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MODULI SPACES AND WHY ALGEBRAIC
GEOMETERS LOVE THEM
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1. INTRODUCTION

Roughly speaking, a moduli space is a variety (but often a scheme or
a stack) whose (closed) points are in one to one correspondence with
equivalence classes of algebro-geometric objects of one kind or another.
The algebraic geometry of the moduli space reflects the way those ob-
jects live in families.

Algebraic geometers love moduli spaces because by studying a partic-
ular moduli space we can learn about the objects it parametrizes. The
prospective provided by moduli theory has allowed modern algebraic
geometers to solve classical problems and make sweeping statements
about algebraic varieties.

Called the siblings by Steven Kleiman in his beautiful article written
for this conference 20 years ago, intersection theory and enumerative
geometry have been central to algebraic geometry since very early on.
Moduli spaces have proved crucial in the development of both subjects.

A classical enumerative result that you probably learned to solve before
you decided to become a math student is that two points uniquely
determine a line. Said otherwise, there is exactly one rational curve
of degree 1 passing through 2 points in the plane. In fact there is
exactly one rational curve of degree 2 passing through five given points
in general position in P2

One way to generalize this problem is to ask for Ny, the number of
degree d rational curves passing through 3d — 1 given points in general
position in the projective plane. As stated above, N; and N, are both
one. In 1848, Jacob Steiner proved that N3 = 12 and in 1873 Zeuthen
showed that Ny, = 620. In the 1980’s by using computers, it was shown
that N5 = 87,304.
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By changing perspective to moduli spaces of stable maps, in 1994,
Kontsevich proved the following recursive formula to compute Ny. Namely,

that
3d — 4 3d — 4
_ E 2 .
Nd = NdaNdbdadb<db <3da B 2) da (3da - 1))

0<dq,dp€Z
da+dy=d

Another problem is to count the number of plane curves of degree d
of any genus passing through the appropriate number of given points
in the plane. This was solved by Lucia Caparaso and Joe Harris using
moduli spaces called Severi varieties which parametrize such objects.
They also gave a recursive formula giving the solution.

Moduli spaces also help one to make statements about algebraic va-
rieties. For example, by knowing enough about the moduli space of
curves, one can show that it is impossible to write down, using free pa-
rameters, one single equation describing the ”general” curve of genus
g for ¢ > 22. This was proved for ¢ > 24 by Harris, Mumford and
Eisenbud and very recently for g = 22 and 23 by Farkas who showed
that in this range, the moduli space of curves of genus ¢ is of general

type.

By studying the moduli space of curves you can make other kinds of
statements about families of curves. For example, Diaz proved that for
g > 3 there is no family of curves of genus g parametrized by a complete
(compact) variety of dimension greater than or equal to g — 1. On the
other hand, you can also prove that for g > 3 there is always a family of
curves of genus g parametrized by a complete curve. So for g = 3, this
describes all such families. Other results along these lines are known.
But the question of whether there is a family of curves parametrized
by a complete surface is still completely open for 4 < g < 7 (Zaal has
constructed a family parametrized by a complete surface defined over
a field of characteristic p # 0, 2).

The upshot is that, even if you didn’t know you were interested in
moduli spaces, by virtue of being an algebraic geometer, you really
are.

My goal for this talk is to define the concepts of moduli problem and
moduli space which is the "solution” to a moduli problem.
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2. MODULI PROBLEMS

Algebraic geometry is concerned largely with problems about the
classification of algebro-geometric objects. There are three basic in-
gredients making up a classification problem or a moduli problem in
algebraic geometry:

(1) a collection A of algebro-geometric objects;
(2) an equivalence relation ~ on A; and
(3) the notion of an (equivalence class) of families of objects of A.

Some examples are:

(1) a collection A of algebro-geometric objects, eg:

smooth curves of genus g;

configurations of n distinct points on P!;

morphisms from P! to PT;

hypersurfaces of degree d in P" or rather the collection of
non-zero homogeneous polynomials of degree d (up to con-
stant multiple) or said otherwise still, the projectivisation
of the vector space of all degree d homogeneous polynomi-
als in d + 1 variables,

(2) an equivalence relation ~ on A eg:

smooth curves of genus g up to isomorphism;
configurations of n distinct points on P! either up to equal-
ity (with the trivial relation), or up to projective equiva-
lence;

e morphisms from P! to P" up to isomorphism;
e the projectivization of the vector space V of all degree d

homogeneous polynomials in d+ 1 variables with either the

trivial relation or the relation given by the natural action
of PGL(r+1) on P(V).

(3) families of objects of A parametrized by a variety B, eg:

isomorphism classes of morphisms 7 : X — B where the
fibers of 7 are all (isomorphism clsasses of) smooth curves
of genus g;

equivalence classes of diagrams
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where 7 is a morphism and the o; are n disjoint sections
such that a fiber over a (closed) point b € B consists of
7 1(b) = P! together with n disjoint points o;(b) € P';
equivalence classes of diagrams

X s pr
Tl
B,

where 7 is a morphism such that for every (closed) point
b e B,

o = ply (D) =P — P,

is a morphism.
Intuitively, a family of hypersurfaces in P" parametrized by
B should be a closed subset

X X, BxPr

™l
B

such that 77!(b) is a hypersurface in P" for each closed
point b € B.

If B = A}, such a closed subset X would be defined by a
polynomial f € k[y1,...,Yn, To, - . ., T,] such that
(a) fis homogeneous of degree d in the x;, and
(b) for all @ = (ay,...,a,) € A}, the polynomial f, =
flay, ... an, o, ..., x.) € klyo, - .., y] is nonzero.

So we may try to think of defining families parametrized
by B using elements of A(B)|xo,...,z,| satisfying the two
conditions.

But this doesn’t work for all varieties B. For example, if
B is projective, then A(B) = k and so any family would
be trivial.

To fix the situation for a projective variety B we can take
the idea above locally and globalize it by allowing coeffi-
cients of the homogeneous polynomials to be sections of a
line bunde £ on B rather than as elements of A(B).
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Use of the word moduli goes back to Riemann in his 1857 paper on
abelian functions. Only in modern times has there been a precise for-
mulation of moduli problems and their solutions.

In order to give the definition of a moduli problem and it’s solution,
we need a more precise definition of families of elements in A.

2.1. families. Let A be a collection of algebro-geometric objects and
~ an equivalence relation on A. Families of objects in A differ greatly
depending on A but all of them must satisfy three formal properties
which are listed in the following definition.

Definition 2.1. A family of objects of A parametrized by a variety B
is a morphism of varieties 7 : X — B which satisfies:

(1) a family parametrized by spec(k) consists of a single object of
A;

(2) there is a notion of equivalence of families parametrized by any
given variety B, which reduces to the given equivalence relation
~ on A when B = spec(k);

(3) for any morphism of varieties ¢ : B’ — B and any fam-
ily X parametrized by B, there is an induced family ¢*(X)
parametrized by B’. Moreover, this operation satisfies the fol-
lowing functorial properties.

(a) If
LB
are morphisms of varieties, then (¢ o ¢')* = (¢/)* o ¢,
(b) Zd*B = idB/;
(c) and for families X and X' parametrized by B, and a mor-
phism ¢ : B — B,
X~X, = ¢ X ~o'X.

3. FINE MODULI SPACES

The object of moduli theory is to give the set A/ ~ the structure of an
algebraic variety M (the moduli space itself) whose geometry reflects
the structures of families of objects of A.

We’ll use the following notation:

XU = X xgU E— X
! !
U — B.
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In particular, if 7 : X — B is a family parametrized by a variety
B, then for b = spec(k) € B, by X, we mean the fiber 771(b) =
X Xy spec(k).

More precisely, suppose M is a variety whose underlying set is A/ ~.
For any family parametrized by B, we have a so-called classifying map
from B to M

X
Tl
B X M,

where if spec(k) = b € B, then nx(b) = [Xp], the isomorphism class
of the fiber of X over B. For M to be any sort of moduli space, we
want at minimum for 7x to be a morphism and ideally that nx should
define a bijective correspondence between equivalence classes of families
parametrized by B and morphisms B — M.

This can be nicely expressed in categorical language.

Consider the map between the categories of algebraic varieties and sets:
F:Var — Sets,
where for a variety B, the set F'(B) consists of all equivalence classes

of families parametrized by B.

By the third condition satisfied by families parametrized by B, F' is a
contravariant functor.

Moreover, there are natural maps
¢(B) : F(B) — Hom(B, M),
such that if X — B is a family parametrized by B, then
¢(B)(X)=nx:B— M,

is the classifying map from B to M. These maps determine a natural
transformation of functors

¢ F — Hom(x, M).

For M to be a moduli space that ”solves” the moduli problem described
by F', we ask that ¢ should be a natural isomorphism of functors so
that the functor F' is represented by (M, ¢).

Definition 3.1. A fine moduli space for a given moduli problem de-
scribed by a functor F is a pair (M, ¢) which represents the functor
F.
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We should stop and notice two important consequences of this defini-
tion:

(1) In the definition of fine moduli space we didn’t specify that the

underlying set of points of the variety M is A/ ~ — we get that

for free - for if (M, ¢) represents F', we have a natural bijection

o(spec(k)) : F(spec(k)) = (A) ~) — Hom(spec(k), M) = M.

(2) The identity morphism idy, € Hom(M, M), up to equivalence,
determines a family U parametrized by M and for any family
X — B the families X and v%U both correspond to the same
morphism nyx : B — M.
This leads to the following alternative definition of a fine moduli
space.

Definition 3.2. A fine moduli space consists of a variety M and a fam-
ily U parametrized by M such that, for every family X parametrized by
a variety B, there is a unique morphism ¢ : B — M with X ~ ¢*U.
Such a family U — M is called a universal family for the moduli
problem.

For a fixed variety X, we consider the moduli problem of describing
the set of trivial families whose fibers are configurations of n distinct
points on X. A family over B = Spec(k) is a configuration of n distinct
points on X.

We can see for ourselves that there is a fine moduli space for this moduli
problem.

By an n-tuple of points on P!, I mean an ordered set of n distinct points
p = (p1,-..,pn) such that p; € PL. The set F(P!,n) of these n-tuples
forms an algebraic variety

F(P',n) =P x --- x P!\ diagonals,

where the set diagonals is the sub-loci where the points in (P')*™ coin-
cide. As we will prove, F'(P!, n) is a fine moduli space for configurations
of n distinct points on the projective line.

To see this we define a functor from the category of algebraic varieties
to the category of sets
F:Var — Sets,

such that if B € Obj(¢(B)), then F(B) is the set of families of n-tuples
over B. We can describe F'(B) from two points of view.
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On the one hand, we set
FB)={r:BxP'— B, 0,: B— BxP'1<i<n]},

such that 7 is the projection onto the first factor and the o; are n
disjoint sections of .

A fiber of 7 over a (closed) point b € B consists of a copy of P! together
with n distinct points o (b), .., 0, (b) € P! —i.e. an n-tuple.

If B and B' € Obj(¢(B)), and f € Moryp) (B, B’), then there is an
inclusion of sets F(B) C F(B') given by pulling back families over
B to families over B’ along f. Namely, given a family over B, say
7 : B x P! — B, with n sections 0; : B — B x P!, we get a family
7m: B x P! — B’, with n sections o; 0 f : B’ — B’ x PL.

On the other hand, since the sections are disjoint, it is straightforward
to check that the definition of F'(B) above is equivalent to describing
the set

Homgp (B, F(P',n)) = {morphisms o : B — F(P',n)}.

That is, morphisms B — F(P', n) correspond to families of n-tuples
over B.

If B and B" € Obj(Var), and f € Mory,.(B,B’), then there is an
inclusion of sets Homy.-(B, Q) C Homy,(B',Q) given by precompo-
sition with f.

In other words, there is a natural transformation between the func-
tor I’ and the functor of points of F'(P',n). Moreover, the identity
map idppr ) € Homye (F(P',n), F(P',n)) corresponds to the so-
called "universal family” over F(P',n). This family is just given by 7 :
F(P',n)xP! — F (P!, n) with sections o; : F(P',n) — F(P',n)xP!
for i € {1,..,n} given by

oi(p) = oi(p1, -, Pn) = (P, Di)-

Note that the fiber of this ”universal family” over a point p € F(P!, n)
is just the point p. It satisfies the universal property that every family
is the pullback of this family (along the identity map).

A perhaps more familiar example of a fine moduli space is P" which
solves the problem of parametrizing families of lines through the origin
in a fixed vector space V' of dimension n + 1. Suppose {e,...,e,} is a
basis for V and {fo, ..., f.} is a basis for VV.



MODULI SPACES AND WHY ALGEBRAIC GEOMETERS LOVE THEM 9

A family of lines through the origin in V' parametrized by a variety B
is a line bundle £ — B such that £ C Vg =V X pecr) B. Taking the
dual of the short exact sequence

0—L—Vg— 9 —0,
gives the short exact sequence
O—>QV—>VJ§/L>£V—>0.

Since V3 is generated by global sections induced by the f; and since f
is surjective, one has that £V is generated by global sections too. This
is equivalent to the existence of a homomorphism

B — P(V),

given by the assignment b +— [fo fo(b) : ... : fo fu(b)]. In other words,
families of lines through the origin in V' are in one to one correspondence
with morphisms from B to P".

4. COARSE MODULI SPACES

Unfortunately fine moduli spaces are rare. More commonly one comes
across varieties that are almost fine moduli spaces. The general rule
of thumb when working with a moduli problem F' is that the kinds of
isomorphism classes of elements of A/ ~ determine the kind of moduli
space you can expect to have. In particular, if there are no non-trivial
isomorphisms of the elements A/ ~, then you can expect to find a fine
moduli space for F', otherwise, the best you can hope for is a coarse
moduli space.

If there is an element £ € A/ ~ that has a nontrivial finite auto-
morphism group G, then you can use the group G to define a non-
trivial family X — B whose fibers are all isomorphic to E. This
means there could not be a fine moduli space M for the problem
of describing families of elements in A/ ~. For if such a variety M
were to exist, then since the image of B under the classification map
nx : B — M would then be just a point, the total space X would
have to be X = B X ey U where U is the universal family of M.

It is much more common for M not to satisfy this "universal property”
for families but that ¢ has a universal property for natural transforma-
tions F' — Hom(x, N).
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Definition 4.1. A coarse moduli space for a given moduli problem
described by a functor F'is a variety M together with a natural trans-
formation of functors

¢: F — Hom(x, M),
such that
(1) ¢(spec(k)) : F(pt) = A/ ~— Hom(spec(k), M) = M is bijec-
tive,
(2) For any variety N and any natural transformation ¢ : F' —
Hom(x, N), there is a unique natural transformation

Q: Hom(x, M) — Hom(x, N),
such that ¥ = Qo ¢.

The variety M, of smooth curves of genus g is an example of a coarse
moduli space.

5. COMPACTIFICATIONS

The fine moduli space F(P!,n) is a nice smooth variety but even for
n = 2 isn’t compact. For example, it’s easy to write down a sequence
of configurations of just two points on P! that get closer and closer to

gether and so whose limit is not a configuration of distinct points on
P

It is common, when working with a variety that isn’t compact, to try
and find a compactification of it that is easy to work with - that way
one can bring to bear the tools of projective geometry to study the
variety.

In the case of moduli spaces, the compactifications that work best are
modular compactifications — ones which are themselves moduli spaces.
F(P',n) has been shown to have what is called a modular compact-
ification by P'[n], the Fulton-MacPherson space of so called stable
configurations of n points.

In the case of compactifying the moduli space of smooth curves, dif-
ferent compactifications have given different interesting results about
curves. The results that M, is of general type for g > 22 and the up-
per bound on the dimension of a compact subvariety parametrizing a
family of curves of genus g were proved by using the Deligne-Mumford-
Knudsen compactification by stable curves of genus g (nodal curves
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having finitely many automorphisms). While the Satake compactifica-
tion was used to prove the fact that for any g > 3 there is a family of
curves of genus g parametrized by a compact curve.



