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Respondent-driven sampling (RDS) is a method for sampling from a tar-
get population by leveraging social connections. RDS is invaluable to the
study of hard-to-reach populations. However, RDS is costly and can be in-
feasible. RDS is infeasible when RDS point estimators have small effective
sample sizes (large design effects) or when RDS interval estimators have
large confidence intervals relative to estimates obtained in previous studies
or poor coverage. As a result, researchers need tools to assess whether or
not estimation of certain characteristics of interest for specific populations
is feasible in advance. In this paper, we develop a simulation-based frame-
work for using pilot data—in the form of a convenience sample of aggre-
gated, egocentric data and estimates of subpopulation sizes within the target
population—to assess whether or not RDS is feasible for estimating charac-
teristics of a target population. In doing so, we assume that more is known
about egos than alters in the pilot data, which is often the case with ag-
gregated, egocentric data in practice. We build on existing methods for es-
timating the structure of social networks from aggregated, egocentric sam-
ple data and estimates of subpopulation sizes within the target population.
We apply this framework to assess the feasibility of estimating the propor-
tion male, proportion bisexual, proportion depressed and proportion infected
with HIV/AIDS within three spatially distinct target populations of older les-
bian, gay and bisexual adults using pilot data from the Caring and Aging
with Pride Study and the Gallup Daily Tracking Survey. We conclude that
using an RDS sample of 300 subjects is infeasible for estimating the pro-
portion male, but feasible for estimating the proportion bisexual, proportion
depressed and proportion infected with HIV/AIDS in all three target popula-
tions.
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1. Introduction.

1.1. Motivation and overview. Respondent-driven sampling (RDS) is a
promising method for sampling from “hidden” or “hard to reach” target popu-
lations for which traditional probability sampling methods are impossible or pro-
hibitively expensive [Heckathorn (1997), Gile and Handcock (2010)]. RDS begins
with a small number of seeds, usually a convenience sample of subjects from the
target population. Seeds are entered into the study and asked to distribute coupons,
which offer compensation for participation in the study, to contacts who also be-
long to the target population. Those who redeem coupons are in turn asked to
distribute coupons to contacts in the target population. This process continues un-
til a sample of the desired size is obtained.

Given enough seeds and coupons and sufficiently compelling compensation for
participation, researchers have found that RDS often yields samples of the de-
sired size [Malekinejad et al. (2008)]. However, several studies find that estima-
tors derived from RDS samples, henceforth called RDS estimators, can perform
poorly by giving biased estimates, point estimates that are extremely variable or
interval estimates with poor coverage [Goel and Salganik (2010), Gile and Hand-
cock (2010), McCreesh et al. (2012), Rohe (2015)]. Consequently, researchers
interested in using RDS for new target populations or characteristics of interest
are in need of new methods for assessing RDS feasibility in specific contexts in
advance of committing resources to a costly RDS study [Johnston et al. (2010),
Kogan et al. (2011)]. Unfortunately, assessing whether or not RDS estimators are
likely to perform poorly before conducting an RDS study is very difficult because
RDS estimator performance depends on populations’ social network structures and
coupon distribution and redemption behaviors in complex ways [Salganik (2006),
Gile and Handcock (2010), Goel and Salganik (2010), Tomas and Gile (2011),
Lu et al. (2012), Wejnert et al. (2012), Rohe (2015)]. Moreover, RDS estimator
performance depends not only on the structure and behavior of the target popula-
tion but the distribution of the characteristic of interest in the population [Gile and
Handcock (2010), Rohe (2015)]. Without knowledge of or possibly unrealistic as-
sumptions on the network structure and coupon distribution and referral behaviors
of the target population [Rohe (2015), Li and Rohe (2017)], closed form expres-
sions relating network structure and coupon distribution and redemption behavior
to RDS point and interval estimator performance are not available. Accordingly,
we introduce a simulation-based framework for assessing RDS feasibility. This
framework involves repeatedly simulating RDS on synthetic networked popula-
tions, with network structure and coupon distribution and referral behaviors esti-
mated from pilot data on the same population. We then assess RDS feasibility by
examining different measures of RDS estimator performance across simulations.

Our work is motivated by the study of lesbian, gay and bisexual (LGB) older
adult populations from three spatially distinct regions. The vast majority of ex-
isting research on LGB older adults is based on convenience samples that are
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unlikely to be representative of the target population [Fredriksen-Goldsen and Mu-
raco (2010)]. At the same time, estimating characteristics of LGB older adult pop-
ulations is of increasing importance for policy. The size of LGB older adult pop-
ulations is growing as the population ages and LGB older adults are more likely
to experience poor physical and mental health outcomes relative to the general
population. RDS presents a promising method for sampling from and estimating
characteristics of LGB older populations [Fredriksen-Goldsen and Muraco (2010),
Zea (2010)], however it may not be feasible.

Our framework assumes that researchers have access to pilot data in the form
of aggregated, egocentric sample data. This pilot data may be from a convenience
sample, a previous RDS study of the same population, or another source. Aggre-
gated, egocentric data is comprised of counts of sampled subjects’ contacts, strat-
ified by various characteristics and has been used to estimate population network
structure. Often, sampled subjects are referred to as egos and their contacts are
referred to as alters. This kind of network data is very coarse, but nonetheless con-
tains information about the distribution of contacts per subject in the population,
that is, the degree distribution, and how egos’ characteristics relate to the charac-
teristics of their alters, that is, mixing totals. When alter counts are relatively small
and the characteristics relevant to the social network structure are observed for
egos and alters, this kind of data has been used to estimate measures of the struc-
ture of the population network [Admiraal and Handcock (2016)]. However, aggre-
gated egocentric data often includes very large alter counts and is “asymmetric” in
practice. More characteristics are observed for egos than alters in asymmetric data,
for example, gender identity of egos may be observed while alter counts are pooled
over gender identities. This is problematic because gender identity is relevant to
network structure; the method given by Admiraal and Handcock (2016) will not
allow gender identity to be used in modeling measures of the population network
structure if gender identity is not observed for alters. Accordingly, we extend the
work of Admiraal and Handcock (2016) to develop a novel statistical approach for
estimating unknown social network structures from asymmetric aggregated social
network data with large alter counts.

The RDS feasibility assessment framework we introduce is related to but dis-
tinct from previous work by Merli et al. (2015), who use data from a completed
RDS study, combined with auxiliary data from a venue-based sample of the same
population to simulate synthetic networked populations and then simulate RDS
on the synthetic networked populations to assess the performance of the RDS esti-
mates computed from the RDS study data. Whereas the work of Merli et al. (2015)
gives a framework for assessing the performance of RDS estimates after the RDS
study has been conducted using detailed dyad-level social network information
from the same data that the RDS estimates are computed from, our work provides
a framework for assessing the performance of RDS estimates before conducting
an RDS study using coarse, aggregated social network data from separate pilot
data comprised of a convenience sample from the same population. In addition,
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our RDS feasibility framework introduced in this paper can be easily extended to
investigate additional practical considerations, for example, seed composition and
number of coupons.

The rest of the paper proceeds as follows. First, we define and justify criteria
for RDS feasibility. We then introduce our model for estimating measures of the
population social network structure. We describe how synthetic networks can be
simulated from these estimates, and how we simulate RDS on the synthetic net-
works. Using our framework for assessing RDS feasibility, we conclude that using
an RDS sample of 300 subjects is infeasible for estimating the proportion male in
all three LGB older adult populations, but feasible for estimating the proportion
bisexual, proportion depressed and proportion infected with HIV/AIDS.

1.2. RDS feasibility framework. We define an RDS study of a specific char-
acteristic in a specific population to be feasible if, over S RDS simulations on
synthetic networked populations, we find that at least one RDS point estimator has
effective sample size (ESS) greater than τS and a corresponding RDS interval es-
timator that has confidence interval width (WI) less than τW and coverage (CVR)
higher than τC . The values τS , τW and τC are prespecified thresholds specific to
the characteristic and population. If μ̂RDS

i and (l̂RDS
i , ûRDS

i ) are RDS point and
corresponding interval estimates for a specific characteristic obtained from the ith
RDS simulation with RDS sample size n, if μ̂SRS

i is an estimate of the same char-
acteristic computed from a simple random sample of the same size and if μ is the
true proportion of the characteristic of interest in the synthetic network, the three
measures of feasibility are

ESS = n

( ∑S
i=1(μ̂

SRS
i − ¯̂μSRS)2∑S

i=1(μ̂
RDS
i − ¯̂μRDS)2

)
, WI = 1

n

S∑
i=1

(
ûRDS

i − l̂RDS
i

)
and

CVR = 1

n

S∑
i=1

1{l̂RDS
i ≤μ≤ûRDS

i }.

Because the best performing RDS point and interval estimators vary by net-
work structure and coupon distribution and redemption behavior [Tomas and Gile
(2011), Li and Rohe (2017)], we compute these measures of RDS feasibility for
several common point and interval estimators for RDS data. In this paper, we con-
sider the sample mean, the Salganik–Heckathorn (SH) and the Volz–Heckathorn
(VH) estimators and compute 95% confidence intervals using exact binomial
confidence intervals for the sample mean, the bootstrap procedure introduced in
Salganik (2006) for the SH and VH estimators. For RDS feasibility studies in gen-
eral, we recommend considering the successive sampling (SS) estimator as well,
which corrects for finite population bias when the RDS sample size is large relative
to the target population sizes [Gile (2011)]. We do not consider the SS estimator
for the feasibility analyses performed in this paper because the RDS sample size is
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small relative to the target population sizes and accordingly, VH and SS estimators
perform identically as is often the case in practice [Barash et al. (2016)].

We note that ESS is inversely related to the design effect (DE), ESS = n/DE,
where n is the size of the RDS sample. DE is often considered in RDS research as
a measure of RDS estimator performance [Salganik (2006), Wejnert et al. (2012),
Goel and Salganik (2010)]. In this paper, we describe RDS feasibility in terms of
ESS as opposed to DE because we believe approximate number of independent
sampled subjects given by ESS is more interpretable to practitioners than the ratio
of variances given by DE. Specifically, the DE is a measure relative to a SRS while
ESS is an absolute measure of the sample design. If the decision was between a
SRS and RDS then DE, the relative measure, would be primary. However, a SRS
is not feasible here and the choice is between RDS and not doing a survey at all.
Accordingly, ESS should be primary in this setting.

We require that RDS interval estimator coverage exceed a prespecified thresh-
old, as opposed to requiring that RDS interval estimators obtain nominal, that is,
95%, coverage, because all RDS variance estimators are known to underestimate
RDS estimator variability [Verdery et al. (2015)]. A realistic threshold for cover-
age can be obtained according to studies of RDS interval estimator performance in
practice [Salganik (2006), Wejnert et al. (2012)].

Considering all three of these quantities, ESS, WI and CVR separately may
seem redundant. When a probability sample can be obtained, the variability of an
estimator is often available in closed form as a function of sampling probabilities
and sample size [Lohr (2010)]. For a probability sample, nominal coverage will
be achieved on average as long as sampling probabilities are known. Also, ESS
and WI will directly determine each other and convey the same information about
estimator performance. When RDS is used, ESS and WI as defined here do not
convey the same information about estimator performance. Whereas ESS is com-
puted from observed variability of an RDS point estimator over RDS simulations,
WI is computed from RDS interval estimators that use estimated RDS point es-
timator variability computed for each RDS simulation separately. Also, as RDS
interval estimators often fail to achieve nominal coverage, CVR offers additional
information on RDS estimator performance beyond ESS and WI.

With respect to setting values of τS , τW and τC in general, we recommend
τS = n/3, according existing literature on design effects which suggests assum-
ing design effect between 2 and 4 when choosing the RDS sample size n, and
τC = 0.8 [Salganik (2006), Wejnert et al. (2012)]. In the absence of existing in-
terval estimates of the characteristic(s) of interest in the target population from
previous studies, τW = ∞ is appropriate because in the absence of any existing
estimates a very wide interval could still be informative.

2. Data. In this section, we summarize the pilot data used to assess RDS feasi-
bility for estimating characteristics of LGB older adult populations. We use a con-
venience sample from the Caring and Aging with Pride Study (CAP) [Fredriksen-
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How many different lesbian, gay, bisexual, transgender or straight people (such as your friends,
family members, colleagues, neighbors, etc.) have you interacted with (including talked to, visited
with, exchanged phone calls or emails with, etc.) in a typical month?

Age 50 and older

a. Gay men:
b. Gay women/lesbians:
c. Bisexual men and women:
d. Transgender men and women:
e. Heterosexual or straight men and women:

FIG. 1. Social network questions in the CAP questionnaire.

Goldsen et al. (2013)] and subpopulation size estimates of LGB older adult pop-
ulations by metropolitan statistical area (MSA) from the Gallup Daily Tracking
Survey [Gates (2013)].

2.1. Caring and aging with pride study. The CAP Study, 2010–2011, was
conducted through a collaboration with 11 agencies serving older adults in eight
spatially distinct MSAs across the US [Fredriksen-Goldsen et al. (2013)]. The
majority of the agencies offered services for LGB and transgender older adults.
Agencies invited older adults, age 50 and above, for whom contact information
was available, to participate in the survey. Overall, 2560 participants met the CAP
study criteria. For a more detailed description of the data collection procedures,
see Fredriksen-Goldsen et al. (2013). In this paper, we exclude transgender sub-
jects due to small sample counts and focus on the three MSAs with enough data to
estimate unknown parameters of our model for social network structure introduced
in Section 3. These three MSAs contain 394, 712 and 340 subjects, respectively,
after excluding subjects with missing data. For a more detailed description of the
CAP data preparation, see Section 1 of the Supplementary Material [Griffin et al.
(2018)].

Social network structures. We estimate social network structures from aggre-
gated, egocentric sample data, which comprise reported counts of contacts strati-
fied by sexual identity and gender identity as shown in Figure 1.

We account for sexual identity and gender identity in our estimates of social
network structures. Sexual identity was measured by asking subjects to identify
themselves as gay, lesbian, bisexual, heterosexual or other. Gender identity was
measured by asking subjects to identify their gender identity as female, male or
other. Subjects reported their age in years. For consistency with the Gallup sub-
population size estimates, age was dichotomized as younger adults under 65 years
of age and older adults 65 years of age and older.

Coupon distribution and redemption behaviors. Coupon distribution and re-
demption behaviors were measured by responses to the yes or no questions “Are
you willing to be contacted for future projects addressing the aging and health
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needs of the LGBT community?” and “If you were participating in a future project
addressing the aging and health needs of the LGBT community, would you be
willing to spread the word about the project?”

Characteristics of interest. As described in Section 1, we are interested in es-
timating the following proportions: male, bisexual, depressed and infected with
HIV/AIDS. We described measures of subjects’ gender and sexual identity ear-
lier in this section, because they are used to estimate social network structures.
Subjects’ current depressive symptomology was measured using the Center for
Epidemiological Studies Depression Scale (CES-D), 10-item short form [Radloff
(1977)]. Scores for the 10 items were summed and dichotomized, with a summed
score of 10 or more indicating depression [Andresen et al. (1994)]. Subjects’
current HIV/AIDS infection status was measured by asking subjects to indicate
whether or not they had ever been told by a doctor that they have HIV/AIDS.

2.2. Gallup daily tracking survey. The 2012 Gallup Daily Tracking Survey
includes about 1000 responses to the question “Do you, personally, identify as
lesbian, gay, bisexual or transgender?”, collected daily from June 1 to September
30, 2012 [Gates (2013)].

Subpopulation size estimates. We estimate subpopulation sizes of LGBT older
adults by MSA, age group (<65 vs. ≥65) and gender identity by combining esti-
mates of population sizes from the 2010 Census with estimates of the proportions
LGBT from the 2012 Gallup Daily Tracking Survey. Because the CAP sample
proportion transgender is ≤2% in all three MSAs, we use the Gallup estimates
of LGBT older adult population sizes as working estimates of LGB older adult
population sizes.

3. Methodology. In this section, we describe a method for estimating un-
known social network structures and coupon distribution and redemption behavior
from the pilot data described in Section 2, simulating synthetic networked popula-
tions consistent with our estimates of social network structures and subpopulation
totals and simulating RDS on these synthetic social networks using estimates of
coupon distribution and referral behavior. Throughout, we describe a network as a
collection of nodes (egos) connected by undirected edges. If we select a single ego
from the network, we refer to the nodes it is connected to as its alters.

3.1. Estimation of social network structure. Building on the work of Admiraal
and Handcock (2016), we first define a model for the unobserved social network
structure that depends on several unknown parameters, and then relate these pa-
rameters to the pilot data described in Section 2.

Consider a network of N egos belonging to the target population with charac-
teristics indexed by i = 1, . . . , I and j = 1, . . . , J and known subpopulation sizes
N = (N11, . . . ,NIJ ). We refer to an ego with characteristics i and j as an ego of
type ij . The characteristics indexed by i and j reflect heterogeneity in both egos’
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degrees and alter characteristics. In our application to LGB older adults, i indexes
gay (i = G) or bisexual (i = B) sexual identity and j indexes male (j = M) or
female (j = W) gender identity. As in Admiraal and Handcock (2016), we assume
that social network structure is characterized by degree distributions, the distribu-
tion of alters per ego, and mixing totals, the propensity of egos to have alters of
various types.

We define the network’s degree distribution, stratified by characteristics indexed
by i and j , as Dij = (Dij,0, . . . ,Dij,K). Dij,k denotes the number of egos of type
ij with degree k, where k = 0, . . . ,K and K is the maximum degree for all egos
in the network. In contrast to Admiraal and Handcock (2016), who define a model
for sexual contact networks which have small maximum degree, we define a model
for social networks which are likely to have broad and heavy-tailed degree distri-
butions with large maximum degree. This prompts us to adopt a parametric form
for the degree distribution. We assume that the probability an ego of type ij has
degree k follows a negative binomial distribution:

(1) pD(ρij , πij ;k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
k + ρij − 1

k

)
(1 − πij )

ρij πk
ij for k < K,

1 −
K−1∑
k=1

(
k + ρij − 1

k

)
(1 − πij )

ρij πk
ij for k = K,

where ρij > 0 and 0 < πij < 1 are unknown parameters that depend on charac-
teristics indexed by i and j . The maximum degree and K is treated as fixed and
known for computational tractability as explained in greater detail in Section 3.2.

It follows that the expected degree distributions for the network are

Dij = (Dij,0, . . . ,Dij,K)

= (
pD(ρij , πij ;0), . . . , pD(ρij , πij ;K)

)
Nij .

(2)

We define a network’s matrix of mixing totals as an (IJ ) × (IJ ) matrix with
entries Mij,i′j ′ , which give the number of edges connecting egos of type ij to alters
of type i′j ′. Because we assume that the edges are undirected, the mixing matrix
is symmetric, that is, Mij,i′j ′ = Mi′j ′,ij .

For our application to LGB older adult populations, Table 1 represents mixing
totals by sexual identity and gender, where MGW,GW gives the number of edges
connecting lesbian egos to lesbian alters in the population and MGW,GM gives the
number of edges connecting lesbian egos to gay male alters in the population.

Recalling that the network’s expected degree distributions and mixing totals are
not observed in the pilot data, we relate these unknown quantities to unknown
parameters that can be estimated from the pilot data. We parametrize each mixing
totals as a function of the degree distribution parameters ρij and πij and mixing
parameters αij,i′j ′ ,

(3) Mij,i′j ′ = (
∑K

k=0 pD(ρij , πij ;k)kNij )(
∑K

k=0 pD(ρi′j ′, πi′j ′ ;k)kNi′j ′)∑I
i=1

∑J
j=1

∑K
k=0 pD(ρij , πij ;k)kNij

αij,i′j ′,
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TABLE 1
Matrix of mixing totals by sexual identity and gender

GW GM BM BW

GW MGW,GW MGW,GM MGW,BM MGW,BW
GM MGM,GW MGM,GM MGM,BM MGM,BW
BM MBM,GW MBM,GM MBM,BM MBM,BW
BW MBW,GW MBW,GM MBW,BM MBW,BW

where αij,i′j ′ gives the relative propensity of egos of type ij to have alters of type
i ′j ′ as opposed to alters of other types. Because we exclusively consider undirected
networks, we assume αij,i′j ′ = αi′j ′,ij .

Given these definitions for degree distributions and mixing totals, we have the
following constraints on the row and column totals:

K∑
k=0

kDij,k =
I∑

i′=1

J∑
j ′=1

Mij,i′j ′ .(4)

Because Dij,k and Mij,i′j ′ are known functions of the unknown parameters ρ,
π and α, and known subpopulation sizes N in equations (2) and (3), this is a
constraint on the unknown parameters ρ, π and α.

We relate the unknown parameters ρ, π and α to the sample data by defining a
sampling model for egos represented in the pilot data and defining sample degree
distributions and mixing totals. To distinguish the sample degree distributions and
mixing totals from the degree distributions D and mixing totals M introduced
earlier, we refer to D and M as population degree distributions and mixing totals
and denote the corresponding sample quantities with lowercase letters.

Throughout this paper, we assume that the sampled egos in the pilot data are
a simple random sample from the target population. We view this as a working
assumption; we know that sampled egos in the pilot data are likely a convenience
sample, however we argue that assuming they are a simple random sample is suf-
ficient for estimating the approximate social network structure for the purpose of
simulating RDS on synthetic social networks.

To reflect features of our pilot data on LGB older adults, we assume each sam-
pled ego reports counts of alters stratified by alter characteristics indexed by i

and j . We assume that i indexes characteristics that are observed for both egos
and the alters they report, whereas j indexes characteristics that are observed for
egos in the sample and alters with certain values of the characteristic indexed by i.
In our pilot data on LGB older adults where i indexes sexual identity and j indexes
gender identity, egos report counts of gay alters by gender identity and counts of
bisexual alters pooled across gender identity.

Without loss of generality, we assume that the types are ordered such that alter
characteristics indexed by j are observed when i ≤ Ĩ and not observed when i > Ĩ .
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We denote reported alter counts for the lth sampled ego of type ij , which we
assume are reported without error, by

cij l = (cij l,11, . . . , cij l,Ĩ J
, c

ij l,(Ĩ+1)·, . . . , cij l,I ·),

where cij l,i′j ′ and cij l,i′· = ∑J
j ′=1 cij l,i′j ′ are the lth sampled ego of type ij ’s re-

ported number of alters of type i′j ′ and i′, respectively, and l = 1, . . . , nij . In our
study of LGB older adults, we abuse notation and write Ĩ = G and assume B > G.

Using this notation, sample degree distributions are defined as

d ij = (dij,0, . . . , dij,K)

=
( nij∑

l=1

1{∑Ĩ
i′=1

∑J
j ′=1 cij l,i′j ′+∑I

i′=Ĩ+1
cij l,i′·=0}, . . . ,(5)

nij∑
l=1

1{∑Ĩ
i′=1

∑J
j ′=1 cij l,i′j ′+∑I

i′=Ĩ+1
cij l,i′·=K}

)
.

Under simple random sampling of egos, the sample degree distribution for egos
of type ij , sexual identity i and gender identity j in our pilot data follows a multi-
nomial distribution with total nij :

d ij |nij ∼ MN
(
nij ,

(
pD(ρij , πij ;0), . . . , pD(ρij , πij ;K)

))
.(6)

Elements of the (IJ ) × (ĨJ + (I − Ĩ )) matrix of sample mixing totals are de-
fined as mij,i′j ′ = ∑nij

l=1 cij l,i′j ′ , for i ≤ Ĩ , and mij,i′· = ∑nij

l=1 cij l,i′·, for i > Ĩ . The
matrix of sample mixing totals for our application to LGB older adults is shown
in Table 2, alongside the corresponding matrix of population mixing totals, where
MGW,B· = MGW,BM+MGW,BW . Given these definitions for sample degree distri-
butions and mixing totals, the following constraint on the row totals of the sample
matrix of mixing totals holds:

K∑
k=0

kdij,k =
Ĩ∑

i′=1

J∑
j ′=1

mij,i′j ′ +
I∑

i′=Ĩ+1

mij,i′·.(7)

TABLE 2
Matrix of mixing totals by gender and sexual identity, collapsed

(a) Sample (b) Population

GW GM B GW GM B

GW mGW,GW mGW,GM mGW,B· GW MGW,GW MGW,GM MGW,B·
GM mGM,GW mGM,GM mGM,B· GM MGM,GW MGM,GM MGM,B·
BM mBM,GW mBM,GM mBM,B· BM MBM,GW MBM,GM MBM,B·
BW mBW,GW mBW,GM mBW,B· BW MBW,GW MBW,GM MBW,B·
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The constraints given by equation (7) suggest a multinomial model for each row
of the sample matrix of mixing totals, given the sample degree distributions. Under
simple random sampling of egos, the multinomial probabilities will be functions
of the unknown parameters ρ, π and α and known subpopulations sizes N derived
from equation (3).

In contrast to Admiraal and Handcock (2016), this is a rectangular matrix of
mixing totals. As a result, some unknown mixing parameters α are not identifiable.
Consequently, we reparametrize the cells of the matrix of population mixing totals
before deriving the multinomial probabilities for sample mixing totals. For i, i ′ >
Ĩ , we write

Mij,i′·
(8)

= (
∑K

k=0 pD(ρij , πij ;k)kNij )(
∑J

j ′=1
∑K

k=0 pD(ρi′j ′, πi′j ′ ;k)kNi′j ′)∑I
i=1

∑J
j=1

∑K
k=0 pD(ρij , πij ;k)kNij

αij,i′·,

where αij,i′· gives the relative propensity of egos of type ij to have alters of type i′
as opposed to alters of other types. Henceforth, we denote the vector of identifiable
mixing parameters under this reparametrization by α.

Having reparametrized the model to ensure identifiability of unknown param-
eters, we can write the multinomial distribution of row ij of the matrix of sam-
ple mixing totals mij = (mij,11, . . . ,mij,ĨJ

,m
ij,(Ĩ+1)·, . . . ,mij,I ·) given the sam-

ple degree distribution for egos of type ij d ij :

mij |d ij ∼MN
(

K∑
k=0

kdij,k,pM(αij ,ρ,π;nij ,N)

)
,(9)

where

αij =
{
(αij,11, . . . , αij,IJ ) for i ≤ Ĩ ,

(αij,11, . . . , αij,ĨJ
, α

ij,(Ĩ+1)·, . . . , αij,I ·) for i > Ĩ .
(10)

The elements of the vector of multinomial probabilities

pM(αij ,ρ,π;nij ,N)

= (
pM,11(αij ,ρ,π;nij ,N), . . . , pM,ĨJ

(αij ,ρ,π;nij ,N),(11)

pM,(Ĩ+1)·(αij ,ρ,π;nij ,N), . . . , pM,I ·(αij ,ρ,π;nij ,N)
)

are defined as

(12) pM,i′j ′(αij ,ρ,π;nij ,N) =
∑K

k=0 pD(ρi′j ′, πi′j ′ ;k)kNi′j ′∑I
i=1

∑J
j=1

∑K
k=0 pD(ρij , πij ;k)kNij

αij,i′j ′
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for i, i′ ≤ Ĩ and for i′ > Ĩ ,

pM,i′·(αij ,ρ,π;nij ,N)
(13)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
∑J

j ′=1 αij,i′j ′
∑K

k=0 pD(ρi′j ′, πi′j ′ ;k)kNi′j ′)∑I
i=1

∑J
j=1

∑K
k=0 pD(ρij , πij ;k)kNij

for i ≤ Ĩ ,

∑J
j ′=1

∑K
k=0 pD(ρi′j ′, πi′j ′ ;k)kNi′j ′∑I

i=1
∑J

j=1
∑K

k=0 pD(ρij , πij ;k)kNij

αij,i′· for i > Ĩ .

Assuming independence across rows of the matrix of sample mixing totals, the
model given by equations (6) and (9) yields the following likelihood:

L(ρ,π,α;n,N)

=
( ∏

i∈1,...,I

∏
j∈1,...,J

(
nij

dij,0, . . . , dij,K

)
K∏

k=0

(
pD(ρij , πij ;k)

)dij,k

)

×

⎛
⎜⎜⎝ ∏

i∈1,...,I

∏
j∈1,...,J

⎛
⎜⎜⎝

K∑
k=0

kdij,k

mij,·11, . . . ,mij,ĨJ
,m

ij,(Ĩ+1)·, . . . ,mij,I ·

⎞
⎟⎟⎠

⎞
⎟⎟⎠(14)

×
(

Ĩ∏
i′=1

J∏
j ′=1

pM,i′j ′(αij ,ρ,π;nij ,N)
mij,·i′j ′

)

×
(

I∏
i′=Ĩ+1

pM,i′·(αij ,ρ,π;nij ,N)
mij,i′·

)
,

where pD(ρij , πij ;k) is as defined in equation (1) and elements of pM(αij ,ρ,π;
nij ,N) are defined in equations (12) and (13). Assuming independence across
rows of the sample matrix of mixing totals is likely to be valid when the sampled
data represent a small proportion of egos in the network, as will often be the case
when assessing RDS feasibility because the pilot data sample size will be small
relative to size of the target population.

We maximize the likelihood from equation (14) subject to the following con-
straints, which follow from the assumption that edges are undirected and the defi-
nitions of degree distributions and mixing totals:

αij,i′j ′ = αi′j ′,ij ,(15)

K∑
k=0

kDij,k =
Ĩ∑

i′=1

J∑
j ′=1

Mij,i′j ′ +
I∑

i′=Ĩ+1

Mij,i′·,(16)

ρij > 0, 0 < πij < 1,(17)
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where the quantities Dij,k , Mij,i′j ′ and Mij,i′· are calculated from degree distri-
bution parameters ρ and π , mixing parameters α and known population sizes N
using equations (2), (3) and (8). We obtain estimates of degree distribution param-
eters ρ and π and mixing parameters α using the Rsolnp package for constrained
maximization in the R computing environment [Ye (1987), R Core Team (2013)].

Model extensions.
Stratification of degree distributions by additional nodal characteristics. h =

1, . . . ,H index characteristics by which degree distributions vary but mixing
totals do not. For example, in our pilot data on LGB older adults, h indexes
age group: younger, 50–64 years (h = Y) or older, 65–80 years (h = O).
We stratify degree distributions by age because social network research sug-
gests that degree is associated with age and age is observed for sampled egos
[Cornwell, Laumann and Schumm (2008), Fredriksen-Goldsen et al. (2015)], how-
ever we do not stratify mixing totals by age because age is not observed for
alters reported by sampled egos. We incorporate stratification of degree distri-
butions by additional characteristics by applying the model for the population
and sample degree counts Dij and dij to Dhij and dhij and by replacing de-
gree count terms,

∑k
k=0 pD(ρij , πij ;k)kNij , with sums over the new index h,∑H

h=1
∑k

k=0 pD(ρhij , πhij ;k)kNhij in equations (14)–(17).
Partially known population sizes. In the method described in the previous sec-

tions as in Admiraal and Handcock (2016), we assume that estimates of subpop-
ulation sizes Nhij are available. However, this assumption is unlikely to hold in
practice. In our pilot data on LGB older adults, estimates of the sizes of LGB older
adult populations are available by gender identity and age group but not by sex-
ual identity. To estimate of the sizes of LGB older adult populations by gender,
age group and sexual identity, we again rely on the assumption of simple random
sampling of egos and assume

(nh1j , . . . , nhIj ) ∼ MN (nh·j , θh·j ),(18)

where θh·j = (θh1j , . . . , θhIj ) is such that θhij gives the proportion of egos of type
hij among egos of type h and j in the population. We incorporate equation (18)
into the likelihood given in equation (14), add constraints that 0 ≤ θhlj ≤ 1 to equa-
tion (17) and replace Nhij with θhijNh·j where Nhij appears in equations (14)–
(17).

Nonsimple random sampling of sample egos. We assume that the sampled egos
in the pilot data are a simple random sample throughout this paper because our pi-
lot data on LGB older adults is a convenience sample for which the sampling frame
is unknown. However, it is plausible that in many settings where researchers are
interested in assessing RDS feasibility, the available pilot data may have been col-
lected using a known sampling design for which sampling probabilities are known
or can be estimated, for example, the pilot data may be a previous RDS sample. In
this case, the method for estimating the unknown network structure parameters ρ
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and π and mixing parameters α can be modified by generalizing our definition of
cij l :

cij l = wijl(cij l,11, . . . , cij l,ĨJ
, c

ij l,(Ĩ+1)·, . . . , cij l,I ·),

where cij l,i′j ′ and cij l,i′· = ∑J
j ′=1 cij l,i′j ′ are still the lth sampled ego of type ij ’s

reported number of alters of type i′j ′ and i ′, respectively, and l = 1, . . . , nij and
wijl is a sampling weight lth sampled ego of type ij . Using this definition of cij l ,
estimates of the unknown network structure parameters can be obtained using the
method given earlier in this section.

3.2. Simulation of synthetic populations. Given estimates of the subpopula-
tion sizes N̂ , population degree distributions D̂ and mixing totals M̂ , computed
from estimates of degree distribution parameters ρ̂ and π̂ , mixing parameters α̂

and population proportions θ̂ obtained by maximizing the likelihood given by
modifications of equation (14) subject to the constraints given by equations (15)–
(17) described in Section 3.1, we simulate synthetic networked populations.

We begin by initializing a random network with the degree distributions and
subpopulation sizes given by ρ̂, π̂ and θ̂ using functions in the igraph package
for R [Gabor and Nepusz (2006)]. Holding the degree of each ego constant, we
obtain a random network with mixing totals consistent with ρ̂, π̂ , α̂ and θ̂ us-
ing simulated annealing algorithms implemented in the ergm package [Handcock
et al. (2008, 2013)], a part of the statnet suite of packages for R [Handcock
et al. (2003)]. Because many networks of size N with subpopulations N̂ have the
same degree distributions and mixing totals, we use simulated annealing again to
simulate 50 synthetic networked populations with subpopulations N̂ holding the
degree distributions and mixing totals constant at D̂ and M̂ .

Although this approach is straightforward, difficulties arise in practice. First,
this method scales poorly when the target population is large. Following Admiraal
and Handcock (2016), we scale the networks down to the tractable size of N =
5000 egos by dividing the subpopulation sizes by a constant that yields a total pop-
ulation size of N = 5000 egos and recalculate the degree distributions and mixing
totals using estimates ρ̂, π̂ , α̂ and θ̂ and equations (2), (3) and (8). However, per-
formance of RDS estimators can depend on the size of the population of interest.
Specifically, RDS estimator biases can arise via finite population effects when an
RDS sample is large relative to the corresponding population. We assess the pres-
ence of finite population effects incurred by artificially scaling down the networks
to be more tractable by comparing RDS estimators that differ in their accounting of
finite population bias, as suggested in Gile, Johnston and Salganik (2015). Addi-
tionally, we repeat our RDS feasibility methodology on networks of size 4000 and
6000 as a sensitivity analysis. If RDS estimators that differ in their accounting of
finite population bias perform similarly and if RDS estimator performance varies
little as network size varies from 4000 to 6000, we assume that the performance
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of RDS estimators for the scaled population size of N = 5000 egos is indicative of
the performance of RDS estimators for the larger, true population size. We expect
that networks of size 5000 should suffice in many settings, as recent research on
finite population effects suggests that they are negligible when the RDS sample
makes up less than 20% of the total population. However, if evidence of finite pop-
ulation effects is present, we recommend using larger synthetic networks, despite
the increased computational burden.

A second difficulty is that estimated degree counts are not integers and therefore
are not realizable. In practice, we round the estimated degree counts to the near-
est integer. However when degree counts are small, rounding may result in degree
distributions that cannot be initialized and network initialization may result in a
network with a degree distribution that differs from the estimated degree distribu-
tion. To address this issue, we take the network obtained using functions in the
igraph package with a degree distribution that is closest to the estimated degree
distribution. We also address this problem by enforcing a degree distribution upper
bound K . We choose this upper bound by recognizing a trade-off between stabil-
ity of estimates of α and θ and degree distribution realizability. Small values of K

yield few small degree counts, however they also yield estimates of mixing param-
eters, α, and population proportion parameters, θ , that are sensitive to changes in
K . In contrast, large values of K yield many small degree counts that can lead to
synthetic networked populations with degree distributions far from the estimated
degree distributions, but stable estimates of α and θ . Therefore, we recommend
choosing the largest value of K such that the degree distribution of the synthetic
networked populations is close to the estimated degree distribution while estimates
α and θ have stabilized.

Before moving on to modeling the characteristic(s) of interest, we note that it is
possible to simulate synthetic networks of size N with stochastic subpopulations
N̂ , degree distributions D̂ and mixing totals M̂ that reflect the uncertainty of esti-
mates ρ̂, π̂ and θ̂ . We could draw values of ρ, π and θ from a normal distribution
centered at ρ̂, π̂ and θ̂ with variance-covariance matrix given by the inverse of
the Fisher information matrix corresponding to equations (14) and (15). For each
value of ρ, π and θ , synthetic populations could be simulated according to the
procedure described at the beginning of this section. Population sizes were too
large for this to be computationally tractable for the data considered in this paper,
however for smaller population sizes this is a natural extension to the synthetic
network simulation procedure.

Modeling the characteristic(s) of interest. Recall that our goal is to simulate
RDS for estimating certain characteristics of the target population. When these
characteristics are not indexed by i, j or h, we need to assign them to egos in
the synthetic networked populations. To simplify interpretation of the results of
the feasibility assessment, we fix the number of egos with each characteristic not
indexed by i, j or h across synthetic networked populations. We then randomly
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assign these characteristics to egos with probabilities estimated from logistic re-
gression models of the characteristics of interest fit to the pilot data.

3.3. Simulation of RDS. On each of the 50 synthetic networked populations,
we simulate RDS 500 times. Each RDS sample begins with 10 egos selected as
seeds at random using a sampling strategy that reflects the features of the tar-
get population and plans for seed recruitment. We note the common strategy of
selecting seeds with probability proportional to degree is favorable to the Volz–
Heckathorn estimator and should only be used if it is a reasonable assumption
given the target population and plans for seed recruitment [Gile and Handcock
(2010)]. Otherwise simulations may suggest unrealistically good performance of
the Volz–Heckathorn estimator. Egos of type hij drawn for inclusion in the study
“redeem coupons” with probability π̂C

hij and “distribute coupons” with probability

π̂R
hij . These probabilities are estimated from the pilot data by fitting logistic re-

gressions that model measures of willingness to redeem and distribute coupons as
a function of egos’ attributes, for example, characteristics indexed by h, i and j

or degree. The process iterates without replacement until the desired RDS sample
size is obtained, where the desired RDS sample size is the RDS sample size the
researcher is considering using in practice and wants to assess the feasibility of. If
the RDS sample “dies out” before achieving the desired RDS sample size, addi-
tional seeds are added and RDS is continued until the desired RDS sample size is
obtained, as is often done in practice.

As described in the Introduction, we consider the sample mean, the Salganik–
Heckathorn (SH) and the Volz–Heckathorn (VH) estimators as point estimators
and compute 95% confidence intervals using exact binomial confidence intervals
for the sample mean, the bootstrap procedure introduced in Salganik (2006) for
the SH and VH estimators [Salganik and Heckathorn (2004), Volz and Heckathorn
(2008), Gile (2011)]. For a thorough review of the point estimators and explicit
expressions for each, see Tomas and Gile (2011).

3.4. RDS feasibility assessment. As described in Section 1.2, we assess RDS
feasibility by comparing thresholds for effective sample sizes, confidence interval
widths and confidence interval coverage rates τS , τW and τC to the effective sample
sizes, confidence interval widths and confidence interval coverage rates of RDS
estimators across simulations.

4. Application to CAP data. We apply the methodology described in Sec-
tion 3 to pilot data on LGB older adults described in Section 2 to assess the feasibil-
ity of using RDS to estimate the proportion male, proportion bisexual, proportion
depressed and proportion infected with HIV/AIDS in three spatially distinct pop-
ulations. First, we present estimates of subpopulation proportions θ , degree distri-
butions πD derived from degree distribution parameters ρ and π , and mixing total
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FIG. 2. Estimates of the proportion bisexual by gender and age group θ for each MSA. Dashed
bars represent standard errors.

parameters α. We describe how these estimates inform our expectations of RDS
feasibility for estimating characteristics of these populations. Second, we present
the performance of RDS estimators for estimating the proportion male, propor-
tion bisexual, proportion depressed and proportion infected with HIV/AIDS from a
simulation study. We conclude by assessing feasibility for estimating these charac-
teristics in these populations. To assess feasibility, we set the following thresholds
for effective sample size for a RDS sample of 300 subjects and coverage, accord-
ing to the general standards we describe in the Introduction: τS = 100, τW = inf
and τC = 80%.

4.1. Estimation of network population parameters. Existing research on LGB
older populations and exploratory analyses suggest that degree varies by gender
identity and age [Erosheva et al. (2016)]. Consequently, we stratify degree distri-
butions by gender identity and age group. Existing evidence for variation in net-
work diversity by sexual and gender identity leads us to stratify mixing totals by
gender and sexual identity [Erosheva et al. (2016)]. We choose a maximum degree
K of 45 based on the guidelines given in Section 3.2. Evidence supporting this
choice is given in Section 2 of the Supplementary Material [Griffin et al. (2018)].

Figure 2 shows estimates and standard errors for subpopulation proportions θ .
Figure 3 shows estimates of the degree distributions πD derived from estimates
of the degree distributions parameters ρ and π by gender identity and age group
within each MSA. Figure 4 shows estimates of mixing parameters α which mea-
sure preferential mixing, for the three MSAs.

Variation in degree distribution by gender identity and age group indicates dif-
ferential activity with respect to gender identity and age group, while preferential
mixing with respect to gender identity indicates homophily with respect to gender
identity. Differential activity with respect to gender identity is defined as the ratio
of the average degree of male egos to the average degree of female egos and ho-
mophily with respect to gender identity is defined as the ratio of observed edges
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FIG. 3. Estimates of degree distributions by gender and age group constructed from estimates of
negative binomial parameters ρ and π . Different line types correspond to different age groups and
gender identities.

FIG. 4. Estimates of mixing parameters α. For each estimated mixing parameter α̂ij , i is indexed
on the horizontal axis and j is indexed by color. For instance, the estimate α̂GW,GW , is given by
the first bar from the left in first panel. αij = 1 reflects no preferential mixing, that is, egos of type i

are as likely to have alters of type j as alters of other types. |αij | > 1 indicates preferential mixing,
that is, egos of type i are more or less likely to have alters of type j than other types. Dashed bars
represent standard errors.
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TABLE 3
Characteristics of interest in synthetic networks

% Male % Bisexual % Depressed % Infected with HIV/AIDS

MSA 1 61.50 4.00 43.36 20.78
MSA 2 54.66 4.48 23.00 6.26
MSA 3 52.50 4.86 24.40 13.06

between egos of the same gender identity to the expected number of edges between
egos and alters of the same gender identity under random mixing [Gile and Hand-
cock (2015)]. Homophily and differential activity with respect to gender identity
and age group can affect the performance of RDS estimators of characteristics as-
sociated with gender identity and age group [Gile and Handcock (2010), Tomas
and Gile (2011)]. This suggests that RDS may not be feasible for estimating the
proportion male, the proportion under 65 and characteristics associated with gen-
der identity or age group in these populations.

4.2. RDS feasibility assessment. We assess RDS feasibility for estimating the
proportion male, proportion bisexual, proportion depressed and proportion in-
fected with HIV/AIDS in MSAs 1, 2 and 3 by simulating RDS on synthetic net-
worked populations consistent with the estimated network structures described in
Section 4.1. For each MSA, we simulate 50 synthetic networked populations of
N = 5000 egos with subpopulation sizes, degree distributions and mixing totals
given by estimated population proportions θ̂ , degree distribution parameters π̂D

and mixing parameters α̂.
As described in Section 3.2, we fix the number of depressed and HIV/AIDS

infected egos across synthetic networked populations corresponding to the same
MSA. We then assign depression and HIV/AIDS status to fixed numbers of indi-
vidual nodes at random with probabilities estimated from logistic regression mod-
els trained on the CAP data within each MSA. The logistic regression models
have sexual identity, gender identity, age group, an indicator for zero network size
(0 alters), the total number of alters and the number of alters of the same gen-
der and sexual identity as covariates. Regression coefficient estimates are shown
in Section 3 of the Supplementary Material [Griffin et al. (2018)]. Table 3 shows
the proportion male, proportion bisexual, proportion depressed and proportion in-
fected with HIV/AIDS in the synthetic networked populations representing each
MSA.

Lastly, we assign probabilities representing willingness to participate and will-
ingness to refer others πC

hij and πR
hij to egos in the synthetic networked populations

using logistic regression models trained on the CAP data within each MSA. These
logistic regression models also have sexual identity, gender identity, age group, an
indicator for zero network size (0 alters), the total number of alters and the number
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TABLE 4
Effective sample sizes (ESS), 95% confidence interval widths (WI) and coverage (CVR) for

estimating the proportion male. Bold entries satisfy our feasibility criteria

Sample mean SH VH

ESS WI CVR ESS WI CVR ESS WI CVR

MSA 1 105.76 0.11 0.71 65.17 0.13 0.74 64.97 0.22 0.92
MSA 2 87.95 0.11 0.41 58.85 0.14 0.75 57.87 0.23 0.90
MSA 3 74.15 0.11 0.61 61.57 0.13 0.70 55.86 0.23 0.91

of alters of the same gender and sexual identity as covariates. Regression coeffi-
cient estimates are shown in Section 4 of the Supplementary Material [Griffin et al.
(2018)].

We simulate RDS on these synthetic networked populations as described in Sec-
tion 3.3. We sample seeds with probability proportional to degree. We believe that
this is a reasonable assumption in this context where seeds are recruited from agen-
cies serving LGB older adults. LGB older adults tend to report high rates of social
isolation, but those associated with such agencies are likely to have higher-than-
average degree. To assess RDS feasibility, we simulate RDS 500 times for a desired
RDS sample size of 300, a common RDS sample size chosen in practice. Before
assessing RDS feasibility, we use the procedure described in Section 3.2 to con-
firm the absence of finite population bias. Evidence for the absence of population
bias is shown in Section 5 of the Supplementary Material [Griffin et al. (2018)].

Estimating the proportion male. Table 4 shows the effective sample sizes, con-
fidence interval widths and confidence interval coverage rates for estimating the
proportion male. With the exception of the sample mean in MSA 1, the effective
sample size for estimators of the proportion male is less than 100. We also observe
that only the VH estimators provide coverage over 80%. These results indicate that
RDS is not feasible for estimating the proportion male in any of the three MSAs.

Estimating the proportion bisexual. Table 5 shows the effective sample sizes,
confidence interval widths and confidence interval coverage rates for estimating
the proportion bisexual. The effective sample size exceeds 100 for the sample
mean, VH estimators in all three MSAs. We also observe that the same three esti-
mators provide coverage over 80%. These results indicate that RDS may be feasi-
ble for estimating the proportion bisexual in any of the three MSAs, providing that
the sample mean or VH estimator is used.

Estimating the proportion depressed. Table 6 shows the effective sample sizes,
confidence interval widths and confidence interval coverage rates for estimating
the proportion depressed. As with the proportion bisexual, the effective sample
size exceeds 100 for all four estimators and all three MSAs. We also observe that
coverage is almost always over 80%, with the exception of the coverage of the
sample mean in MSAs 2 and 3. These results indicate that RDS may be feasible
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TABLE 5
Effective sample sizes (ESS), 95% confidence interval widths (WI) and coverage (CVR) for

estimating the proportion bisexual. Bold entries satisfy our feasibility criteria

Sample mean SH VH

ESS WI CVR ESS WI CVR ESS WI CVR

MSA 1 311.71 0.04 0.92 56.70 0.06 0.76 111.10 0.07 0.83
MSA 2 303.39 0.04 0.93 90.61 0.06 0.79 114.16 0.08 0.85
MSA 3 274.83 0.05 0.93 110.15 0.06 0.78 124.05 0.08 0.86

for estimating the proportion depressed in any of the three MSAs, providing that
the SH or VH estimator are used in MSAs 2 and 3.

Estimating the proportion infected with HIV/AIDS. Table 7 shows the effective
sample sizes, confidence interval widths and confidence interval coverage rates
for estimating the proportion infected with HIV/AIDS. As with the proportion
bisexual and depressed, the effective sample size exceeds 100 in most cases, with
the exception of the SH estimator in MSAs 1 and 2. We also observe that coverage
is almost always over 80%, with the exception of the coverage of the sample mean
in MSAs 3 and the SH estimator in MSA 1. These results indicate that RDS may
be feasible for estimating the proportion infected with HIV/AIDS in any of the
three MSAs, providing that the appropriate estimators are used.

That being said, we do observe substantial over-coverage of the VH estimators,
exceeding 95%. If we examine confidence interval widths for these estimators,
we observe that the widths for the VH 95% confidence intervals are very large
relative to the 95% confidence intervals given by the other estimators. Given that
we do not set standards for improvement for estimating these characteristics of
these populations because there are so few existing estimates, this does not affect
our assessment of feasibility. However, it does raise the philosophical question of
whether or not a very wide 95% confidence interval can still be useful when no
alternative estimates from previous studies are available. In this case, confidence
intervals of width 0.4 as observed in MSA 1, may be practically useless.

TABLE 6
Effective sample sizes (ESS), 95% confidence interval widths (WI) and coverage (CVR) for

estimating the proportion depressed. Bold entries satisfy our feasibility criteria

Sample mean SH VH

ESS WI CVR ESS WI CVR ESS WI CVR

MSA 1 299.52 0.11 0.94 107.58 0.13 0.83 109.28 0.23 0.98
MSA 2 324.61 0.09 0.77 110.68 0.12 0.84 112.80 0.19 0.95
MSA 3 344.81 0.09 0.48 111.69 0.14 0.90 113.64 0.21 0.97
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TABLE 7
Effective sample sizes (ESS), 95% confidence interval widths (WI) and coverage (CVR) for

estimating the proportion infected with HIV/AIDS. Bold entries satisfy our feasibility criteria

Sample mean SH VH

ESS WI CVR ESS WI CVR ESS WI CVR

MSA 1 218.05 0.09 0.88 99.85 0.10 0.79 101.20 0.42 0.99
MSA 2 304.95 0.05 0.85 97.05 0.08 0.82 105.56 0.31 0.99
MSA 3 242.32 0.07 0.74 101.04 0.11 0.87 103.60 0.30 1.00

Interpreting RDS estimator performance. We explain the relative performance
of the RDS estimators shown in Tables 4–7 by examining homophily in the syn-
thetic networked populations and recruitment effectiveness of the simulated RDS
process. Recruitment effectiveness is the ratio of the average number of alters re-
cruited by egos who do not possess the characteristic of interest relative to the
average number of alters recruited by egos who do possess the characteristic of
interest [Gile, Johnston and Salganik (2015)]; it is a composite measure of differ-
ential activity and differential coupon distribution and redemption behavior. Al-
though homophily and differential recruitment are not separately identified from
standard RDS data alone in practice [Crawford et al. (2018)], we are able to discuss
both separately here because homophily is explicitly measured in the pilot data on
LGB older adults by asking sampled egos about the characteristics of their alters.
As noted in Section 4.1, homophily and differential activity with respect to the
characteristic of interest can affect the performance of RDS estimators [Gile and
Handcock (2010), Tomas and Gile (2011)]. High homophily in particular tends to
produce more variable RDS estimators over repeated RDS samples. Table 8 shows
homophily and differential recruitment effectiveness with respect to all four char-
acteristics of interest in all three MSAs.

We observe strong evidence for homophily with respect to gender identity and
little evidence for homophily with respect to sexual identity, depression status and
HIV/AIDS infection status, which explains the infeasibility of RDS for estimating

TABLE 8
Homophily and differential recruitment effectiveness by gender, bisexuality, depression and

HIV/AIDS

Homophily Diff. Recruitment Eff.

Gen. Bi. Dep. HIV Gen. Bi. Dep. HIV

MSA 1 1.83 1.05 1.00 1.08 0.92 1.10 0.99 0.96
MSA 2 2.08 1.04 1.00 1.02 0.92 1.15 1.03 0.98
MSA 3 2.20 1.08 1.00 1.07 1.06 0.97 1.03 1.05
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the proportion male. This suggests that RDS estimator performance of the pro-
portion male may not improve if a larger RDS sample is collected. Additionally,
this suggests that gay and bisexual men and lesbian and bisexual women have
somewhat separate social spheres that may be best served by separate RDS studies
combined using estimates of the proportion male and female obtained from a much
more costly large scale probability sample, for example, the Gallup Daily Tracking
Survey. We observe little evidence for differential recruitment effectiveness and no
evidence of systematic differences in RDS feasibility with respect to differential
recruitment effectiveness.

5. Summary and discussion. In this paper, we develop a simulation-based
framework for assessing the feasibility of using RDS to estimate specific charac-
teristics of target populations given pilot data, in the form of aggregated egocen-
tric data and estimates of subpopulation sizes within the target population. Such
a framework is currently unavailable, leaving researchers to plan costly studies
based on qualitative feasibility assessment criteria that may fail to detect network
structures and coupon distribution behaviors that yield poor RDS estimator per-
formance [Johnston et al. (2010), Kogan et al. (2011)]. To explicitly characterize
feasibility, we consider the effective sample size of point estimates and the width
and coverage of 95% confidence intervals and explain how these quantities can be
interpreted by a researcher considering conducting an RDS study. In introducing
a framework for assessing RDS feasibility, we extend Admiraal and Handcock’s
(2016) work on simulating social networks consistent with aggregated, egocentric
sample data by using a computationally simple and sufficiently flexible negative
binomial distribution model for broad degree distributions, specifying rectangular
matrices of sample mixing totals and allowing for unobserved subpopulation sizes.
Rectangular specification for the sample mixing matrices allows us to accommo-
date the common scenario when more information is available on egos than on
alters.

With respect to LGB older populations, we find that using RDS with 10 seeds,
two coupons and a desired sample size of 300 subjects is infeasible for estimat-
ing the proportion male in all three target populations and feasible for estimat-
ing the proportion bisexual, proportion depressed and proportion infected with
HIV/AIDS. We also find that effective sample sizes, interval widths and cover-
age for estimators estimating the same outcome can vary by MSA, for example,
effective sample sizes and coverage of 95% confidence intervals are systematically
higher for all four RDS estimators of the proportion male in MSA 1 compared to
MSAs 2 and 3. These results not only illustrate the possible feasibility of RDS
in these LGB older populations for estimating the proportion bisexual, proportion
depressed and proportion infected with HIV/AIDS, but also demonstrate that RDS
feasibility assessment is context-specific. Feasibility of RDS in one MSA for one
characteristic of interest provides limited information about the feasibility of RDS
in other MSAs or for other characteristics of interest. Specifically, homophily with
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respect to gender yields poor estimation of the proportion male in all three pop-
ulations but does not affect estimation of the proportion bisexual, depressed or
infected with HIV/AIDS.

We caution that acceptable performance of RDS estimators in simulations does
not guarantee acceptable performance of RDS estimators in practice. In many
ways, our method for estimating network parameters and simulating RDS rep-
resents an upper bound on the performance of RDS. Although it is realistic in
that it incorporates what is known from the pilot data on social network struc-
tures and participation and recruitment tendencies, it is unrealistic in many ways.
For example, it assumes the pilot data is a simple random sample from the target
population, that RDS sample seeds are selected with probability proportional to
degree and that reported coupon distribution and redemption behaviors are consis-
tent with observed coupon distribution and redemption behaviors. As a result, we
recommend interpreting poor performance of RDS estimators in simulations as a
red flag, while we do not recommend interpreting acceptable performance of RDS
estimators in simulations as a guarantee that RDS will necessarily perform well
in practice. We therefore recommend that researchers interested in assessing RDS
feasibility collect pilot data, then implement the methods introduced in this paper.
If feasibility is not demonstrated, we recommend against proceeding with RDS
and in favor of pursuing a more expensive large scale probability sample if pos-
sible or alternative nonprobability sampling methods like time-location sampling
if not [Gile and Handcock (2010)]. If RDS is found to be feasible, as with any
statistical approximation, it is important for the researcher to reflect on any critical
concerns that may exist beyond the scope of the available data and methods.

Although beyond the scope of the paper, our conceptual framework also allows
interested researchers to explore feasibility of RDS with respect to variations in
RDS designs such as changing the number and characteristics of seeds, the number
of coupons, participation rates, and the desired RDS sample size. Future work
could consider extending the RDS feasibility framework presented in this paper to
evaluating multiple RDS designs by relying on ideas analogous to power analysis
[Cohen (1988)] or diagnostic approaches developed in the context of assessment
and ranking of probabilistic weather forecasts [Gneiting, Balabdaoui and Raftery
(2007)].

To ensure that the tools for implementing our simulation-based framework are
available to practitioners, we made R code and a synthetic dataset available as Sup-
plementary Material [Griffin et al. (2018)]. The synthetic dataset was constructed
to resemble one of the three LGB older populations studied in this paper. The R
code is accompanied by a step-by-step guide which walks through estimating the
social network structure, simulating synthetic networked populations and simulat-
ing RDS. The guide includes comments on where modifications could be made to
accommodate alternative seed selection mechanisms.
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SUPPLEMENTARY MATERIAL

Additional details and replication materials (DOI: 10.1214/18-
AOAS1151SUPP; .zip). The file contains a document titled “Supplement to
‘A simulation-based framework for assessing the feasibility of respondent-driven
sampling for estimating characteristics in populations of lesbian, gay and bisexual
older adults,”’ which includes the five sections referenced in this paper. The file
also contains the source code for a package for R that includes code written by the
authors and synthetic data. A vignette titled “Synthetic data example of methods
used in ‘A simulation-based framework for assessing the feasibility of respondent-
driven sampling for estimating characteristics in populations of lesbian, gay and
bisexual older adults”’ implements the methods used in this paper for the synthetic
data. Additionally, a read me file is included with instructions for installing the R
package and accessing the vignette.

REFERENCES

ADMIRAAL, R. and HANDCOCK, M. S. (2016). Modeling concurrency and selective mixing in
heterosexual partnership networks with applications to sexually transmitted diseases. Ann. Appl.
Stat. 10 2021–2046. MR3592047

ANDRESEN, E. M., MALMGREN, J. A., CARTER, W. B. and PATRICK, D. L. (1994). Screening
for depression in well older adults: Evaluation of a short form of the CES-D (Center for Epidemi-
ologic Studies Depression Scale). Am. J. Prev. Med. 10 77–84.

BARASH, V. D., CAMERON, C. J., SPILLER, M. W. and HECKATHORN, D. D. (2016). Respondent-
driven sampling—Testing assumptions: Sampling with replacement. J. Off. Stat. 32 29–73.

COHEN, J. (1988). Statistical Power Analysis for the Behavioral Sciences, 2nd ed. Routledge, Hills-
dale, NJ.

CORNWELL, B., LAUMANN, E. O. and SCHUMM, L. P. (2008). The social connectedness of older
adults: A national profile. Am. Sociol. Rev. 73 185–203.

CRAWFORD, F. W., ARONOW, P. M., ZENG, L. and LI, J. (2018). Identification of homophily and
preferential recruitment in respondent-driven sampling. Am. J. Epidemiol. 187 153–160.

EROSHEVA, E. A., KIM, H.-J., EMLET, C. and FREDRIKSEN-GOLDSEN, K. I. (2016). Social net-
works of lesbian, gay, bisexual, and transgender older adults. Research on Aging 38 98–123.

FREDRIKSEN-GOLDSEN, K. I. and MURACO, A. (2010). Aging and sexual orientation: A 25-year
review of the literature. Research on Aging 32 372–413.

FREDRIKSEN-GOLDSEN, K. I., EMLET, C. A., KIM, H.-J., MURACO, A., EROSHEVA, E. A.,
GOLDSEN, J. and HOY-ELLIS, C. P. (2013). The physical and mental health of lesbian, gay
male, and bisexual (LGB) older adults: The role of key health indicators and risk and protective
factors. The Gerontologist 53 664–675.

https://doi.org/10.1214/18-AOAS1151SUPP
http://www.ams.org/mathscinet-getitem?mr=3592047
https://doi.org/10.1214/18-AOAS1151SUPP


RDS FEASIBILITY 2277

FREDRIKSEN-GOLDSEN, K. I., KIM, H.-J., SHIU, C., GOLDSEN, J. and EMLET, C. A. (2015).
Successful aging among LGBT older adults: Physical and mental health-related quality of life by
age group. The Gerontologist 55 154–168.

GABOR, C. and NEPUSZ, T. (2006). The igraph software package for complex network research.
InterJournal, Complex Systems 1695 1–9.

GATES, G. J. (2013). LGBT Parenting in the United States. Technical report, The Williams Institute,
UCLA School of Law.

GILE, K. J. (2011). Improved inference for respondent-driven sampling data with application to HIV
prevalence estimation. J. Amer. Statist. Assoc. 106 135–146. MR2816708

GILE, K. J. and HANDCOCK, M. S. (2010). Respondent-driven sampling: An assessment of current
methodology. Sociol. Method. 40 285–327.

GILE, K. J. and HANDCOCK, M. S. (2015). Network model-assisted inference from respondent-
driven sampling data. J. Roy. Statist. Soc. Ser. A 178 619–639. MR3348351

GILE, K. J., JOHNSTON, L. G. and SALGANIK, M. J. (2015). Diagnostics for respondent-driven
sampling. J. Roy. Statist. Soc. Ser. A 178 241–269. MR3291770

GNEITING, T., BALABDAOUI, F. and RAFTERY, A. E. (2007). Probabilistic forecasts, calibration
and sharpness. J. R. Stat. Soc. Ser. B. Stat. Methodol. 69 243–268. MR2325275

GOEL, S. and SALGANIK, M. J. (2010). Assessing respondent-driven sampling. Proc. Natl. Acad.
Sci. USA 107 6743–6747.

GRIFFIN, M., GILE, K. J., FREDRICKSEN-GOLDSEN, K. I., HANDCOCK, M. S. and ERO-
SHEVA, E. A. (2018). Supplement to “A simulation-based framework for assessing the feasibility
of respondent-driven sampling for estimating characteristics in populations of lesbian, gay and
bisexual older adults.” DOI:10.1214/18-AOAS1151SUPP.

HANDCOCK, M. S., HUNTER, D. R., BUTTS, C. T., GOODREAU, S. M. and MORRIS, M. (2003).
statnet: A suite of R packages for the statistical modeling of social networks. Software library.

HANDCOCK, M. S., HUNTER, D. R., BUTTS, C. T., GOODREAU, S. M. and MORRIS, M. (2008).
ergm: A package to fit, simulate and diagnose exponential-family models for networks. J. Stat.
Softw. 24 1–29.

HANDCOCK, M. S., HUNTER, D. R., BUTTS, C. T., GOODREAU, S. M. and MORRIS, M. (2013).
ergm: Fit, simulate and analyze exponential-family models for networks. Statnet Project.

HECKATHORN, D. D. (1997). Respondent-driven sampling: A new approach to the study of hidden
populations. Soc. Probl. 44 174–199.

JOHNSTON, L. G., WHITEHEAD, S., SIMIC-LAWSON, M. and KENDALL, C. (2010). Formative
research to optimize respondent-driven sampling surveys among hard-to-reach populations in
HIV behavioral and biological surveillance: Lessons learned from four case studies. AIDS Care
22 784–792.

KOGAN, S. M., WEJNERT, C., CHEN, Y.-F., BRODY, G. H. and SLATER, L. M. (2011).
Respondent-driven sampling with hard-to-reach emerging adults: An introduction and case study
with rural African americans. Journal of Adolescent Research 26 30–60.

LI, X. and ROHE, K. (2017). Central limit theorems for network driven sampling. Electron. J. Stat.
11 4871–4895. MR3733297

LOHR, S. L. (2010). Sampling: Design and Analysis, 2nd ed. Brooks/Cole, Cengage Learning,
Boston, MA. MR3057878

LU, X., BENGTSSON, L., BRITTON, T., CAMITZ, M., KIM, B. J., THORSON, A. and LILJEROS, F.
(2012). The sensitivity of respondent-driven sampling. J. Roy. Statist. Soc. Ser. A 175 191–216.
MR2873802

MALEKINEJAD, M., JOHNSTON, L. G., KENDALL, C., KERR, L. R. F. S., RIFKIN, M. R. and
RUTHERFORD, G. W. (2008). Using respondent-driven sampling methodology for HIV biologi-
cal and behavioral surveillance in international settings: A systematic review. AIDS and Behavior
12 105–130.

http://www.ams.org/mathscinet-getitem?mr=2816708
http://www.ams.org/mathscinet-getitem?mr=3348351
http://www.ams.org/mathscinet-getitem?mr=3291770
http://www.ams.org/mathscinet-getitem?mr=2325275
https://doi.org/10.1214/18-AOAS1151SUPP
http://www.ams.org/mathscinet-getitem?mr=3733297
http://www.ams.org/mathscinet-getitem?mr=3057878
http://www.ams.org/mathscinet-getitem?mr=2873802


2278 M. GRIFFIN ET AL.

MCCREESH, N., FROST, S. D. W., SEELEY, J., KATONGOLE, J., TARSH, M. N., NDUNGUSE, R.,
JICHI, F., LUNEL, N. L., MAHER, D., JOHNSTON, L. G., SONNENBERG, P., COPAS, A. J.,
HAYES, R. J. and WHITE, R. G. (2012). Evaluation of respondent-driven sampling. Epidemiol-
ogy 23 138–147.

MERLI, M. G., MOODY, J., SMITH, J., LI, J., WEIR, S. and CHEN, X. (2015). Challenges to
recruiting population representative samples of female sex workers in China using respondent
driven sampling. Social Science and Medicine 125 79–93.

R CORE TEAM (2013). R: A Language and Environment for Statistical Computing.
RADLOFF, L. S. (1977). The CES-D scale: A self-report depression scale for research in the general

population. Applied Psychological Measurement 1 385–401.
ROHE, K. (2015). Network driven sampling; a critical threshold for design effects. Preprint. Avail-

able at arXiv:1505.05461.
SALGANIK, M. J. (2006). Variance estimation, design effects, and sample size calculations for

respondent-driven sampling. Journal of Urban Health 83 98–112.
SALGANIK, M. J. and HECKATHORN, D. D. (2004). Sampling and estimation in hidden populations

using respondent-driven sampling. Sociol. Method. 34 193–239.
TOMAS, A. and GILE, K. J. (2011). The effect of differential recruitment, non-response and

non-recruitment on estimators for respondent-driven sampling. Electron. J. Stat. 5 899–934.
MR2831520

VERDERY, A. M., MOUW, T., BAULDRY, S. and MUCHA, P. J. (2015). Network structure and
biased variance estimation in respondent driven sampling. PLoS ONE 10 1–27.

VOLZ, E. and HECKATHORN, D. D. (2008). Probability based estimation theory for respondent
driven sampling. J. Off. Stat. 24 79–97.

WEJNERT, C., PHAM, H., KRISHNA, N., LE, B. and DINENNO, E. (2012). Estimating design effect
and calculating sample size for respondent-driven sampling studies of injection drug users in the
United States. AIDS and Behavior 16 797–806.

YE, Y. (1987). Interior algorithms for linear, quadratic, and linearly constrained non-linear program-
ming. Ph.D. thesis, Stanford Univ.

ZEA, M. C. (2010). Reaction to the special issue on centralizing the experiences of LGB people of
color in counseling psychology. The Counseling Psychologist 38 425–433.

M. GRIFFIN

E. A. EROSHEVA

DEPARTMENT OF STATISTICS

UNIVERSITY OF WASHINGTON

SEATTLE, WASHINGTON 98195
USA
E-MAIL: mgrffn@uw.edu

erosheva@uw.edu

K. I. FREDRICKSEN-GOLDSEN

SCHOOL OF SOCIAL WORK

UNIVERSITY OF WASHINGTON

SEATTLE, WASHINGTON 98195
USA
E-MAIL: fredrikk@uw.edu

K. J. GILE

DEPARTMENT OF STATISTICS

UNIVERSITY OF MASSACHUSETTS, AMHERST

AMHERST, MASSACHUSETTS 01003
USA
E-MAIL: gile@math.umass.edu

M. S. HANDCOCK

DEPARTMENT OF STATISTICS

UNIVERSITY OF CALIFORNIA, LOS ANGELES

LOS ANGELES, CALIFORNIA 90095
USA
E-MAIL: handcock@ucla.edu

http://arxiv.org/abs/arXiv:1505.05461
http://www.ams.org/mathscinet-getitem?mr=2831520
mailto:mgrffn@uw.edu
mailto:erosheva@uw.edu
mailto:fredrikk@uw.edu
mailto:gile@math.umass.edu
mailto:handcock@ucla.edu

	Introduction
	Motivation and overview
	RDS feasibility framework

	Data
	Caring and aging with pride study
	Gallup daily tracking survey

	Methodology
	Estimation of social network structure
	Simulation of synthetic populations
	Simulation of RDS
	RDS feasibility assessment

	Application to CAP data
	Estimation of network population parameters
	RDS feasibility assessment

	Summary and discussion
	Acknowledgments
	Supplementary Material
	References
	Author's Addresses

