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A little category theory

The most important part of any category C are the
morphisms not the objects.

It is the aim of higher dimensional geometry to
classify algebraic varieties up to birational
equivalence.

Thus the objects are algebraic varieties, but what are
the morphisms?
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Contraction mappings

Well, given any morphism f : X −→ Y of normal
algebraic varieties, we can always factor f as
g : X −→ W and h : W −→ Y , where h is finite
and g has connected fibres.

Mori theory does not say much about finite maps.

It does have a lot to say about morphisms with
connected fibres.

In fact any morphism f : X −→ Y such that
f∗OX = OY will be called a contraction morphism.
If X and Y are normal, this is the same as requiring
the fibres of f to be connected.
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Curves versus divisors

So we are interested in the category of algebraic
varieties (primarily normal and projective), and
contraction morphisms, and we want to classify all
contraction morphisms.

Traditionally the approved way to study a projective
variety is to embed it in projective space, and
consider the family of hyperplane sections.

In Mori theory, we focus on curves, not divisors.

In fact a contraction morphism f : X −→ Y is
determined by the curves which it contracts. Indeed
Y is clearly determined topologically, and the
condition OY = f∗OX determines the algebraic
structure.
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The closed cone of curves

NE(X) denotes the cone of effective curves of X ,
the closure of the image of the effective curves in
H2(X, R), considered as a cone inside the span.

By Kleiman’s criteria, any divisor H is ample iff it
defines a positive linear functional on

NE(X) − {0} by

[C] −→ H · C.

Given f , set D = f ∗H , where H is an ample divisor
on Y . Then D is nef, that is D · C ≥ 0, for every
curve C.
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Semiample divisors

Then a curve C is contracted by f iff D · C = 0.
Moreover the set of such curves is a face of NE(X).

Thus there is partial correspondence between the

• faces F of NE(X) and the

• contraction morphisms f .

So, which faces F correspond to contractions f?
Similarly which divisors are the pullback of ample
divisors?

We say that a divisor D is semiample if D = f ∗H ,
for some contraction morphism f and ample divisor
H .

Note that if D is semiample, it is certainly nef.
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An easy example

Suppose that X = P1 × P1.

NE(X) sits inside a two dimensional vector space.
The cone is spanned by f1 = [P1 × {pt}] and
f2 = [{pt} × P1].

This cone has four faces. The whole cone, the zero
cone and the two cones spanned by f1 and f2.

The corresponding morphisms are the identity, the
constant map to a point, and the two projections.

In this example, the correspondence between faces
and contractions is complete and in fact every nef
divisor is semiample.
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A harder example

Suppose that X = E × E, where E is a general
elliptic curve.

NE(X) sits inside a three dimensional vector space.
The class δ of the diagonal is independent from the
classes f1 and f2 of the two fibres.

Aut(X) is large; it contains SL(2, Z).

There are many contractions. Start with either of the
two projections and act by Aut(X).
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NE(E × E)

On a surface, if D2 > 0, and D · H > 0 for some
ample divisor, then D is effective by Riemann-Roch.

As the action of Aut(X) is transitive, there are no
curves of negative self-intersection. Thus NE(X) is
given by D2 ≥ 0, D · H ≥ 0.

NE(X) is one half of the classic circular cone
x2 + y2 = z2 ⊂ R3. Thus many faces don’t
correspond to contractions.

Many nef divisors are not semiample. Indeed, even
on an elliptic curve there are numerically trivial
divisors which are not torsion.
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A much harder example

Suppose that X = C2, C × C, modulo the obvious
involution, where C is a general curve, g ≥ 2.

C2 corresponds to divisors p + q of degree 2.

NE(X) sits inside a two dimensional vector space,
spanned by the image δ of the class of the diagonal
and the image f of the class of a fibre. In particular
the cone is spanned by two rays.

δ2 = 1 − g < 0; it is contracted by the Abel-Jacobi
map. So δ spans a ray. But what is the other ray?

Conjecturally it spanned by the class of a curve of
self-intersection zero. But why could there not be
another curve Σ, such that Σ2 < 0?
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More Pathologies

If S −→ C is the projectivisation of a stable rank
two vector bundle over a curve of genus g ≥ 2, then
NE(S) sits inside a two dimensional vector space.

One edge is spanned by the class f of a fibre. The
other edge is corresponds to a class α of
self-intersection zero.

However there is no curve Σ such that the class of C
is equal to α.

Indeed the existence of such a curve would imply
that the pullback of S along Σ −→ C splits, which
contradicts stability.

We really need to take the closure, to define NE(S).
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Even more Pathologies

Let S −→ P2 be the blow up of P2 at 9 general
points.

We can perturb one point, so that the nine points are
the intersection of two smooth cubics.

In this case S −→ P1, with elliptic fibres.

The nine exceptional divisors are sections. The
difference of any two is not torsion in the generic
fibre. Translating by the difference generates
infinitely many exceptional divisors.

Perturbing, we lose the fibration, but keep the
−1-curves.

What went wrong?
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The canonical divisor

The answer in all cases is to consider the behaviour
of the canonical divisor KX .

Recall that the canonical divisor is defined by
picking a meromorphic section of ∧nT ∗

X
, and

looking at is zeroes minus poles.

The basic moral is that the cone of curves is nice on
the negative side, and that if we contract these
curves, we get a reasonable model.

Consider the case of curves.
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Smooth projective curves

Curves C come in three types:

• C ' P1. KC is negative.

• C is elliptic, a plane cubic. KC is zero.

• C has genus at least two. KC is positive.

We hope (wishfully?) that the same pattern remains
in higher dimensions.

So let us now consider surfaces.
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Smooth projective surfaces

Any smooth surface S is birational to:

• P2. −KS is ample, a Fano variety.

• S −→ C, g(C) ≥ 1, where the fibres are isomorphic
to P1. −KS is relatively ample, a Fano fibration.

• S −→ C, where KS is zero on the fibres. If C is a
curve, the fibres are elliptic curves.

• KS is ample. S is of general type. Note that S is
forced to be singular in general.

The problem, as we have already seen, is that we can
destroy this picture, simply by blowing up. It is the
aim of the MMP to reverse the process of blowing
up.
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The cone theorem

Let X be a smooth variety, or in general mildly
singular. There are two cases:

• KX is nef.

• There is a curve C such that KX · C < 0.

In the second case there is a KX-extremal ray R.
That is to say R is extremal in the sense of convex
geometry, and KX · R < 0.

Moreover, we can contract R, φR : X −→ Y .

φR is a contraction morphism, −KX is relatively
ample, and the relative Picard number is one.
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The case of surfaces

Let S be a smooth surface. Suppose that KS is not
nef. Let R be an extremal ray, φ : S −→ Z. There
are three cases:

• Z is a point. In this case S ' P2.

• Z is a curve. The fibres are copies of P1.

• Z is a surface. φ blows down a −1-curve.
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The MMP for surfaces

Start with a smooth surface S.

If KS is nef, then STOP.

Otherwise there is a KS-extremal ray R, with
associated contraction φ : S −→ Z.

If dim Z < 2, then STOP.

If dim Z = 2 then replace S with Z, and continue.
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The general algorithm

Start with any birational model X .

Desingularise X .

If KX is nef, then STOP.

Otherwise there is a curve C, such that KX · C < 0.
Our aim is to remove this curve or reduce the
question to a lower dimensional one.

By the Cone Theorem, there is an extremal
contraction, π : X −→ Y , of relative Picard number
one such that for a curve C ′, π(C ′) is a point iff C ′ is
homologous to C.
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Analyzing π

If the fibres of π have dimension at least one, then
we have a Mori fibre space, that is −KX is π-ample,
π has connected fibres and relative Picard number
one. We have reduced the question to a lower
dimensional one: STOP.

If π is birational and the locus contracted by π is a
divisor, then even though Y might be singular, it will
at least be Q-factorial (for every Weil divisor D,
some multiple is Cartier).
Replace X by Y and keep going.
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π is birational

If the locus contracted by π is not a divisor, that is, π
is small, then Y is not Q-factorial.

Instead of contracting C, we try to replace X by
another birational model X+, X 99K X+, such that
π+ : X+ −→ Y is KX+-ample.

X
φ

- X+

@
@

@
@

@
@

@

π

R 	�
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Z.
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Flips

This operation is called a flip.

Even supposing we can perform a flip, how do know
that this process terminates?

It is clear that we cannot keep contracting divisors,
but why could there not be an infinite sequence of
flips?
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Adjunction and Vanishing, I

In higher dimensional geometry, there are two basic
results, adjunction and vanishing.

(Adjunction) In its simplest form it states that given
a variety smooth X and a divisor S, the restriction of
KX + S to S is equal to KS .

(Vanishing) The simplest form is Kodaira vanishing
which states that if X is smooth and L is an ample
line bundle, then H i(KX + L) = 0, for i > 0.

Both of these results have far reaching
generalisations, whose form dictates the main
definitions of the subject.
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An illustrative example

Let S be a smooth projective surface and let E ⊂ S

be a −1-curve, that is KS · E = −1 and E2 = −1.
We want to contract E.

By adjunction, KE has degree −2, so that E ' P1.
Pick up an ample divisor H and consider
D = KS + G + E = KS + aH + bE.

Pick a > 0 so that KS + aH is ample.

Then pick b so that (KS + aH + bE) · E = 0. Note
that b > 0 (in fact typically b is very large).

Now we consider the rational map given by |mD|,
for m >> 0 and sufficiently divisible.
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Basepoint Freeness

Clearly the base locus of |mD| is contained in E.

So consider the restriction exact sequence

0 −→ OS(mD−E) −→ OS(mD) −→ OE(mD) −→ 0.

Now

mD − E = KS + G + (m − 1)D,

and G + (m − 1)D is ample.

So by Kawamata-Viehweg Vanishing

H1(S,OS(mD−E)) = H1(S,OS(KS+G+(m−1)D)) = 0.
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Castelnuovo’s Criteria

By assumption OE(mD) is the trivial line bundle.
But this is a cheat.

In fact by adjunction

(KS + G + E)|E = KE + B,

where B = G|E.

B is ample, so we have the start of an induction.

By vanishing, the map

H0(S,OS(mD)) −→ H0(E,OE(mD))

is surjective. Thus |mD| is base point free and the
resulting map S −→ T contracts E.
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The General Case

We want to try to do the same thing, but in higher
dimension. Unfortunately the locus E we want to
contract need not be a divisor.

Observe that if we set G′ = π∗G, then G′ has high
multiplicity along p, the image of E (that is b is
large).

In general, we manufacture a divisor E by picking a
point x ∈ X and then pick H with high multiplicity
at x.

Next resolve singularities X̃ −→ X and restrict to
an exceptional divisor E, whose centre has high
multiplicity w.r.t H (strictly speaking a log
canonical centre of KX + H).

Birational classification of varieties – p.27



The General Case

We want to try to do the same thing, but in higher
dimension. Unfortunately the locus E we want to
contract need not be a divisor.

Observe that if we set G′ = π∗G, then G′ has high
multiplicity along p, the image of E (that is b is
large).

In general, we manufacture a divisor E by picking a
point x ∈ X and then pick H with high multiplicity
at x.

Next resolve singularities X̃ −→ X and restrict to
an exceptional divisor E, whose centre has high
multiplicity w.r.t H (strictly speaking a log
canonical centre of KX + H).

Birational classification of varieties – p.27



The General Case

We want to try to do the same thing, but in higher
dimension. Unfortunately the locus E we want to
contract need not be a divisor.

Observe that if we set G′ = π∗G, then G′ has high
multiplicity along p, the image of E (that is b is
large).

In general, we manufacture a divisor E by picking a
point x ∈ X and then pick H with high multiplicity
at x.

Next resolve singularities X̃ −→ X and restrict to
an exceptional divisor E, whose centre has high
multiplicity w.r.t H (strictly speaking a log
canonical centre of KX + H).

Birational classification of varieties – p.27



The General Case

We want to try to do the same thing, but in higher
dimension. Unfortunately the locus E we want to
contract need not be a divisor.

Observe that if we set G′ = π∗G, then G′ has high
multiplicity along p, the image of E (that is b is
large).

In general, we manufacture a divisor E by picking a
point x ∈ X and then pick H with high multiplicity
at x.

Next resolve singularities X̃ −→ X and restrict to
an exceptional divisor E, whose centre has high
multiplicity w.r.t H (strictly speaking a log
canonical centre of KX + H).

Birational classification of varieties – p.27



Singularities in the MMP

Let X be a normal variety. We say that a divisor
∆ =

∑
i
ai∆i is a boundary, if 0 ≤ ai ≤ 1.

Let π : Y −→ X be birational map. Suppose that
KX + ∆ is Q-Cartier. Then we may write

KY + Γ = π∗(KX + ∆).

We say that the pair (X, ∆) is klt if the coefficients
of Γ are always less than one.

We say that the pair (X, ∆) is plt if the coefficients
of the exceptional divisor of Γ are always less than
or equal to one.
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Adjunction II

To apply adjunction we need a component S of
coefficient one.

So suppose we can write ∆ = S + B, where S has
coefficient one. Then

(KX + S + B)|S = KS + D.

Moreover if KX + S + B is plt then KS + D is klt.
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Vanishing II

We want a form of vanishing which involves
boundaries.

If we take a cover with appropriate ramification,
then we can eliminate any component with
coefficient less than one.

(Kawamata-Viehweg vanishing) Suppose that
KX + ∆ is klt and L is a line bundle such that
L − (KX + ∆) is big and nef. Then, for i > 0,

H i(X, L) = 0.
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Summary

We hope that varieties X belong to two types:

• X is a minimal model: KX is nef. That is
KX · C ≥ 0, for every curve C in X .

• X is a Mori fibre space, π : X −→ Y . That is π is
extremal (−KX is relatively ample and π has
relative Picard one) and π is a contraction (the fibres
of π are connected) of dimension at least one.

To achieve this birational classification, we propose
to use the MMP.
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Two main Conjectures

To finish the proof of the existence of the MMP, we need
to prove the following two conjectures:

Conjecture. (Existence) Suppose that KX + ∆ is
kawamata log terminal. Let π : X −→ Y be a small
extremal contraction.
Then the flip of π exists.

Conjecture. (Termination) There is no infinite sequence
of kawamata log terminal flips.
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Abundance

Now suppose that X is a minimal model, so that KX is
nef.

Conjecture. (Abundance) Suppose that KX + ∆ is
kawamata log terminal and nef.
Then KX + ∆ is semiample.

Considering the resulting morphism φ : X −→ Y , we
recover the Kodaira-Enriques classification of surfaces.
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