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ABSTRACT: Plug-in electric vehicles (EVs) in China aim to
improve sustainability and reduce environmental health
impacts of transport emissions. Urban use of EVs rather than
conventional vehicles shifts transportation’s air pollutant
emissions from urban areas (tailpipes) to predominantly rural
areas (power plants), changing the geographic distribution of
health impacts. We model PM2.5-related health impacts
attributable to urban EV use for 34 major cities. Our
investigation focuses on environmental justice (EJ) by
comparing pollutant inhalation versus income among impacted
counties. We find that EVs could increase EJ challenge in
China: most (∼77%, range: 41−96%) emission inhalation
attributable to urban EVs use is distributed to predominately
rural communities whose incomes are on average lower than
the cities where EVs are used. Results vary dramatically across cities depending on urban income and geography. Discriminant
analysis reveals that counties with low income and high inhalation of urban EV emissions have comparatively higher agricultural
employment rates, higher mortality rates, more children in the population, and lower education levels. We find that low-emission
electricity sources such as renewable energy can help mitigate EJ issues raised here. Findings here are not unique to EVs, but
instead are relevant for nearly all electricity-consuming technologies in urban areas.

■ INTRODUCTION

Sustainable development aims to address economic develop-
ment, social equity, and environmental protection.1 Plug-in
electric vehicles (EVs) are often considered as a technology to
support sustainable development in the transportation sector.2,3

Several prior studies have focused on environmental sustain-
ability of EVs, focusing on greenhouse gas (GHG)
emissions4−8 or local air pollution,9 and public health.2,10−12

For conventional vehicles (CVs), use-phase emissions occur
where vehicles are used; for urban EVs, use-phase emissions
instead occur at (for fossil fuels) the power plant where
electricity is generated. This shift remedies some intraurban
environmental justice (EJ) challenges,13−17 but potentially
creates new challenges by exporting pollution to populations far
from urban centers.
In China, EVs, including electric bikes (e-bikes) and electric

cars (e-cars), are often considered an approach toward
sustainable transportation, balancing mobility, energy security,
GHG emissions, and air pollution. From 2011 to 2014, the
annually estimated sales of e-bikes in China grew from 31.0

million units to 34.2 million units.18 In the meantime, the
annual sales of full plug-in e-cars in China increased from 5579
to 45 048 vehicles.19,20 The Chinese central government also
designed an ambitious plan to add 5 million pure e-cars and
plug-in hybrid e-cars on the road by 2020.21 In the short and
medium term, EVs may not reduce GHG emissions or local air
pollution due to reliance on coal electricity generation.2,4,7,22,23

In the long term, EVs could reduce fossil fuel use and GHG
emissions relative to CVs if electricity generation transitions to
cleaner energy.4,7 Especially, with the booming penetration of
hydro, wind, solar, and other cleaner energy as well as supports
from central and local governments in China,24,25 a significant
portion of future power may come from sustainable energy
sources. At that time, EVs could improve relative to CVs.
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Despite significant research on environmental and economic
sustainability aspects of EVs in China,26−30 to our knowledge,
no research has evaluated EJ aspects of EV’s environmental
health impacts across populations. This paper targets that gap.
We focus on current distributional aspects of health impacts
from fossil power plant emissions attributable to urban EVs
(pure plug-in battery e-cars). The primary focus of the article is
EVs, but the results are generalizable and would apply broadly
to other examples of urban electricity consumption. In prior
research,2 we calculated health impacts of PM2.5 from EVs and
CVs using an intake fraction (iF) health assessment framework.
Here, we extend the prior work to evaluate EJ. Specifically,
using census data, we investigate demographic characteristics
(e.g., income) of those who benefit from urban EVs (city
dwellers) versus those who inhale pollution from electricity
generation (predominantly, rural populations downwind of
fossil power plants).
Environmental justice is an ethical concept related to the

distributional fairness of impacts: which groups are more
exposed or less exposed to environmental risks,31−33 and are
those risk-differences necessary, avoidable, or remediable.34

Prior research has investigated EJ aspects of electricity
generation. For example, Levy et al.35 investigated particulate
matter (PM) emission control strategies from power plants
near Washington, DC. They found that half of the health
benefits accrued among the 25% of the population with lower
education level (below high school). Touche ́ and Rogers
reported that Texas power plants relying on more hazardous
fossil fuels are located in lower socioeconomic communities.36

Levy et al.37,38 developed multiobjective frameworks to include
EJ into U.S. air pollution management (focusing on PM2.5
mortality) for fossil power plants.
China is facing similar EJ challenges. Brajer et al.39 found that

in China, between-city income inequity increased from 1990 to
2004 and that air pollution impacts are correlated with the
inequity. Schoolman and Ma,40 analyzing locations of air and
water emissions in Jiangsu, reported that communities with a
higher proportion of rural migrants were likely to live near to
industrial emission sources. They concluded that the environ-
mental health impact of power plant emissions depends on
their location, the locations of population centers, and the
transport of emissions from source to receptor. Ji et al.2,23

estimated emission intake in urban and rural areas in China
from urban use of EVs. They found that, on average, nonurban
populations inhale approximately 52% (range: 19−64%) of
emissions from urban use of EVs. An important context for
those findings is the large and growing disparity between urban
and rural incomes: the rural-urban difference in average income
per person increased from 2.8× in 2000 (2253 RMB [US$338]
rural versus 6280 RMB [US$941] urban) to 3.1× in 2011
(6977 RMB [US$1,046] rural versus 21 810 RMB [US$3,270]
urban).41

A shortcoming of the rural/urban comparison is that it does
not distinguish impacts based on traditional indicators of social
status (e.g., income, education). Here, we focus on EJ
implications of urban EVs, using two methods: investigating
disparities between income and inhalation among the exposed
populations; and applying discriminant analysis on multiple
population groups exposed to air pollution.

■ MATERIALS AND METHODS
We extend the methods employed in Ji et al.2,23 to estimate
PM2.5 pollution intake, focusing on locations of emissions (coal

power plants) and where they are inhaled. In this paper,
“inhalation” refers to total PM2.5 emission inhalation attribut-
able to urban EVs use. We employ an iF framework to estimate
inhalation of PM2.5 in China. Intake fraction is defined as the
proportion of a pollutant that is inhaled relative to the amount
emitted. Intake fraction can be calculated in multiple ways,
based on data or models. It is an intuitive method to compare
inhalation and health impacts across locations, technologies,
fuels, and populations. Further information about estimating
and using iF is available elsewhere.42 For conserved primary
pollutants in global cities, the reported intraurban iF range is
0.6−260 ppm (population-weighted values: median: 26 ppm,
mean: 39 ppm, interquartile range: 14−52 ppm).43 Intake
fractions are higher for Chinese cities than for the global
average (population-weighted values for China: median: 34
ppm, mean: 45 ppm, interquartile range: 21−64 ppm).43,44

Concentration-based estimates of iF would require fine
resolution pollutant emissions and concentrations. A simplified
regression approach developed for China by Zhou et al.45 uses
pollutant transport models from a sample of fossil power plants
to estimate iF; then they regress iF against population data
surrounding fossil power plants to obtain a predictive iF model
(R2 = 0.86−0.95). We use that model to estimate iF from coal
power plants emissions throughout China. The model inputs
are population living in the radii of 100km, 500 km, 1000 km,
and farther than 1000 km from 2640 coal power plants in
China. County population data are from the 2010 census.46

The database of coal power plants in China applied here was
previously derived by researchers at Tsinghua University47

based on plant-level information (name, address, capacity,
generation) from the China Electricity Council (CEC)48 and
emission factor information from Zhao et al.49 The emission
factor for each coal power plant is averaged to reflect coal and
noncoal generation in that region. Additional details on the
emission data set are in the Supporting Information (SI). We
assume an arbitrary vehicle-travel distance as the basis for our
comparisons: specifically, we evaluate the impact if 109 vehicle
kilometers traveled by CVs were substituted by equivalent EVs
in each city. If average energy efficiency of an e-car is 180 Wh
km−1 and electricity transmission and in-plant use loss in China
is 14%,2 the energy demand from 109 vehicle kilometers
traveled by EVs in each city will be 205.2 GWh. This energy
demand would represent 0.2−4.7% of the total annual urban
electricity use in each city we investigated, a small but likely
growing percentage of total urban electricity consumption.
Because of little available data on vehicle kilometers traveled by
EVs in China, the assumption of 109 vehicle-kilometers traveled
is based on fleet size, percentage of EVs, and annual vehicle
kilometers traveled by light duty vehicles in Beijing (e.g.,
Beijing had ∼5 million CVs in 2010.50 If 1% were replaced by
EVs, each traveling ∼20 000 km y−1,51 that shift would be 109

vehicle-kilometers y−1 by EVs.). Our results could easily be
scaled up or down for alternative bases. We calculate PM2.5
emissions from the corresponding power grid, then apply iF
values to estimate county-level inhalation of PM2.5 emissions.
This approach is most useful to evaluate EJ aspects of replacing
CVs with EVs in an urban area where most urban CV emission
are inhaled by those dwelling in the city.52 We investigate total
inhalation attributable to EVs for the 34 cities analyzed in Ji et
al.2 We employ per capita gross regional product (GRP per
capita) as our measure of county-level average income, and
investigate whether exposures are greater for higher- or lower-
income counties, relative to the city where the EV is used. We
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apply discriminant analysis to investigate demographic factors
that are correlated with emission inhalations.
Income and Inhalation Disparity Analysis. We conduct

individual case studies for 34 cities, covering all of China’s
urbanized provinces. Using ArcGIS, each of China’s counties (n
= 2872) are assigned by distance to each coal power plant (n =
2640). We use the iF methods described above to assess iF
from each coal power plant to each county (i.e., each county
represents a proportion of the total iF from a coal power plant,
related to county population and distance from the coal power
plant). Applying coal power plant emission factors for each grid
to urban EV use, weighted in proportion to the relative capacity
of the coal power plant, we estimate total inhalation of
emissions at the county level from an arbitrary urban power
demand. Our approach is described in eqs 1 and (2).
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Total inhalation in county x (eq 1) is equal to the sum over
all coal power plants (j = 1 to n) of the county’s proportional iF
(iFj

x) from each coal power plant j times the total emissions
from an individual coal power plant j (Ej). Equation 1 can be
decomposed (see eq 2) using the sum of the regression
coefficients αi times a binary (1 or 0) indicator variable (δi

j) to
determine which distance bin county x falls in from coal power
plant j, times the population of the county (Px). The total
emissions from an individual coal power plant is estimated by
allocating the total electricity demands from coal power plants
in power grid l (EDl) to the attributable coal power plants in
proportion to their relative generation (Gj/(∑k = 1

m Gk)), where
Gj is the generation of coal power plant j and ∑k = 1

m Gk is the
sum of electricity generations of all coal power plants in its
power grid k. Total emissions from each coal power plant is
estimated by multiplying the electricity demands allocated to
each coal power plant by the average emission factor (EFj) of
each power plant. Inhalation values for each coal power plant
are summed over total emissions from arbitrary energy
demands in each power grid (EV use in this case), to estimate
the impact per energy production. We include 14% generation
and transmission losses, China’s average.41,53 Total inhalation

in county x is the sum of incremental inhalation from emissions
from all coal power plants.
Figure 1a illustrates GRP per capita at the county level in

China based on 2010 census data, the most recent data
available.46 Much of the wealth is on the coast or northern
borders. Figure 1b illustrates corresponding per capita
inhalation of emissions from coal power plants for each county
based on EV use in 34 Chinese cities throughout China. Using
Huai River-Qin Mountain line as dividing line between
northern and southern China, most of the inhalation per capita
occurs in the northern portion of China; and less of the
inhalation per capita occurs in the southern interior portion of
China, with the exception of the band of power plants and
population centers in the Chengdu and Chongqing regions.
The higher per capita inhalation also corresponds to higher
population densities (Figure 1c) resulting in much higher total
inhalation.
Emissions from electricity generation from EV recharging in

a city could potentially be inhaled over a wide area, including in
the city where the EVs are operated. For EV inhalation, we
attribute inhalation of PM2.5 (from coal power plants serving
urban EV charging) to counties with higher or lower income,
relative to the city where the EV is operated. This contrasts CV
emissions, where nearly all exposure and inhalation occurs in
the city where the CV is operated. Inhalation of primary PM2.5
emissions from EVs is classified into four groups:

• Group A, lower-income, lower-inhalation: the county has
lower income and lower inhalation than the city where
the urban EV is operated.

• Group B, lower-income, higher-inhalation: the county
has lower income and higher inhalation than the city
where the urban EV is operated.

• Group C, higher-income, lower-inhalation: the county
has higher income and lower inhalation than the city
where the urban EV is operated.

• Group D, higher-income, higher-inhalation: the county
has higher income and higher inhalation than the city
where the urban EV is operated.

Group B especially reflects a potential EJ concern.
Discriminant Analysis. Beyond income, other metrics can

also be used to quantify EJ concerns. Discriminant analysis can
extract information from large quantities of socioeconomic
data. Before conducting discriminant analysis, we aggregate the
inhalation for each county in China by assuming 109 vehicle
kilometers traveled by EVs in each power grid. The per capita
inhalation for all counties is compared with census data. Our

Figure 1. (a) Per capita gross regional product (in RMB) by county in China (darker color corresponds to higher values); (b) Per capita inhalation
from coal power plants (μg PM2.5 from 109 vehicle kilometers traveled by EVs in each of 16 power grids); (c) Population density (people km−2).
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data set provides 167 attributes (e.g., age, industry, and
education levels) for all (n = 2872) counties in China.
Discriminant analysis requires grouping of data. Based on
income and total inhalation, we classify different counties into
one of three mutually exclusive groups. (The prior section
(“Income and Inhalation Disparity Analysis”) employed four
groups (Groups A−D). The three groups employed here for
discriminant analysis are entirely distinct, and bear no direct
relation, to those four groups.) Thresholds were chosen such
that these three groups are mutually exclusive (inhalation per
capita greater than or less than 3 ug per capita; GRP per capita
greater than or less than 65 000 RMB [US$10,484]). We
employ the labels “advantaged” for the higher-income, lower-
inhalation counties; “disadvantaged” for lower-income, higher-
inhalation counties; and, “unclassified” to reflect all other
counties. Here “advantaged” means a higher-income county
that gains health outcomes (i.e., experiences a reduction in
environmental risk) via a policy or a technology (in this case,
increased use of EVs), potentially at the expense of others. A
“disadvantaged” county is lower-income and bears compara-
tively larger incremental health costs from the policy/
technology. The data, showing how we classified counties, are
in Figure 2; this figure highlight the spread of data and

differences between the advantaged and disadvantaged
counties. The 34 cities we investigate (brown triangles)
generally fall in the advantaged (38%) or unclassified (56%)
groups; only two cities (6% of the 34 cities, representing 14% of
the total population of the 34 cities) are in the disadvantaged
group. After grouping, we compare the counties in the
advantaged and disadvantaged group to investigate socio-
economic differences across multiple variables.

■ RESULTS AND DISCUSSION
Income and Inhalation Disparity Analysis. We evaluate

conditions for 34 specific cities where EVs are likely to operate.
In each case, we compare within-urban emissions and
inhalations attributable to urban CV use, versus total emissions
and inhalation (disaggregated by county) attributable to urban
EV use. In both cases (EVs and CVs), we consider the income
of each county where the inhalation occurs.

Figure 3 presents, for all n = 2,872 counties, inhalation and
income distributions attributable to EV used in 12
representative cities. (Results for all 34 major cities are in SI
Figure S1.) In these figures, each county is represented by a dot
and the city where the EVs are operated is located at the
intersection of the red lines. In high-income cities such as
Beijing, Dalian, Shanghai, and Guangzhou, a large portion of
primary PM2.5 emissions are inhaled by populations (bottom/
left) who have lower income compared to the populations in
these cities. In contrast, lower-income cities (e.g., Chongqing,
Shijiazhuang, and Harbin) have a substantially higher inhalation
compared to some higher income counties. SI Table S1 reports
the detailed proportion of inhalation of primary PM2.5
emissions from EV use in four groups: lower income with
lower inhalation (bottom/left of SI Figure S1 quadrant), lower
income with higher inhalation (top/left of the quadrant),
higher income with lower inhalation (bottom/right of the
quadrant), and higher income with higher inhalation (top/right
of the quadrant) compared with the income and inhalation
level of the city adopting EVs.
To illustrate, if 109 vehicle kilometers are traveled by EVs (e-

cars) in Shanghai, Shanghai residents will cumulatively inhale
14.8 g primary PM2.5 emissions. Over 85% (i.e., 307 g, or 21×
what Shanghai residents inhale) of primary PM2.5 emissions
from this switch will be inhaled by populations in counties with
average income lower than in Shanghai; and ∼3% of those
emissions are inhaled by populations in the poorest 10th of the
China’s counties (i.e., in counties whose GRP per capita is in
the bottom 10th percentile in China (<8673 RMB [US
$1,400])). In contrast, under the same technology scenario
(109 vehicle kilometers traveled by EVs) in Chongqing, the
residents in Chongqing will cumulatively inhale 59.5 g of
primary PM2.5 emissions, which accounts for 27% of total
inhalation (221 g). Counties that are poorer than Chongqing
inhale 55% of total inhalation. The reason why the cumulative
inhalation of primary PM2.5 for residents in Chongqing is larger
than other cities may be that the residents in Chongqing are
close to coal power plants in the Chongqing power grid.
By averaging the results among 34 cities (using population-

weighting), if EVs are used in urban areas, ∼ 75% (range: 41−
92%) of the total inhalation of the attributable coal power plant
PM2.5 emissions will occur in counties in China with lower
income and lower inhalation level than the cities where EVs are
used (Group A; bottom/left of scatter plots in Figure 3). On
average, about ∼3% (range: 0−14%) of the total inhalation of
coal power plant emissions will occur in counties with lower
income but higher inhalation level compared with cities where
the EVs are used (Group B; top/left). More than ∼77% of the
total emissions from EV use are inhaled by residents of counties
with lower average incomes (Groups A plus B) than the cities
where the EV is operated; that aspect reflects potential EJ issues
associated with electricity consumption. The remaining ∼23%
of inhalation will be in higher income counties and most have
lower pollution inhalation compared with urban communities
using EVs (Group C: bottom/right). On average, ∼5% (range:
3−11%) of emissions from coal power plants are inhaled by the
population from the poorest 10% of the China’s counties.
These analyses contrast the case of CVs, for which almost all
tailpipe emissions are inhaled in the city where the CVs are
used. These results demonstrate important EJ impacts
associated with EVs in China. Results here, although developed
to investigate EVs, would generally apply to nearly all urban use
of electricity-demanding technologies.

Figure 2. Bivariate scatter plot of pollution inhalation and income.
Green circles represent advantaged counties (130 counties; total
population >86 million people). Red squares represent disadvantaged
counties (70 counties; total population >45 million people). Brown
triangles represent 34 major cities in the case study (total population
>256 million people). Blue pluses represent unclassified counties
(2672 counties; total population >1.2 billion people). “Advantaged”,
“disadvantaged”, and “unclassified” are defined in the text.
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Discriminant Analysis. Since per capita income and
pollution inhalation are the key outcome measures we use
here to study EJ, we segment counties by those two variables as
shown in Figure 2. Most counties cluster on the lower left
corner (lower income, lower inhalation), almost none on upper
right corner (higher income, higher inhalation). Here, we focus
on “Advantaged” and “Disadvantaged” counties in the income
and inhalation distribution.
Figure 4 presents the distributions of EJ-related variables that

distinguish the advantaged and disadvantaged counties. In each
subfigure, the curves represent the smoothed density of the
distribution. Statistical significance (two-sample t test) is
represented in the subplots of Figure 4 and SI Table S2. In
general, those results support the hypothesis that socio-
economic differences between the disadvantaged and advan-
taged counties are tied to social fairness indicators. For
example, the disadvantaged counties have a comparatively
larger percentage of the population employed in the agricultural
industry (also called “1st industry”), larger proportion of
households with no tap water, lower average education level,
fewer migrants from other counties, and higher death rate. In
contrast, the advantaged counties on average have compara-
tively a larger percentage of the population employed in

manufacturing (“2nd industry”) and service (“3rd industry”),
more migrants from other provinces, higher average education
level, and lower death rate. Based on 2008 data (the most
recent reported data)41 for China overall, 40%, 27%, and 33%
of the population work in agricultural, manufacturing, and
service industry, respectively. The national average annual wage
is 12 958 RMB [US$1,946] (range: unknown) for agriculture,
29 832 RMB [US$4,479] (range: US$3,232−US$5,886) for
manufacturing, and 34 335 RMB [US$5,155] (range: US
$2,925−US$9,285) for service. Counties with more agricultural
industry are usually in rural areas with much lower wages.
Results here illustrate that residents in those counties, not-likely
EV adopters in the short term, bear a disproportionate level of
primary PM2.5 inhalation and health impacts if EVs are used in
higher-income (e.g., urban) regions.
Overall, urban electricity use for EVs displaces emissions

from the point of use (tailpipes for CVs) to the point of
electricity generation (for EVs: typically, distant fossil power
plants). Exposed populations (typically: rural, lower income),
tend to inhale more of that pollution than urban energy users.
In general, nearly all urban electricity consumption suffers from
this same EJ challenge; this aspect is not unique to EVs. EVs are
an interesting case because EV technology transfers formerly

Figure 3. Inhalation of primary PM2.5 emissions attributable to urban EV use, showing results for one city in each of the 16 regional electricity grids.
Each scatterplot represents, for one urban area, the by-county inhalation of emissions attributable to EV use in that city. The red dash lines in each
scatter-plot divide counties into four groupslower-income with lower-inhalation (bottom/left), lower-income with higher-inhalation (top/left),
higher-income with lower-inhalation (bottom/right), and higher-income with higher-inhalation (top/right). (The terms “lower” and “higher” refer to
conditions in the county, relative to the city; for example, “lower-inhalation” means that a county’s PM2.5 inhalation attributable to urban EV use is
lower than the PM2.5 inhalation in the city attributable to urban CV use.) Note that y-axis scales vary among scatterplots. The cross point of dash
lines represents urban use of EVs for that electricity grid. The percentage value given on each of the scatterplots shows the percentage of primary
PM2.5 emissions will be inhaled by populations who have lower income than residents in the urban area where EVs are used (range among cities
shown here: 41−96%, population-weighted mean: 77%). In general, on average, urban use of EVs rather than CVs shifts inhalation of emissions to
locations where income is lower than in the urban area.
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local CV (tailpipe) emissions, to more rural areas. However, EV
adoption could have strong net benefits over CVs, including
improved urban air quality in cities with acute air quality
challenges. This paper’s results should focus attention on the
importance of emission-reductions for electricity generation.
EVs coupled with more renewable power generation could
yield increased energy efficiency, improved air quality, reduced
GHG emission, and improved EJ. EVs are again unique because
the on-road fleet environmental performance can improve over
time if power generation emissions are reduced. However,
replacing CVs with EVs in China raises potential EJ concerns. If
this shift takes place, most emissions will be distributed and
inhaled in communities outside the city where EVs are used,
which generally are in poorer counties. Most (∼77% on
average) primary PM2.5 emissions from coal power plants will
be inhaled by communities that have lower income than the
city where EVs are used. Of the total increase in PM2.5-
inhalation caused by a shift to EVs in China, the poorest
counties (the bottom 10th percentile counties representing
7.4% of the population) will inhale 8.7% while the richest
counties (the top 10th percentile counties representing 12.5%
of the population) will inhale 10.5%. Thus, we estimate that the
average increase in exposure burden from EVs in China would
be 40% greater for the poorest counties than for the richest
counties. Low-income rural communities likely will not directly
benefit from urban EV use. EVs, like with other examples of
increased urban electricity consumption or rural electricity
production, could represent new exposures for nonurban poor
counties. The disadvantaged counties are primarily located in
less development areas in China−areas that are primary
agricultural. A policy implication of our research is the need
to consider ways to avoid or remedy impacts to these lower-

income communities; future policy relevant to EVs (and to
urban electricity consumption in general) should aim to
investigate and tackle this EJ challenge head on.
There are many benefits of EVs not described in this paper

(e.g., noise pollution). A main benefit of widespread EV
adoption is that parallel future improvements in power
generation can have immediate impacts across the trans-
portation sector−something impossible with a large fleet of
aging CVs. This provides the government with more regulatory
and economic control over transportation emissions that could
result in reductions in total pollution and greenhouse gas
emissions. As of 2014, China emerged as one of the world’s
largest producers and users of renewable energy.54 From 2010
to 2014, the percentage of total electricity generated by
nonfossil sources increased from 17% to 20% for wind and
hydro power55 and from 1.8% to 2.4% for nuclear power.55

These increases in renewables and nuclear power can positively
impact PM2.5-related EJ in China. To illustrate, we use Beijing
as a case study to investigate the EJ impacts of three renewable
energy scenarios; in each case, 10% of electricity generation (69
TWh) is replaced with nonemitting sources, and we consider
the same case as above (109 vehicle-kilometers traveled by CVs
were substituted by EVs):

• Scenario I, replace the dirtiest 10th percentile of
electricity generation with nonemitting sources.

• Scenario II, replace lowest capacity (i.e., smallest) 10th
percentile electricity generation with nonemitting
sources.

• Scenario III, replace 10th percentile electricity generation
that is nearest to Beijing with nonemitting sources.

Figure 4. Distributions of key demographic variables that distinguish advantaged and disadvantaged counties. Values show means (standard
deviations). Values for the following demographic attributes are higher for the advantaged counties than for the disadvantaged counties: percentage
of employed population in manufacturing industry, percentage of employed population in service industry, percentage of migrants from other
counties in same province, percentage of migrants from other province, and average education years. Values for the following demographic attributes
show the opposite pattern (higher for the disadvantaged counties than for the advantaged counties): percentage of employed population in
agricultural industry, percentage of family households with no tap water, percentage of minority population, percentage of illiterate population of age
15 and over, and death rate. See text for definitions of “advantaged” and “disadvantaged”.
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The results (Table 1) show that more renewable energy on
Northern China power grid does lead to lower overall

inhalation and better EJ performance for electricity generation.
All three strategies result in similar EJ outcomes, though the
data reflects many small and high-polluting power plants make
up the bulk of the top 10th percentile dirtiest generation.
Scenarios I and II turn out to be similar, because small-capacity
coal plants tend to be comparatively dirty plants. Scenarios I
and II yield a ∼10% drop in the proportion of inhalation
occurring in lower-income counties, a 19−22% drop in total
emissions, and 20−24% drop in total inhalation (and
potentially in subsequent health effects). Scenario III reduces
the proportion of inhalation by lower-income counties by 8%,
corresponding to an 8% reduction in total emissions and 11%
reduction in inhalation, but also results in replacement of
comparatively larger and cleaner power plants, which is a
suboptimal outcome. For the case considered, replacing the
dirtiest (which are often the smallest) plants first would result
in the greatest EJ and total health outcomes. For all cases, such
improvements would improve EJ of emissions from EVs, but
would also lead to dramatic improvements for total electricity
generation from urban consumption.
Key limitations of this study include the following. The most

recent Census data available in the needed format are more
than 4 years old. Intake fractions and emissions may change
over time.56 GDP per capita in China rose more than 60% from
2010 to 2014 (from ∼30 000 RMB [$4,700] to ∼46 500 RMB
[$7,600]), which emphasizes the potential importance of
continually monitoring and updating this analysis. Average
annual income growth rates are 11% and 14% in urban and
rural area, respectively.41 These changes should cause the
counties in Figure 3 to shift toward the right. Dots representing
urban counties would shift slower than those representing rural
counties. At the same time, urbanization in China increased
from 50% urban population in 2010 to 55% urban population
in 2014.41 This urbanization has caused emission inhalation
increases in urban areas and reduced the lower-income
inhalation rates. This change should cause the dots representing
urban counties to shift upward and the dots representing rural
counties shift downward in Figure 3. Furthermore, unregistered
migrants who work in urban area with rural hukou (thus
counted as rural population in the census) might cause
inaccuracies in the EJ analysis. On one hand, the potential

increases in uncounted urban population could increase urban
inhalation rates. This change should cause the dots representing
urban counties shift upward in Figure 3. On the other hand, the
unregistered migrants may cause reduction in estimated GRP
per capita, because unregistered migrants contribute to urban
GRP, but this GRP was divided by smaller registered
populations (not including unregistered migrants). This change
should cause the dots representing urban counties move toward
the left in Figure 3. As a robustness check, we applied the same
methods above to an earlier data set (2000 census data57 and
2006 emissions data58−60). The results were similar (details in
SI Tables S3 and S4), suggests that societal changes during a
∼decade time-scale some of which were sizable (e.g., GDP per
capita was 74% lower in 2000 than 2010, urbanization rate was
36% lower in 2000 than 2010) have not dramatically altered the
broad findings given here.
The methods employed here rely on coarse spatial data

inputs (counties and large buffers surrounding fossil power
plants). The regression approach developed by Zhou et al.45

used dispersion models to estimate regression relationships
between air pollution concentrations and geographic and
population parameters. They found that the regression
approach was robust to different geographies within China
(e.g., interior and coast), the results are generalizable across
fossil power plants in China (especially for PM), and the results
are most suited for policy analysis and support (e.g., as is
presented here). Our main assumptions include uniform
within-zone pollution and population concentrations. If better
air dispersion modeling were available connecting emissions to
inhalation for each fossil power plant, we could revise our
approach. Each fossil power plant has different pollution
technology and pollution dispersion characteristics across
nonuniform populations; our study does not include those
important sources of variability. As a result, our study is limited
to informing electric utility policy, not making recommenda-
tions for specific fossil power plant pollution controls. We
consider here only coal power plants and only primary PM2.5.
Consideration of additional fuels and pollutants (including
secondary PM2.5) is important for future research. Another
limitation of this research is that within-urban EJ concerns are
not considered;17,61 investigating that issue would require a
different air dispersion modeling approach to the one employed
here.
Despite those limitations and the many changes in the past 4

years, the general findings of this study will likely hold as long
as growth in income and consumption in urban areas outpace
rural growth. Electric vehicles continue to be promising
technologies for sustainable transportation, particularly if the
power sector increases the use of non- and lower-emitting
sources of electricity. Future increased reliance on electricity
generation for the transportation sector calls to mind the need
to address the increased health burden on the rural poor who
are not likely early beneficiaries of EVs. This paper highlights an
important step toward understanding a sustainable trans-
portation energy policy that includes EJ and fairness as key
values. As noted above, our general findings are not unique to
EVs, but are common to nearly all electricity-demanding
technologies consumed predominantly in urban areas.
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Table 1. Impact of Renewable Energy on EJ Aspect in
Beijing

scenario

current
I -

dirtiest
II -

smallest
III -
closest

number of coal power plants in
Northern China grid

438 177 126 404

electricity generation from coal
power plants (TWh)

693 624 624 624

PM2.5 emissions (metric ton) 38.0 29.6 30.8 34.9
PM2.5 inhalations (g) 374 284 298 334
proportion of inhalation in four
groups (%)a

(8; 0;
92; 0)

(18; 0;
82; 0)

(18; 0;
82; 0)

(13; 4;
80; 3)

proportion of inhalation in
lower-income counties (%)

92 82 82 84

aThe order of four groups is (higher income with lower inhalation;
higher income with higher inhalation; lower income with lower
inhalation, lower income with higher inhalation).
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Inhalation of primary PM2.5 emissions from EV shift in
34 major cities (Figure S1 and Table S1) and outcomes
of two sample t tests for equal means of selected census
variables (Table S2). We also include main indicators
from this method applied on earlier-year data (2000
census data and 2006 emissions data) in Table S3 and
Table S4 (PDF)
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