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A little category theory

= The most important part of any category C are the
not the

= It Is the aim of higher dimensional geometry to
classify algebraic varieties up to birational
equivalence.
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The most important part of any category C are the
not the

It Is the aim of higher dimensional geometry to
classify algebraic varieties up to birational
equivalence.

Thus the objects are algebraic varieties, but what are
the morphisms?
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Contraction mappings

= Well, given any morphism f: X — Y of normal
algebraic varieties, we can always factor f as
g: X — Wand h: W — Y, where h is finite
and ¢ has connected fibres.
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algebraic varieties, we can always factor f as
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= Mori theory does  say much about finite maps.
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algebraic varieties, we can always factor f as
g: X — Wand h: W — Y, where h is finite
and ¢ has connected fibres.

= Mori theory does  say much about finite maps.

w It have a lot to say about morphisms with
connected fibres.
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Well, given any morphism f: X — Y of normal
algebraic varieties, we can always factor f as

g: X — Wandh: W — Y, where A Is

and ¢ has

Mori theory does  say much about finite maps.

It have a lot to say about morphisms with
connected fibres.

In fact any morphism f: X — Y such that
f.Ox = Oy will be called a

If X and Y are normal, this Is the same as requmng
the fibres of f to be connected.
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S0 we are Interested In the category of algebraic
varieties (primarily normal and projective), and
contraction morphisms, and we want to classify all
contraction morphismes.
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S0 we are Interested In the category of algebraic
varieties (primarily normal and projective), and
contraction morphisms, and we want to classify all
contraction morphismes.

Traditionally the approved way to study a projective
variety Is to embed it in projective space, and
consider the family of hyperplane sections.
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S0 we are Interested In the category of algebraic
varieties (primarily normal and projective), and
contraction morphisms, and we want to classify all
contraction morphismes.

Traditionally the approved way to study a projective
variety Is to embed it in projective space, and
consider the family of hyperplane sections.

In Mori theory, we focus on , not

In fact a contraction morphism f: X — Y IS
determined by the curves which it contracts. Indeed
Y is clearly determined topologically, and the
condition Oy = f.Ox determines the algebraic
structure.
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The closed cone of curves

m NE(X) denotes the cone of effective curves of X,
the of the image of the effective curves in
H>(X,R), considered as a cone inside the span.
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The closed cone of curves

m NE(X) denotes the cone of effective curves of X,
the of the image of the effective curves in
H>(X,R), considered as a cone inside the span.

= By Kleiman’s criteria, any divisor A is ample iff it
defines a positive linear functional on

NE(X) — {0} 0
C|l— H-C.
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The closed cone of curves

m NE(X) denotes the cone of effective curves of X,
the of the image of the effective curves in
H>(X,R), considered as a cone inside the span.

= By Kleiman’s criteria, any divisor A is ample iff it
defines a positive linear functional on
NE(X) — {0} 0)Y,
C|l— H-C.

= Given f,set D = f*H, where H Is an ample divisor
onY. Then D is nef, thatis D - C' > 0, for every
curve C.
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Semiample divisors

= Thenacurve C'is contracted by f iff D - C' = 0.
Moreover the set of such curves is a of NE(X).
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= Thus there Is partial correspondence between the
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Semiample divisors

= Thenacurve C'is contracted by f iff D - C' = 0.
Moreover the set of such curves is a of NE(X).

= Thus there Is partial correspondence between the
e faces F' of NE(X) and the
e contraction morphisms f.
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Semiample divisors

= Thenacurve C'is contracted by f iff D - C' = 0.
Moreover the set of such curves is a of NE(X).

= Thus there is correspondence between the
e faces F' of NE(X) and the
e contraction morphisms f.

= S0, which faces F' correspond to contractions f?
Similarly which divisors are the pullback of ample
divisors?

Birational classification of varieties — p.6



Then a curve C'Is contracted by f iIff D - C = 0.
Moreover the set of such curves is a of NE(X).

Thus there Is correspondence between the
faces F' of NE(X) and the
contraction morphisms f.

So, which faces F' correspond to contractions f?
Similarly which divisors are the pullback of ample
divisors?

We say that a divisor D Is fD=f"H,

for some contraction morphism f and ample divisor
H.
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Then a curve C'Is contracted by f iIff D - C = 0.
Moreover the set of such curves is a of NE(X).

Thus there Is correspondence between the
faces F' of NE(X) and the
contraction morphisms f.

So, which faces F' correspond to contractions f?
Similarly which divisors are the pullback of ample
divisors?

We say that a divisor D Is fD=f"H,
for some contraction morphism f and ample divisor
H.

Note that If D 1s semiample, it is certainly nef.

| classification of varieties — p.6
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An easy example

= Suppose that X = P! x P

= NE(X) sits inside a two dimensional vector space.
The cone is spanned by f; = [P! x {pt}] and

fo = [{pt} x P'].
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An easy example

= Suppose that X = P! x P

= NE(X) sits inside a two dimensional vector space.
The cone is spanned by f; = [P! x {pt}] and

= [{pt} x P'].
N This cone has four faces. The whole cone, the zero
cone and the two cones spanned by f; and f>.
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Suppose that X = P! x P!,

NE(X) sits inside a two dimensional vector space.
The cone is spanned by f; = [P! x {pt}] and

fa = [{pt} x P'].
This cone has four faces. The whole cone, the zero
cone and the two cones spanned by f; and f>.

The corresponding morphisms are the identity, the
constant map to a point, and the two projections.
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Suppose that X = P! x P!,

NE(X) sits inside a two dimensional vector space.
The cone is spanned by f; = [P! x {pt}] and

fo = [{pt} x P].

This cone has four faces. The whole cone, the zero
cone and the two cones spanned by f; and fs.

The corresponding morphisms are the identity, the
constant map to a point, and the two projections.

In this example, the correspondence between faces
and contractions is complete and in fact every nef
divisor is semiample.

Birational classification of varieties — p.7



der example

ppose that X = F x E, where E Is a general
Iptic curve.



Suppose that X = £ x E, where E'Is a general
elliptic curve.

NE(X) sits inside a three dimensional vector space.
The class o of the diagonal Is independent from the
classes f, and £, of the two fibres.
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Suppose that X = £ x E, where E'Is a general
elliptic curve.

NE(X) sits inside a three dimensional vector space.
The class o of the diagonal Is independent from the
classes f, and £, of the two fibres.

Aut(X) is large; it contains SL(2, Z).
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Suppose that X = £ x E, where E'Is a general
elliptic curve.

NE(X) sits inside a three dimensional vector space.
The class o of the diagonal Is independent from the
classes f, and £, of the two fibres.

Aut(X) is large; it contains SL(2, Z).

There are many contractions. Start with either of the
two projections and act by Aut(X).

Birational classification of varieties — p.8



On a surface, if D? > 0,and D - H > 0 for some
ample divisor, then D is effective by Riemann-Roch.
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On a surface, if D? > 0,and D - H > 0 for some
ample divisor, then D is effective by Riemann-Roch.

As the action of Aut(X) is transitive, there are no
curves of negative self-intersection. Thus NE(X) is

given by D> >0, D - H > 0.
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On a surface, if D? > 0,and D - H > 0 for some
ample divisor, then D is effective by Riemann-Roch.

As the action of Aut(X) is transitive, there are no
curves of negative self-intersection. Thus NE(X) is

given by D> >0, D - H > 0.

NE(X) is one half of the classic circular cone

22 + y? = 22 C R3. Thus many faces don’t
correspond to contractions.
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On a surface, if D? > 0,and D - H > 0 for some
ample divisor, then D is effective by Riemann-Roch.

As the action of Aut(X) is transitive, there are no
curves of negative self-intersection. Thus NE(X) is

given by D> >0, D - H > 0.

NE(X) is one half of the classic circular cone
22 + y? = 22 C R3. Thus many faces don’t
correspond to contractions.

Many nef divisors are not semiample. Indeed, even
on an elliptic curve there are numerically trivial
divisors which are not torsion.

Birational classification of varieties — p.9



A much harder example

m Suppose that X = Cy, C' x C, modulo the obvious
Involution, where C'Is a curve, g > 2.
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A much harder example

m Suppose that X = Cy, C' x C, modulo the obvious
Involution, where C'Is a curve, g > 2.

m (5 corresponds to divisors p + q of degree 2.
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Suppose that X = (5, C' x C, modulo the obvious
Involution, where C'Is a curve, g > 2.

C5 corresponds to divisors p + ¢ of degree 2.

NE(X) sits inside a two dimensional vector space,
spanned by the image o of the class of the diagonal
and the image [ of the class of a fibre. In particular
the cone Is spanned by two rays.
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Suppose that X = (5, C' x C, modulo the obvious
Involution, where C'Is a curve, g > 2.

C5 corresponds to divisors p + ¢ of degree 2.

NE(X) sits inside a two dimensional vector space,
spanned by the image o of the class of the diagonal
and the image [ of the class of a fibre. In particular
the cone Is spanned by two rays.

0 =1 — g < 0; it is contracted by the Abel-Jacobi
map. So o spans a ray. But what is the other ray?
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Suppose that X = (5, C' x C, modulo the obvious
Involution, where C'Is a curve, g > 2.

C5 corresponds to divisors p + ¢ of degree 2.

NE(X) sits inside a two dimensional vector space,
spanned by the image o of the class of the diagonal
and the image [ of the class of a fibre. In particular
the cone Is spanned by two rays.

0 =1 — g < 0; it is contracted by the Abel-Jacobi
map. So o spans a ray. But what is the other ray?

Conjecturally it spanned by the class of a curve of
self-intersection zero. But why could there not be

another curve 3, such that 32 < 0?

Birational classification of varieties — p.10



More Pathologies

» If S — C'i1s the projectivisation of a stable rank
two vector bundle over a curve of genus g > 2, then

NE(S) sits inside a two dimensional vector space.
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If S — C'Is the projectivisation of a stable rank
two vector bundle over a curve of genus g > 2, then

NE(S) sits inside a two dimensional vector space.

One edge Is spanned by the class f of a fibre. The
other edge Is corresponds to a class « of
self-intersection zero.
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If S — C'Is the projectivisation of a stable rank
two vector bundle over a curve of genus g > 2, then

NE(S) sits inside a two dimensional vector space.

One edge Is spanned by the class f of a fibre. The
other edge Is corresponds to a class « of
self-intersection zero.

However there 1S no curve Y. such that the class of C
IS equal to «.
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If S — C'Is the projectivisation of a stable rank
two vector bundle over a curve of genus g > 2, then

NE(S) sits inside a two dimensional vector space.

One edge Is spanned by the class f of a fibre. The
other edge Is corresponds to a class « of
self-intersection zero.

However there 1S no curve Y. such that the class of C
IS equal to «.

Indeed the existence of such a curve would imply
that the pullback of S along > — C' splits, which
contradicts stability.
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If S — C'Is the projectivisation of a stable rank
two vector bundle over a curve of genus g > 2, then

NE(S) sits inside a two dimensional vector space.

One edge Is spanned by the class f of a fibre. The
other edge Is corresponds to a class « of
self-intersection zero.

However there 1S no curve Y. such that the class of C
IS equal to «.

Indeed the existence of such a curve would imply
that the pullback of S along > — C' splits, which
contradicts stability.

We really need to take the closure, to define NE(S).

Birational classification of varieties — p.11



more Pathologies

t S — P? be the blow up of P? at 9 general
Ints.



Even more Pathologies

m Let S — IP? be the blow up of P? at 9 general
points.

= We can perturb one point, so that the nine points are
the intersection of two smooth cubics.
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Even more Pathologies

= Let S — IP? be the blow up of P? at 9 general
points.

= We can perturb one point, so that the nine points are
the intersection of two smooth cubics.

= In this case S — P!, with elliptic fibres.
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Let S — P2 be the blow up of P* at 9 general
points.

We can perturb one point, so that the nine points are
the intersection of two smooth cubics.

In this case S — P!, with elliptic fibres.

The nine exceptional divisors are sections. The
difference of any two Is not torsion in the generic
fibre. Translating by the difference generates
Infinitely many exceptional divisors.
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Let S — P2 be the blow up of P* at 9 general
points.

We can perturb one point, so that the nine points are
the intersection of two smooth cubics.

In this case S — P!, with elliptic fibres.

The nine exceptional divisors are sections. The
difference of any two Is not torsion in the generic
fibre. Translating by the difference generates
Infinitely many exceptional divisors.

Perturbing, we lose the fibration, but keep the
—1-curves.
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Let S — P2 be the blow up of P* at 9 general
points.

We can perturb one point, so that the nine points are
the intersection of two smooth cubics.

In this case S — P!, with elliptic fibres.

The nine exceptional divisors are sections. The
difference of any two Is not torsion in the generic
fibre. Translating by the difference generates
Infinitely many exceptional divisors.

Perturbing, we lose the fibration, but keep the
—1-curves.

What went wrong?
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The canonical divisor

m The answer i1n all cases iIs to consider the behaviour
of the canonical divisor K .
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The answer In all cases Is to consider the behaviour
of the canonical divisor K x.

Recall that the canonical divisor is defined by
picking a meromorphic section of A"T%, and
looking at Is zeroes minus poles.

Birational classification of varieties — p.13



The answer In all cases Is to consider the behaviour
of the canonical divisor K x.

Recall that the canonical divisor is defined by
picking a meromorphic section of A"T%, and
looking at Is zeroes minus poles.

The basic moral Is that the cone of curves Is nice on
the negative side, and that if we contract these
curves, we get a reasonable model.
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The answer In all cases Is to consider the behaviour
of the canonical divisor K x.

Recall that the canonical divisor is defined by
picking a meromorphic section of A"T%, and
looking at Is zeroes minus poles.

The basic moral Is that the cone of curves Is nice on
the negative side, and that if we contract these
curves, we get a reasonable model.

Consider the case of curves.

Birational classification of varieties — p.13



th projective curves

rves C' come In three types:



th projective curves

rves C' come In three types:
~ P!,



th projective curves

rves C' come In three types:
~ Pl K, is negative.



th projective curves

rves C' come In three types:
~ Pl K, is negative.
Is elliptic, a plane cubic.



SMooth projective curves

» Curves C' come In three types:
o C ~P. K, isnegative.
e C'Iselliptic, a plane cubic. K Is zero.
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SMooth projective curves

» Curves C' come In three types:

o C ~P. K, isnegative.

e C'Iselliptic, a plane cubic. K Is zero.
e (' has genus at least two.
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SMooth projective curves

» Curves C' come In three types:

o C ~P. K, isnegative.

e C'Iselliptic, a plane cubic. K Is zero.
e (' has genus at least two. K IS positive.
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SMooth projective curves

» Curves C' come In three types:

o C ~ P! K, isnegative.

e C'Iselliptic, a plane cubic. K Is zero.
e (' has genus at least two. K IS positive.

= We hope (wishfully?) that the same pattern remains
In higher dimensions.

Birational classification of varieties — p.14



SMooth projective curves

» Curves C' come In three types:

o C ~ P! K, isnegative.

e C'Iselliptic, a plane cubic. K Is zero.
e (' has genus at least two. K IS positive.

= We hope (wishfully?) that the same pattern remains
In higher dimensions.

= So let us now consider surfaces.
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y smooth surface .S' is birational to:



th projective surfaces

y smooth surface .S' is birational to:



th projective surfaces

y smooth surface S Is birational to:
. —Kg Isample, a Fano variety.



SMOooth projective surfaces

= Any smooth surface S Is birational to:
o P2, — K isample, a Fano variety.

o S — C, g(C) > 1, where the fibres are isomorphic
to P,
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SMOooth projective surfaces

= Any smooth surface S Is birational to:
o P2, — K isample, a Fano variety.

o S — C, g(C) > 1, where the fibres are isomorphic
to P!. — Ky is relatively ample, a Fano fibration.
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SMOooth projective surfaces

= Any smooth surface S Is birational to:
o P2, — K isample, a Fano variety.

o S — C, g(C) > 1, where the fibres are isomorphic
to P!. — Ky is relatively ample, a Fano fibration.

e S — (', where K¢ Is zero on the fibres.
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SMOooth projective surfaces

= Any smooth surface S Is birational to:
o P2, —Kgisample, a Fano variety.

o S — C, g(C) > 1, where the fibres are isomorphic
to P!. — Ky is relatively ample, a Fano fibration.

e S — (', where K¢ Is zero on the fibres. If C'Isa
curve, the fibres are elliptic curves.
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SMOooth projective surfaces

= Any smooth surface S Is birational to:
o P2, —Kgisample, a Fano variety.

o S — C, g(C) > 1, where the fibres are isomorphic
to P!. — Ky is relatively ample, a Fano fibration.

e S — (', where K¢ Is zero on the fibres. If C'Isa
curve, the fibres are elliptic curves.

o Kgisample.
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SMOooth projective surfaces

= Any smooth surface S Is birational to:

o P2, —Kgisample, a Fano variety.

o S — C, g(C) > 1, where the fibres are isomorphic
to P!. — Ky is relatively ample, a Fano fibration.

e S — (', where K¢ Is zero on the fibres. If C'Isa
curve, the fibres are elliptic curves.

o Kgisample. S is of general type. Note that .S Is
forced to be singular in general.
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Any smooth surface S Is birational to:
P?. —Kgisample, a

S — C, g(C) > 1, where the fibres are isomorphic
to P!. — Ky is relatively ample, a

S — C, where K¢ 1S zero on the fibres. If C Is a
curve, the fibres are elliptic curves.

K 1sample. S is of general type. Note that S Is
forced to be singular in general.

The problem, as we have already seen, Is that we can
destroy this picture, simply by blowing up. It is the
alm of the MMP to reverse the process of blowing
up.
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T he cone theorem

m Let X be a smooth variety, or in general mildly
singular. There are two cases:
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T he cone theorem

m Let X be a smooth variety, or in general mildly
singular. There are two cases:

o K IS nef.
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T he cone theorem

m Let X be a smooth variety, or in general mildly
singular. There are two cases:

o K IS nef.
e Thereisacurve C suchthat Ky - C' < 0.
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Let X be a smooth variety, or in general mildly
singular. There are two cases:

e K x IS nef.
e Thereisacurve C suchthat Ky - C' < 0.

In the second case there Is a K x-extremal ray R.
That Is to say R Is extremal in the sense of convex

geometry, and Kx - R < 0.
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Let X be a smooth variety, or in general mildly
singular. There are two cases:

e K x IS nef.
e Thereisacurve C suchthat Ky - C' < 0.

In the second case there Is a K x-extremal ray R.
That Is to say R Is extremal in the sense of convex

geometry, and Kx - R < 0.
Moreover, we can contract R, op: X — Y.
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The case of surfaces

m Let S be a smooth surface. Suppose that /& g IS not
nef. Let R be an extremal ray, ¢: S — Z. There
are three cases:
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The case of surfaces

m Let S be a smooth surface. Suppose that /& g IS not
nef. Let R be an extremal ray, ¢: S — Z. There
are three cases:

e Z isapoint. In this case S ~ P~
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The case of surfaces

m Let S be a smooth surface. Suppose that /& g IS not
nef. Let R be an extremal ray, ¢: S — Z. There
are three cases:

e Z isapoint. In this case S ~ P~
e Z isacurve. The fibres are copies of .
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The case of surfaces

m Let S be a smooth surface. Suppose that /& g IS not
nef. Let R be an extremal ray, ¢: S — Z. There
are three cases:

e Z isapoint. In this case S ~ P~

e Z isacurve. The fibres are copies of .
e Z Isasurface. ¢ blows down a —1-curve.

Birational classification of varieties — p.17
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art with a smooth surface S.



MP for surfaces

art with a smooth surface S.
Kg 1s nef, then .



The MMP for surfaces

= Start with a smooth surface S.
m If K g 1s nef, then

m Otherwise there Is a K g-extremal ray R, with
assoclated contraction ¢: S — Z.
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The MMP for surfaces

= Start with a smooth surface S.
m If K g 1s nef, then

m Otherwise there Is a K g-extremal ray R, with
assoclated contraction ¢: S — Z.

m Ifdim Z < 2, then
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The MMP for surfaces

= Start with a smooth surface S.
m If K g 1s nef, then

m Otherwise there Is a K g-extremal ray R, with
assoclated contraction ¢: S — Z.

w If dim Z < 2, then
» If dim Z = 2 then replace S with Z, and continue.

Birational classification of varieties — p.18



eneral algorithm

art with any birational model X.



eneral algorithm

art with any birational model X.
singularise X.



The general algorithm

= Start with any birational model X.
= Desingularise X.
m If Ky IS nef, then
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The general algorithm

m Start with any birational model X.
= Desingularise X.
m If Ky IS nef, then

m Otherwise there 1sa curve C, such that Ky - C' < 0.
Our aim Is to remove this curve or reduce the
guestion to a lower dimensional one.
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Start with any birational model X
Desingularise X.
If K x IS nef, then

Otherwise there 1s a curve C, such that Ky - C' < 0.
Our aim Is to remove this curve or reduce the
guestion to a lower dimensional one.

By the Cone Theorem, there Is an extremal
contraction, 7: X — Y, of relative Picard number
one such that for a curve C’, 7 (C") is a point iff C" is
homologous to C'.
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If the fibres of © have dimension at least one, then
we have a Mori fibre space, that Is — Kx Is m-ample,
7 has connected fibres and relative Picard number

one. We have reduced the question to a lower
dimensional one:
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If the fibres of = have dimension at least one, then
we have a Mori fibre space, that iIs — Kx 1s m-ample,
7 has connected fibres and relative Picard number
one. We have reduced the question to a lower
dimensional one:

If 7 1s birational and the locus contracted by 7 Is a
divisor, then even though Y might be singular, it will
at least be Q-factorial (for every Well divisor D,
some multiple is Cartier).

Replace X by Y and keep going.
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7 IS Dirational

= If the locus contracted by = Is not a divisor, that Is, =
IS small, then Y 1s not Q-factorial.
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If the locus contracted by = Is not a divisor, that Is, =
IS small, then Y 1s not Q-factorial.

Instead of contracting C', we try to replace X by
another birational model X, X --» X, such that
7. XT — Y is Kx+-ample.
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IS operation is called a flip.



This operation Is called a

Even supposing we can perform a flip, how do know
that this process terminates?
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This operation Is called a

Even supposing we can perform a flip, how do know
that this process terminates?

It Is clear that we cannot keep contracting divisors,
but why could there not be an infinite sequence of
flips?
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Adjunction and Vanishing, |

= In higher dimensional geometry, there are two basic
results, adjunction and vanishing.
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Adjunction and Vanishing, |

= In higher dimensional geometry, there are two basic
results, adjunction and vanishing.

= (Adjunction) In its simplest form it states that given
a variety smooth X and a divisor .S, the restriction of
Kx + StoSisequal to Kg.
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In higher dimensional geometry, there are two basic
results, adjunction and vanishing.

(Adjunction) In its simplest form it states that given
a variety smooth X and a divisor .S, the restriction of

Kx + StoSisequal to Kg.

(Vanishing) The simplest form is Kodaira vanishing
which states that if X Is smooth and L Is an ample

line bundle, then H'(Kx + L) = 0, for ¢ > 0.
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In higher dimensional geometry, there are two basic
results, adjunction and vanishing.

(Adjunction) In its simplest form it states that given
a variety smooth X and a divisor .S, the restriction of

Kx + StoSisequal to Kg.

(Vanishing) The simplest form is Kodaira vanishing
which states that If X i1s smooth and L Is an ample
line bundle, then H'(Kx + L) = 0, for ¢ > 0.

Both of these results have far reaching
generalisations, whose form dictates the main

definitions of the subject.
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An Hlustrative example

m Let S be a smooth projective surface and let £ C S
be a —1-curve, thatis K¢- F = —1 and E? = —1.
We want to contract £.
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An Hlustrative example

m Let S be a smooth projective surface and let £ C S
be a —1-curve, thatis K¢- F = —1 and E? = —1.
We want to contract £.

= By adjunction, K5 has degree —2, so that £ ~ P!,
Pick up an ample divisor H and consider
D=K¢+G+FE=Kgs+aH+bE.
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Let S be a smooth projective surface and let £ C S
be a —1-curve, thatis K¢- F = —1 and E? = —1.
We want to contract £.

By adjunction, K5 has degree —2, so that £ ~ P!
Pick up an ample divisor H and consider
D=K¢+G+FE=K¢+aH + DE.

Pick a > 0 so that K5 + aH Is ample.
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Let S be a smooth projective surface and let £ C S
be a —1-curve, thatis K¢- F = —1 and E? = —1.
We want to contract £.

By adjunction, K5 has degree —2, so that £ ~ P!
Pick up an ample divisor H and consider
D=K¢+G+FE=K¢+aH + DE.

Pick a > 0 so that K5 + aH Is ample.

Then pick b so that (Kg + aH + bE) - E = 0. Note
that b > 0 (in fact typically b Is very large).
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Let S be a smooth projective surface and let £ C S
be a —1-curve, thatis K¢- F = —1 and E? = —1.
We want to contract £.

By adjunction, K5 has degree —2, so that £ ~ P!
Pick up an ample divisor H and consider
D=K¢+G+FE=K¢+aH + DE.

Pick a > 0 so that Ks + aH 1s ample.

Then pick b so that (Kg + aH + bE) - E = 0. Note
that b > 0 (in fact typically b Is very large).

Now we consider the rational map given by |mD
for m >> 0 and sufficiently divisible.
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)oiNt Freeness

early the base locus of |[mD| is contained in F.



Basepoint Freeness

= Clearly the base locus of |m D] is contained in E.
= S0 consider the restriction exact sequence

0 — Os(mD—FE) — Og(mD) — Og(mD) — 0.
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Basepoint Freeness

= Clearly the base locus of |m D] is contained in E.
= S0 consider the restriction exact sequence

0 — Os(mD—FE) — Og(mD) — Og(mD) — 0.
= Now
mD — E=Kg+G+ (m—1)D,

and G + (m — 1)D is ample.
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Clearly the base locus of |m D] is contained in E.
S0 consider the restriction exact sequence

0 — Os(mD—FE) — Og(mD) — Og(mD) — 0.
Now
mD — E=Kg+G+ (m—1)D,

and G + (m — 1)D is ample.
So by Kawamata-Viehweg Vanishing

Hl(S, Os(mD—E)) = Hl(S, OS(K5+G—|—(m—1)D)) = 0.
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Castelnuovo’s Criteria

= By assumption Og(mD) is the trivial line bundle.
But this Is a cheat.
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Castelnuovo’s Criteria

= By assumption Og(mD) is the trivial line bundle.
But this Is a cheat.

= In fact by adjunction
(Ks+ G+ E)|lgp = Kg+ B,
where B = G| g.
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Castelnuovo’s Criteria

= By assumption Og(mD) is the trivial line bundle.
But this Is a cheat.

= In fact by adjunction
(Ks+G+ F)|lg=Kg+ B,

where B = G| g.
= B Is ample, so we have the start of an induction.
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By assumption Og(mD) is the trivial line bundle.
But this Is a cheat.

In fact by adjunction
(Ks+G+ E)|p = Kg+ B,

where B = G| g.

B 1s ample, so we have the start of an induction.
By vanishing, the map

HY(S,05(mD)) — H°(E,Op(mD))

Is surjective. Thus |m D] is base point free and the
resulting map S — T contracts FE.
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The General Case

= We want to try to do the same thing, but in higher
dimension. Unfortunately the locus £ we want to
contract need not be a divisor.
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We want to try to do the same thing, but in higher

dimension. Unfortunately the locus £ we want to
contract need not be a divisor.

Observe that if we set G' = «..G, then G’ has high

multiplicity along p, the image of £ (that is b Is
large).
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We want to try to do the same thing, but in higher

dimension. Unfortunately the locus £ we want to
contract need not be a divisor.

Observe that if we set G' = «..G, then G’ has high

multiplicity along p, the image of £ (that is b Is
large).

In general, we manufacture a divisor £ by picking a

point x € X and then pick A with high multiplicity
at x.
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We want to try to do the same thing, but in higher
dimension. Unfortunately the locus £ we want to
contract need not be a divisor.

Observe that if we set G' = «..G, then G’ has high
multiplicity along p, the image of £ (that is b Is
large).

In general, we manufacture a divisor £ by picking a
point x € X and then pick A with high multiplicity
at x.

Next resolve singularities X — X and restrict to
an exceptional divisor £, whose centre has high
multiplicity w.r.t H (strictly speaking a log
canonical centre of Ky + H).
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Singularities in the MMP

m Let X be anormal variety. We say that a divisor
A:ZiaiAiisa ,|f0§a2§1
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Singularities in the MMP

m Let X be anormal variety. We say that a divisor
A:ZiaiAiisa ,|f0§a1§1

mLet7: Y — X Dbe birational map. Suppose that
Kx + A i1s Q-Cartier. Then we may write

Ky—I—F:ﬂ'*(KX—I—A)
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Singularities in the MMP

m Let X be anormal variety. We say that a divisor
A:Zia@-Aiisa ,|f0§a2§1

mLet7: Y — X Dbe birational map. Suppose that
Kx + A i1s Q-Cartier. Then we may write

Ky—I—F:ﬂ'*(KX—I—A)

= We say that the pair (X, A)is if the coefficients
of I" are always less than one.

Birational classification of varieties — p.28



ction |11

apply adjunction we need a component S of
efficient one.



Adjunction 11

= To apply adjunction we need a component S of
coefficient one.

m SO suppose we can write A = S + B, where S has
coefficient one. Then

(Kx + S+ B)|s = Ks + D.
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To apply adjunction we need a component S of
coefficient one.

So suppose we can write A = S + B, where S has
coefficient one. Then

(Kx +S+ B)|ls = Ks+ D.
If Kx + S5 + Bispltthen K¢+ D is Kilt.

Birational classification of varieties — p.29
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We want a form of vanishing which involves
boundaries.

If we take a cover with appropriate ramification,
then we can eliminate any component with
coefficient less than one.
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We want a form of vanishing which involves
boundaries.

If we take a cover with appropriate ramification,
then we can eliminate any component with
coefficient less than one.

(Kawamata-Viehweg vanishing) Suppose that
Kx + Alskltand L is a line bundle such that
L — (Kx + A) is big and nef. Then, for i > 0,

H'(X,L)=0.

Birational classification of varieties — p.30
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Summary

= We hope that varieties X belong to two types:

e XISa : Kx1s . Thatis
Kx -C >0, forevery curve C'In X.
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We hope that varieties X belong to two types:

e XISa : Kx1s . Thatis
Ky -C >0, forevery curve C'In X.

e X ISa m: X — Y. Thatis«is
(— K x Is relatively ample and 7 has
relative Picard one) and « Is a (the fibres

of 7 are connected) of dimension at least one.
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We hope that varieties X belong to two types:

e XISa : Kx1s . Thatis
Ky -C >0, forevery curve C'In X.
e XISa m: X — Y. Thatis«is
(— K x Is relatively ample and 7 has

relative Picard one) and « Is a (the fibres
of 7 are connected) of dimension at least one.

To achieve this birational classification, we propose
to use the MMP.
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Two main Conjectures

To finish the proof of the existence of the MMP, we need
to prove the following two conjectures:
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To finish the proof of the existence of the MMP, we need
to prove the following two conjectures:

Conjecture. ( ) Suppose that Kx + A'Is
kawamata log terminal. Let 7: X — Y be a small
extremal contraction.

Then the flip of 7 exists.
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To finish the proof of the existence of the MMP, we need
to prove the following two conjectures:

Conjecture. ( ) Suppose that Kx + A'Is
kawamata log terminal. Let 7: X — Y be a small
extremal contraction.

Then the flip of 7 exists.

Conjecture. ( ) There Is no Infinite sequence
of kawamata log terminal flips.

Birational classification of varieties — p.32
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Now suppose that X is a minimal model, so that K x IS
nef.

Conjecture. ( ) Suppose that K x + A IS
kawamata log terminal and nef.
Then Kx + A Is semiample.
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Now suppose that X is a minimal model, so that K x IS
nef.

Conjecture. ( ) Suppose that K x + A IS
kawamata log terminal and nef.
Then Kx + A Is semiample.

Considering the resulting morphism ¢: X — Y, we
recover the Kodaira-Enriques classification of surfaces.

Birational classification of varieties — p.33
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