

L: Zrin = 00, Zmae < 0, Ymin < 00, Ymax < 0
2: for each p in points do

Tmin < MIN(Zmin, P-X)

Ymin]\'IIN(ymMu p-Y)

Tmaz < MAX(ZTmaz, P-X)

Ymaz < MAX(Ymaz, P-y)
scale < MAX(Zmaz — Tmin, Ymaz — Ymin)
for each p in points do

p < ((p-x _x'm'in)/scalev (p-y _y7nin)/SCal€,)

©XNPIR W

TRANSLATE-TO-ORIGIN (POINTS points, int n)

c <+ (0,0)

: for each p in points do
c+ (cx + px, cy + p.y)

¢+ (ex/n, cy/n)

for each p in points do

p + (p.x - ¢.x, p.y - c.y, |p.strokeld|)

A ol

1 http://depts.washington.edu/aimgroup/proj/dollar/index.html
2ht1:p ://depts.washington.edu/aimgroup/proj/dollar/ndollar.html

This pseudocode is modified slightly from that which appears in the original ACM ICMI 2012 publication by Vatavu, Anthony, and Wobbrock
(http://dx.doi.org/10.1145/2388676.2388732) to better highlight the use of the strokeld property and to provide a normalized matching score.
It also contains more comments to assist the implementation. This algorithm’s logic remains unchanged.

http://depts.washington.edu/aimgroup/proj/dollar/pdollar.html
http://depts.washington.edu/aimgroup/proj/dollar/index.html
http://depts.washington.edu/aimgroup/proj/dollar/ndollar.html
http://dx.doi.org/10.1145/2388676.2388732

