
PROTRACTOR1	 PSEUDO	 CODE2	
Step 1: Resample the points of a gesture into n evenly spaced points. Protractor uses the
same resampling method as the $1 recognizer3 does, although Protractor only needs n =
16 points to perform optimally. The pseudo code of this step is borrowed from the $1
recognizer.

RESAMPLE (points, n)
 1 I ← PATH-LENGTH (points) / (n – 1)
 2 D ← 0
 3 newPoints ← points0
 4 foreach point pi for i ≥ 1 in points do
 5 d ← DISTANCE(pi-1, pi)
 6 if (D + d) ≥ I then
 7 qx ← pi-1x

 + ((I – D) / d) × (pix
 – pi-1x

)
 8 qy ← pi-1y

 + ((I – D) / d) × (piy
 – pi-1y

)
 9 APPEND (newPoints, q)
 10 INSERT (points, i, q) // q will be the next pi
 11 D ← 0
 12 else D ← D + d
 13 return newPoints
PATH-LENGTH (A)
 1 distance ← 0
 2 for i from 1 to |A| step 1 do
 3 distance ← distance + DISTANCE(Ai-1, Ai)
 4 return distance

Step 2: Generate a vector representation for the gesture. The procedure takes two
parameters: points are resampled points from Step 1, and oSensitive specifies whether the
gesture should be treated orientation sensitive or invariant. The procedure first translates
the gesture so that its centroid is the origin, and then rotates the gesture to align its
indicative angle with a base orientation. VECTORIZE returns a normalized vector with a
length of 2n.

VECTORIZE (points, oSensitive)
 1 centroid ← CENTROID (points)
 2 points ← TRANSLATE (points, centroid)
 3 indicativeAngle ← ATAN (points 0y

, points 0x
)

 4 if oSensitive then
 5 baseOrientation ← (π / 4) FLOOR ((indicativeAngle + π / 8) / (π / 4))
 6 delta ← baseOrientation - indicativeAngle
 7 else delta ← – indicativeAnlge
 9 sum ← 0
 10 foreach point (x, y) in points do
 11 newX ← x COS (delta) – y SIN (delta)
 12 newY ← y COS (delta) + x SIN (delta)
 13 APPEND (vector, newX, newY)
 14 sum ← sum + newX × newX + newY × newY

 15 magnitude ← SQRT (sum)
 16 foreach e in vector do
 17 e ← e / magnitude
 18 return vector

Step 3: Match the vector of an unknown gesture against a set of templates. OPTIMAL-
COSINE-DISTANCE provides a closed-form solution to find the minimum cosine distance
between the vectors of a template and the unknown gesture by only rotating the template
once.

RECOGNIZE (vector, templates)
 1 maxScore ← 0
 2 foreach template in templates do
 3 distance ← OPTIMAL-COSINE-DISTANCE (templatevector, vector)
 4 score ← 1 / distance
 5 if score > maxScore then
 6 maxScore ← score
 7 match ← templatename
 8 return 〈match, score〉

OPTIMAL-COSINE-DISTANCE (vector, vectorʹ′)
 1 a = 0
 2 b = 0
 3 for i from 1 to |vector| Step 2 do
 4 a ← a + vectori × vectorʹ′i + vectori+1 × vectorʹ′i+1
 5 b ← b + vectori × vectorʹ′i+1 – vectori+1 × vectorʹ′i
 6 angle ← ATAN (b/a)
 9 return ACOS (a × COS (angle) + b × SIN (angle))

1 Yang Li, Protractor: a fast and accurate gesture recognizer, CHI 2010: ACM Conference
on Human Factors in Computing Systems. p. 2169-2172.

2 This pseudocode is formatted based on the $1 pseudocode written by Jacob O.
Wobbrock. See the $1 recognizer at http://depts.washington.edu/aimgroup/proj/dollar/.
Step 1 is the same as the preprocessing step in the $1 recognizer. The key differences of
Protractor lie in Step 2 and 3, in which Protractor 1) uses Cosine distances instead of
Euclidean distances, 2) supports orientations of gestures, and 3) employs a closed-form
one-step rotation to acquire a minimum Cosine distance between gestures.

3 Jacob Wobbrock, Andy Wilson, Yang Li, Gestures without libraries, toolkits or
Training: a $1.00 Recognizer for User Interface Prototypes, UIST 2007: ACM Symposium
on User Interface Software and Technology. p.159-168.

