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Abstract. The Kraichnan-Leith-Batchelor scenario of a dual cascade, con-
sisting of an upscale pure energy cascade and a downscale pure enstrophy
cascade, is an idealization valid only in an infinite domain in the limit of in-
finite Reynolds number. In realistic situations there are double cascades of
energy and enstrophy located both upscale and downscale of injection, as long

as there are cascades. We outline the statistical theory governing the double
cascades and predict the form of the energy spectrum. We show that in gen-
eral the twin conservation of energy and enstrophy imply the presence of two
constant fluxes in each inertial range. This gives rise to a more complicated
energy spectrum, which cannot be predicted using dimensional arguments as

in the classical theory.

1. Introduction. The theory of two-dimensional turbulence is in many ways more
complex than that of three-dimensional turbulence of Kolmogorov, and perhaps
even richer in phenomena. Consequently, however, many fundamental issues remain.
The framework proposed by Kraichnan [19], Leith [22] and Batchelor [3] (KLB)
is so idealized that it is almost impossible to reproduce numerically, hence the
existence of a large body of theories/explanations of why the numerical spectra are
steeper than those predicted by the KLB theory [32, 35, 38]. The observed spectra
in the atmosphere also have some “paradoxical” features compared with the KLB
prediction. Setting aside the issue of whether two-dimensional turbulence theory is
an adequate model for the atmosphere (discussed in detail in [44]), the unintuitive
behavior of two-dimensional turbulence highlights the need for a deeper theoretical
understanding. The goal of this paper is to take a first step by outlining the logical
structure of the statistical theory that governs two-dimensional turbulence.
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80 E. GKIOULEKAS AND K. K. TUNG

Let uα(x, t) be the Eulerian velocity field. The governing equations of two-
dimensional turbulence are:

∂uα

∂t
+ uβ∂βuα = −∂αp + dα + fα,

∂αuα = 0,
(1.1)

where fα is a stochastic forcing term that injects energy and enstrophy into the
system, and dα represents a dissipation mechanism. Note that we use Einstein’s
summation notation whereby repeated indices are summed over the available di-
mensions, and ∂α represents spatial differentiation with respect to the α component.
The scope of this paper is limited to the case of forced two-dimensional turbulence
in which forcing and dissipation reach a statistical equilibrium.

The unique feature of two-dimensional turbulence is that there exist two con-
served quadratic invariants: energy E and enstrophy G defined as

E(t) =
1

2

∫

uα(x, t)uα(x, t)dx

G(t) =
1

2

∫

ζ2(x, t)dx,

(1.2)

where ζ = εαβ∂αuβ is the scalar vorticity, and εαβ is the Levi-Civita tensor in two
dimensions. The corresponding energy and enstrophy spectra are related by

G(k, t) = k2E(k, t). (1.3)

where k is the wavenumber. If ε is the rate of energy injection and η is the rate
of enstrophy injection, then the characteristic forcing length scale `0 is defined as
`20 = ε/η.

In physical systems modeled by two-dimensional turbulence, the dissipation dα

usually has the form

dα = ν∇2uα − βuα. (1.4)

The first term corresponds to molecular viscosity. It usually acts as an energy and
enstrophy sink at small scales. The second term corresponds to linear damping. It
models the Ekman damping in the atmosphere [34], and the energy sink in soap film
experiments [37]. In some numerical experiments, hypodiffusion is used in place of
linear damping for the infra-red sink. This has the advantage of concentrating the
sink near a few largest wavelengths. For a similar reason, hyperdiffusion is used
for the sink at small scales to concentrate the dissipation range to a small band of
wavenumbers in the ultraviolet end. The general form of the dissipation term, for
the combined case of hypodiffusion and hyperdiffusion, is written as

dα = (−1)κ+1ν∇2κuα + (−1)m+1β ∇−2muα. (1.5)

The numbers κ and m are the order of hyperdiffusion and hypodiffusion correspond-
ingly. The dependence of the results of numerical simulations on hyperdiffusion and
hypodiffusion is not well understood, but there is some notable recent progress (see
discussion later).

Based on Kolmogorov’s [1, 17, 18] concept of an downscale energy cascade in
three-dimensional turbulence, Kraichnan [19], Leith [22], and Batchelor [3] (KLB)
proposed that in two-dimensional turbulence there is an upscale energy cascade
and a downscale enstrophy cascade, when the stochastic forcing injects energy and
enstrophy in a narrow band of intermediate length scales. Assuming that all the
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Figure 1. The Kraichnan-Leith-Batchelor scenario of a dual-pure cas-

cade. There is a pure energy upscale cascade upscale of the injection

and a pure downscale enstrophy cascade downscale of the injection.

energy flows upscale and all of the enstrophy flows downscale, KLB invoke a di-
mensional analysis argument, similar to Kolmogorov’s, to show that the energy
spectrum in the upscale energy range is

E(k) = Cirε
2/3k−5/3, (1.6)

and in the downscale enstrophy range is

E(k) = Cuvη2/3k−3. (1.7)

Anticipating the objection that the dimensional analysis arguments cannot be ap-
plied to the enstrophy cascade, because of nonlocality, in a subsequent paper [21]
Kraichnan proposed that the enstrophy cascade energy spectrum is given by

E(k) = Cuvη2/3k−3[ln(k`0)]
−1/3, (1.8)

and showed, using a one-loop closure model [20], that this logarithmic correction is
consistent with constant enstrophy flux. Furthermore, to eliminate the singularity
at k`0 = 1, Bowman [6] showed that a constant term needs to be introduced along
with the logarithmic correction, and the improved equation reads

E(k) = Cuvη2/3k−3[χ + ln(k`0)]
−1/3, (1.9)

where χ is a constant that may or may not be universal.
In the KLB idealization there is only a single flux in each inertial range: a

pure energy upscale cascade on the upscale side of injection and a pure downscale
enstrophy cascade on the downscale side of injection (see Fig. 1). This situation is
called the dual-pure cascade. The dimensional analysis argument used by previous
authors would fail if there is more than one flux in each inertial range. There is no
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Figure 2. The scenario of a dual-double cascade. There is a double

cascade of energy and enstrophy upscale of the injection scale and a

double cascade of energy and enstrophy downscale of the injection scale.

large-scale (infra-red) sink of energy in the KLB picture, but it requires an infinite
domain: all injected energy is transferred to larger and larger scales and thus escapes
dissipation altogether. This picture is clearly unrealizable in numerical experiments
and in nature, where the domain is finite. In reality the finite size of the numerical
or natural domain contains the energy, which then piles up at the largest scales.

Eyink [8] has shown that although in the limit ν → 0, the total energy, under
steady state, is infinite, for finite ν, it is bounded. It has also been shown by
Tran and Shepherd [43] that in a finite domain with finite viscosity, a cascade of
enstrophy on the downscale side of injection is not allowed without the presence
of an infrared dissipation term that can provide an energy sink at large scales.
Further considerations by Tran and Bowman [42] have argued that in the absense
of a sufficient infra-red sink, most energy and enstrophy is dissipated at the forcing
scale, leading to steep spectra both upscale and downscale of injection. Tran and
Bowman [41] have also shown that the inverse energy cascade could be realized
temporarily as a quasi-steady state even in the absense of an infrared sink, but not
the enstrophy cascade. Since Kraichnan’s conjecture of a dual cascade was intended
for the problem of turbulence driven by the Navier-Stokes equations without the

infrared dissipation sink, these papers highlight a number of serious problems with
this conjecture.

Here, we are concerned with the case where there is a significant dissipation sink
at large scales, as well as at the small scales, and the viscosity coefficients for both
sinks are finite. The presence of such an infrared sink unavoidably dissipates some
enstrophy, and the finite viscosity enstrophy sink at small scales will inevitably
also dissipate some energy. It is therefore necessary to scrutinize, in a similar
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manner, the conjecture that in turbulence driven by the infrared-damped Navier-
Stokes equations there is a dual cascade that consists of an upscale double cascade
of energy and enstrophy, where the energy flux is dominant, and a downscale double
cascade of enstrophy and energy, where the enstrophy flux is dominant (see Fig. 2).
Because there are two fluxes present in each cascade, it is not obvious that the form
of the energy spectrum can be deduced from dimensional analysis. Furthermore,
it is alternatively possible that non-local interactions may dominate that transfer
energy and enstrophy directly to the dissipation range, or that the cascades may
fail to form altogether.

The present paper introduces a theoretical framework that can address these
issues. We predict the form of the energy spectrum for the case where double cas-
cades form successfully. We also describe the possible modes of failure that may
lead to a non-universal energy spectrum. Furthermore, we address the common
misconception that it is not possible for an energy and enstrophy cascade to coex-
ist in the same spectral region. In a companion paper [15], we show that unlike
the case of atmospheric turbulence, in two-dimensional turbulence the contribution
to the energy spectrum from the subleading cascade remains always hidden. We
also review in detail the experimental evidence from numerical simulations of two-
dimensional turbulence to explain what is understood so far with respect to the
realizability of universal downscale and upscale double cascades. The case of the
energy spectrum of atmospheric turbulence is also considered as an example from
a different dynamical system where we encounter a downscale double cascade of
energy and enstrophy. A more rigorous proof of the theory and its consequences
will be given in future publications.

The plan of this paper is as follows. In section 2 we outline a theory that governs
the double cascade scenario. We begin by reviewing, in section 2.1, the nonpertur-
bative theory of the balance equations introduced by L’vov and Procaccia [25–29] to
explain three-dimensional turbulence. In the framework of this theory, the energy
conservation law implies the existence of a homogeneous solution that is responsible
for the downscale energy cascade of three-dimensional turbulence. In section 2.2
we show that this theory can be extended to account for the energy and enstro-
phy cascades of two-dimensional turbulence. In section 2.3, we propose that the
twin conservation of energy and enstrophy in two-dimensional turbulence implies
the existence of two independent homogeneous solutions: one is responsible for an
energy cascade, the other for an enstrophy cascade. We conclude that both upscale
and downscale of the injection scale there exist a double cascade of energy and
enstrophy. Because of linearity of the statistical theory, these two solutions can be
linearly superimposed, giving rise to a new form for the energy spectrum involving
both energy and enstrophy cascades. In section 3, we address the common miscon-
ception that it is not possible to have an inertial range in which both the energy
and the enstrophy flux are constant. In section 3.1, we show that in fact a double
cascade of energy and enstrophy is permitted both in the downscale direction and
the upscale direction. In section 3.2, we review the argument given by Kraichnan
against the coexistence of constant energy flux and constant enstrophy flux in the
same range, and show that it is consistent with our point of view when the role
of the similarity assumption is clarified. Section 4 concludes the paper. Appendix
A lists the relationship between the energy spectrum and the generalized structure
functions. Appendix B shows the terms of the balance equations in detail.
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2. Theoretical framework. Both the K41 theory for three-dimensional turbu-
lence, and the KLB theory for two-dimensional turbulence are based on a dimen-
sional analysis argument. However, Frisch [11, 12] has suggested that Kolmogorov’s
second paper [17] leads to the following more rigorous reformulation of the dimen-
sional analysis argument. First, one postulates local homogeneity, local isotropy,
self-similarity, and the existence of an anomalous energy sink. An anomalous sink
is defined as one which remains finite in the limit as the viscous coefficient ν ap-
proaches zero from above. Then, one uses these assumptions to derive the 4/5 law,
and from the self-similarity assumption the scaling for all structure functions and
thus the energy spectrum can be deduced. It is possible to formulate a theory for
two-dimensional turbulence in the same way. The problem is that the assumptions
involved are not obviously true in two-dimensional turbulence. For example, it is
not obvious that an anomalous enstrophy sink exists at small scales, and an anoma-
lous energy sink at large scales. Furthermore, it turns out that the assumption of
self-similarity is too restricting.

We propose that one way to make progress is to adapt the theoretical work
of L’vov and Procaccia [25–29] to two-dimensional turbulence. This amounts to
replacing the assumption of the anomalous sinks with the weaker assumption that
the energy and enstrophy cascades satisfy the fusion rules. We continue to postulate
local homogeneity and local isotropy, and we also postulate a weaker assumption of
self-similarity than the one used by Frisch.

From the fusion rules, it is possible to show the locality of interactions in the
inertial range. Furthermore, it is also possible to calculate the location of the
boundary between the inertial range in the dissipation range, as well as the boundary
between the inertial range and the forcing range. In the first case, we obtain the
location of the dissipation length scale, and from that we may calculate whether the
anomaly of the enstrophy or energy sink is recovered. In the second case, we find
whether the proposed inertial range is stable with respect to perturbations to the
statistical forcing or the boundary conditions. These two calculations amount to
necessary and sufficient conditions for the formation of an observable inertial range.

In future publications, we will present these developments in detail. In the
present paper we restrict ourselves to the conclusions that are suggested from the
structure of the theory, as long as we assume that the aforementioned conditions
are satisfied.

2.1. Theoretical background for three-dimensional turbulence. We begin
with a brief overview of the corresponding theory [25] for three-dimensional tur-
bulence, before concentrating on two-dimensional turbulence. This review stresses
those aspects of the theory that we find relevant for the problem of two-dimensional
turbulence, and it reflects, to some extent, our point of view. Let wα represent the
Eulerian velocity difference, defined as

wα(x,x′, t) = uα(x, t) − uα(x′, t). (2.1)

and define the generalized structure function in terms of the following product

Fα1α2...αn
n ({xk,x′

k}
n
k=1, t) =

〈[

n
∏

k=1

wαk
(xk,x′

k, t)

]〉

, (2.2)

where 〈·〉 denotes ensemble average. For convenience, we omit the tensorial su-
perscripts, unless they are needed for clarity. The inertial range, for the case of
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three-dimensional turbulence, can be characterized as the region where the gener-
alized structure functions satisfy approximately

Fn({λxk, λx′
k}

n
k=1, t) = λζnFn({xk,x′

k}
n
k=1, t), (2.3)

where ζn are the corresponding scaling exponents and λ ∈ (1 − ε, 1 + ε) with ε
small. The energy spectrum E(k) is related to F2 via a linear transformation (see
appendix A for details). If 0 < ζ2 < 2, then the energy spectrum has scaling
E(k) ∼ k−1−ζ2 [12]. If there is a logarithmic correction, then the result also holds
for ζ2 = 2. Kolmogorov’s theory [17, 18] predicts that, for the energy range of three-
dimensional turbulence, the scaling exponents satisfy ζn = n/3. In reality, there
are non-trivial corrections, called “intermittency corrections”[12].

Differentiating Fn with respect to time, and substituting into the Navier-Stokes
equations, gives a sequence of equations of the form

∂Fn

∂t
+ Dn = νJn + βHn + Qn, (2.4)

where Dn is the combined contribution of the pressure and the nonlinear term, Qn

is the contribution of the forcing term, Jn accounts for diffusion or hyperdiffusion,
and Hn accounts for damping or hypodiffussion (see appendix B for the detailed
form of the terms). Equations of this type have been introduced by L’vov and
Procaccia [26, 28]. It has been shown, in section IV-B and appendix B of reference
[28], that Dn can be rewritten in the form

Dn = OnFn+1 + In, (2.5)

where O is a linear operator, and In represents the interaction of velocity differences
with the mean flow. Under global homogeneity, where the mean flow is removable
by a Gallilean transform, we have In = 0. For a stationary system, the generalized
structure functions will satisfy an infinite chain of balance equations of the form

OnFn+1 + In = νJn + βHn + Qn. (2.6)

The essential point is that these equations are a linear system with respect to the
generalized structure functions Fn. They become nonlinear only when they are
truncated by some nonlinear closure schemes, such as the Leith [22] and Pouquet
[36] schemes used by Lilly [23]. It follows that they have a homogeneous solution
that satisfies the equation OnFn+1 = 0, and a particular solution driven by Qn and
In. The viscous terms act to modify the homogeneous solution by introducing a
dissipation range, as discussed in the next section.

The distinguishing features of the direct energy cascade are that it exhibits uni-
versal scaling, and that it involves a process by which energy is transferred progres-
sively from large scales towards small scales by triad interactions. The fusion rules
are intended to describe this cascade process mathematically. The locality of inter-
actions in the integrals of OnFn+1 can be proven from the fusion rules. However,
it is still possible for the non-local interactions to contribute sufficient influence
in the inertial range and destroy universal scaling. The extent of this influence is
characterized by the magnitude of the other terms of the balance equations.
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Universal features, such as the energy cascade, are represented by the homoge-
neous solution, as long as dissipative corrections can be neglected, whereas non-
universal features, such as the forcing range, are represented by the particular so-
lution. The extent of the energy cascade is therefore the region where the homoge-
neous solution dominates the particular solution1. This leads to a calculation that
enables us to examine the stability of the energy cascade with respect to perturba-
tions to the forcing statistics by comparing the order of magnitude of Qn against
OnFn+1. Similarly, it is also possible to derive the location of the dissipation length
scales [29] by comparing the order of magnitude of νJn and βHn against the typical
term in OnFn+1. The fusion rules are used to find the scaling exponents of OnFn+1,
so that it can be compared with the other terms.

It should be stressed that it is not obvious that a non-trivial homogeneous solu-
tion should exist in the first place. It can be shown, however, that a consequence of
the conservation of energy is that the equation O2F3 = 0 has a non-trivial solution
if ζ3 = 1 [29]. To see this explicitly, note that after some calculations, we find

O2F3(x1,x
′
1,x2,x

′
2) =

1

2

d[S3(r12) − S3(r12′)]

dr1
+

1

2

d[S3(r1′2′) − S3(r1′2)]

dr1′

= A[rζ3−1
12 − rζ3−1

12′ + rζ3−1
1′2′ − rζ3−1

1′2 ].

(2.7)

where r12 = ‖x1 − x2‖, etc, and

S3(r) = 〈[uα(x0 + re, t) − uα(x0, t)]
3〉 (2.8)

is the standard 3rd order structure function (assuming local homogeneity and local
isotropy) with e an arbitrary unit vector. Equation (2.7) is zero (the homogeneous
equation O2F3 = 0) for all configurations of velocity differences when either the
numerical constant A = 0 (the trivial solution), or when ζ3 = 1 (the non-trivial
solution). Given ζ3 = 1, one may show that it leads to a constant energy flux
proportional to A.

Further development [5, 30] of this theory has given theoretical grounds in sup-
port of the self-similarity property of the generalized structure functions Fn. The
argument can be summarized as follows: first, it is observed that the homogeneous
equations are invariant with respect to the following group of transformations

r 7→ λr, Fn 7→ λnh+Z(h)Fn. (2.9)

This means that in an inertial range, where the homogeneous equations are a valid
approximation, solutions Fn,h that satisfy the self-similarity property

Fn,h({λxk, λx′
k}

n
k=1, t) = λnh+Z(h)Fn,h(xk,x′

k}
n
k=1, t), (2.10)

are admissible. What actually happens in the inertial range of three-dimensional
turbulence is that the correct solution is the linear combination of these solutions,
given by

Fn =

∫

dµ(h)Fn,h. (2.11)

This conclusion also follows from the multifractal model of Frisch [12]. In the
case here, however, it is established on theoretical grounds without the multifractal

1This is in fact the more rigorous definition of an inertial range with a cascade of a conserved
quantity in the traditional sense. The self-similarity property of the generalized structure functions

in an inertial range is only approximately true in two-dimensional turbulence, and, appearently,
even for the case of three-dimensional turbulence.
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assumption. For each n the observable scaling exponent ζn is given by

ζn = min
h

[nh + Z(h)]. (2.12)

All the other contributions are hidden. In other words, for each Fn, the observable
scaling exponent ζn is caused by a Fn,h with distinct h.

According to L’vov and Procaccia, Z(h) can be evaluated from a solvability
condition applied on the homogeneous equations. This can be used, in principle, to
calculate the scaling exponents [4]. Unfortunately, this is a very difficult calculation.
The only scaling exponent that is not difficult to evaluate is ζ3. Recently L’vov and
Procaccia [31], proposed an alternative perturbative argument that can calculate
all the scaling exponents accessible to experiment, given ζ2 and ζ4. An independent
calculation by Giles [14] closes the argument by showing how the scaling exponents
can be evaluated diagrammatically without any experimental input. For our present
purpose, only ζ2 is needed. Based on the assumption that intermittency corrections
are negligeble for ζ2, we will use ζ2 ≈ 2ζ3/3. This yields the well-known k−5/3

spectrum of three-dimensional turbulence.

2.2. The case of two-dimensional turbulence. These arguments can be re-
peated for the case of two-dimensional turbulence. The balance equations have the
same form, and the relevant locality and stability arguments can be extended to
the two-dimensional case as well. The homogeneous equation OnFn+1 = 0 still
has a solution that corresponds to an energy cascade like before. However, two-
dimensional turbulence also conserves enstrophy, and it is anticipated that there
is a corresponding enstrophy cascade. A homogeneous solution corresponding to
the enstrophy cascade cannot be obtained from OnFn+1 = 0. To show how the
enstrophy cascade can arise, it is necessary to introduce the generalized structure
functions of the vorticity differences

Gn({xk,x′
k}

n
k=1, t) =

〈

n
∏

k=1

[ζ(xk, t) − ζ(x′
k, t)]

〉

. (2.13)

These are related with Fn through differentiation as follows:

Gn({xk,x′
k}

n
k=1, t) =

[

n
∏

k=1

εαkβk
(∂αk,xk

+ ∂αk,x′
k
)

]

F β1β2...βn
n ({xk,x′

k}
n
k=1, t)

(2.14)
The relationship between Fn and Gn is a linear transformation, written in abbre-
viated form as Gn = TnFn. For Gn a similar infinite chain of equations can be
written by applying Tn on the balance equations for Fn

∂Gn

∂t
+ TnOnFn+1 + TnIn = νTnJn + βTnHn + TnQn. (2.15)

Since Tn is a local differential operator, the relative scaling between the terms
remains the same. It follows that the locality and stability proofs don’t need to be
repeated for this equation. The corresponding homogenous equation

TnOnFn+1 = 0 (2.16)

admits two non-trivial solutions: one corresponding to the energy cascade (the
solution of OnFn+1 = 0), and one corresponding to the enstrophy cascade, which
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is exclusive to the operator TnOn. Specifically, using the conservation of enstrophy,
one may show that

T2O2F3(x1,x
′
1,x2,x

′
2) = B[rζ3−3

12 − rζ3−3
12′ + rζ3−3

1′2′ − rζ3−3
1′2 ]. (2.17)

and the solvability condition for T2O2F3 = 0 is ζ3 = 3. It can be shown that this
corresponds to constant enstrophy flux proportional to B. Using the axiomatic
assumption ζ2 = 2ζ3/3, we obtain the k−3 spectrum of the enstrophy cascade.
However, since O2F3 = 0 is satisfied when ζ3 = 1, the necessary and sufficient solv-
ability condition for T2O2F3 = 0 is ζ3 ∈ {1, 3}. We conclude that two homogeneous
solutions are admissible to eq. (2.16): an energy cascade with constant energy flux
and no enstrophy flux, or an enstrophy cascade with constant enstrophy flux and
no energy flux. These two solutions were shown to exist by Kraichnan [21], who
however did not know that they could be superimposed (see discussion in section
3.2). Furthermore, Kraichnan’s argument shows that the reason why both solu-
tions, by themselves, correspond to pure cascades is because they are individually
self-similar.

It is appropriate to use equation (2.15) because we expect the vorticity differ-
ences statistics to reach stationarity. It is the stationarity condition that legitimizes
using the balance equations, as modified by the Tn operator. The enstrophy cascade
solution itself is extracted from the conservation of enstrophy. Furthermore, unlike
the case of three-dimensional turbulence, in two-dimensional turbulence the gen-
eralized structure functions Fn have logarithmic corrections. It is unclear whether
these corrections can be accounted for as the effective scaling of the combination
of the individual Fn,h solutions as a whole, or whether they should be treated as
subleading contributions to Fn,h themselves. In any event, as discussed in [15], we
are satisfied with adopting the theory of Falkovich and Lebedev [9, 10] to derive
the logarithmic corrections, as long as the existence of separation of scales in the
enstrophy range can be shown.

Another point that requires careful clarification for the case of two-dimensional
turbulence is the effect of the dissipative terms in controlling the location of the
dissipation scales. The dissipation terms in the balance equation can be written as

νJn + βHn = ν

n
∑

k=1

(∇2κ
xk

+ ∇2κ
x′

k
)Fn + β

n
∑

k=1

(∇−2m
xk

+ ∇−2m
x′

k
)Fn.

≡ DnFn,

(2.18)

which is a linear transformation Dn on Fn. It follows that the contribution of the
inertial range combined with the dissipation range to Fn is in fact a homogeneous
solution to the following modified equation:

TnOnFn+1 − TnDnFn = 0. (2.19)

In other words, the presence of the dissipative terms modifies the linear operator
that generates the balance equations, and in doing so it modifies the homogeneous

solutions responsible both for the leading and subleading cascades both downscale
and upscale. The modification amounts to truncating the inertial range with the
dissipation range.

To find the length scale where transition to dissipation range takes place, it is
sufficient to substitute the inertial range solution Fn for one of the four cascade pos-
sibilities, and compare the interaction term with the dissipative term. The point
where the dissipative term becomes important is where the dissipation terms modify
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the homogeneous solution and where the dissipation range begins. It follows from
this that the location of the dissipation scale corresponding to one of the homoge-
neous solutions present is independent of the energy or enstrophy flux corresponding
to the other homogeneous solutions. Without this fact it is not possible to estimate
the dissipation scales using dimensional analysis, or the method employed by Frisch
[12], which Smith [39] attempted to apply to the problem at hand.

2.3. The double cascade energy spectrum. The overall structure of the pro-
posed theory has interesting consequences. We have two distinct homogeneous
solutions that correspond to the two conservation laws. Furthermore, because the
homogeneous equations (2.16) are an infinite linear system, a linear combination
of the two solutions is also a solution. We also have an upscale and a downscale
spectral region where universal behavior can be situated.

In the limiting case of infinite Reynolds numbers in an infinite domain, we are
expecting a pure upscale energy cascade and a pure downscale enstrophy cascade.
The pure cascades correspond to the individual homogeneous solutions discussed
earlier. In the more realistic case of finite domain and finite viscosities, we anticipate
instead a downscale and upscale double cascade of energy and enstrophy. From the
linearity of the statistical theory it is clear that such double cascades are realized
as linear combinations of the two homogeneous solutions that represent the energy
cascade and the enstrophy cascade. As one approaches the limit of infinite Reynolds
number, for each double cascade, one solution will be dominant and responsible for
the observable scaling of the structure functions and the energy spectrum, whereas
the other solution will be hidden.

It should be remembered that each homogeneous solution is individually modi-
fied by the dissipative terms independently of the other homogeneous solution. Fur-
thermore, each individual homogeneous solution is itself a bundle of homogeneous
solutions Fn,h combined in a specific way to guarantee the solvability condition. In
two-dimensional turbulence we have two such bundles of solutions coexisting side
by side; one for the energy cascade and one for the enstrophy cascade.

For the downscale double cascade, the linear structure of the theory implies the
following expression for the structure functions Sn(r):

Sn(r) = S(ε)
n,uv(r) + S(η)

n,uv(r) + S(p)
n,uv(r),∀r ∈ (0, `0), (2.20)

where S
(p)
n,uv(r) is the particular solution driven by the forcing and the boundary

term, S
(ε)
n,uv(r) is the contribution of the homogeneous solution corresponding to

the energy cascade, and S
(η)
n,uv(r), similarly, the contribution corresponding to the

enstrophy cascade. They are given by

S(ε)
n,uv = an,1(εuvr)n/3

D
(ε)
n,uv(r/`(ε)n,uv)

S(η)
n,uv = an,2(ηuvr3)n/3(χn + ln(`0/r))

2n/3
D

(η)
n,uv(r/`(η)

n,uv),
(2.21)

where εuv and ηuv are the downscale energy and enstrophy fluxes, and D
(η)
n,uv, D

(ε)
n,uv

are the dissipative corrections, expected to satisfy D
(ε)
n,uv(x) ≈ 1 and D

(η)
n,uv(x) ≈ 1

when 0 < x < 1. The energy spectrum is a linear transform of S2(r) (see appendix
A) and it is given by

E(k) = E(ε)
uv (k) + E(η)

uv (k) + E(p)
uv (k), ∀k`0 � 1, (2.22)
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where E
(p)
uv (k) is the contribution of the particular solution , and E

(ε)
uv (k), E

(η)
uv (k)

are the contributions of the downscale energy and enstrophy cascade, given by

E(ε)
uv (k) = auvε2/3

uv k−5/3
D

(ε)
uv (k`(ε)uv )

E(η)
uv (k) = buvη2/3

uv k−3[χ + ln(k`0)]
−1/3

D
(η)
uv (k`(η)

uv ),
(2.23)

with D
(ε)
uv and D

(η)
uv describing the dissipative corrections. The scales `

(ε)
uv ,`

(η)
uv are

the dissipation length scales for the downscale energy and enstrophy cascade. The
absence of intermittency corrections, which would introduce additional factors in-
volving the scale `0, is assumed. Thus, in the inertial range where the effect of
forcing and dissipation can be ignored, the energy spectrun will take the simple
form

E(k) ≈ auvε2/3
uv k−5/3 + buvη2/3

uv k−3[χ + ln(k`0)]
−1/3. (2.24)

It should be stressed however that without a more detailed development of this
theory, one cannot take it for granted that there will exist a spectral region – the
inertial range – where this approximation can be justified. Furthermore, the mixed
form of the energy spectrum E(k) is obviously not self-similar. This point is relevant
to the discussion in section 3.2.

Similar expressions can be written for the upscale range. Of particular interest
is the energy spectrum which is written as

E(k) = E
(ε)
ir (k) + E

(η)
ir (k) + E

(p)
ir (k), ∀k`0 � 1, (2.25)

with the constituent terms defined similarly, where

E
(ε)
ir (k) = airε

2/3
ir k−5/3

D
(ε)
ir (k`

(ε)
ir )

E
(η)
ir (k) = birη

2/3
ir k−3

D
(η)
uv (k`(η)

uv ).
(2.26)

It is unclear at this point whether or not the upscale enstrophy cascade should

admit a logarithmic correction. Again, `
(ε)
ir , `

(η)
ir are the dissipation scales of the

upscale energy and enstrophy cascades.
If we postulate that the fusion rules are satisfied by all four cascades, then it

is possible to calculate the location of all four dissipation scales `
(ε)
uv ,`

(η)
uv , `

(ε)
ir , `

(η)
ir .

The theoretical basis for such a calculation lies in observing that the dissipation
terms act by modifying the homogeneous solutions, as discussed in the previous
section. A detailed account of the calculation of all the relevant scales will be given
elsewhere. It is based on an upgraded version of the method outlined in [28]. To
find the dissipation length scales of the energy spectrum, it is sufficient to find
the corresponding dissipation scales of F2, with which they have the same order of
magnitude. For the dominant cascades, we find that the dissipation scales are given
by

`(η)
uv = `0

[

R
(η)
uv

R
(η)
0,uv

]−1/(2κ)

=

[

1

R
(η)
0,uv

η
1/3
uv

ν

]−1/(2κ)

`
(ε)
ir = `0

[

R
(ε)
ir

R
(ε)
0,ir

]3/(2+6m)

=

[

1

R
(ε)
0,ir

ε
1/3
ir

β

]3/(2+6m)

,

(2.27)
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where, R
(η)
uv and R

(ε)
ir , are the Reynolds numbers corresponding to the downscale

enstrophy cascade and upscale energy cascade, correspondingly, defined as

R
(η)
uv =

η
1/3
uv `2κ

0

ν

R
(ε)
ir =

ε
1/3
ir `

−2m−2/3
0

β
.

(2.28)

The numerical constants R
(ε)
0,uv,R

(η)
0,uv can be interpreted as critical Reynolds num-

bers for the corresponding cascades, and they may have some dependence on κ
and m. They represent the minimum required Reynolds number for separating the
dissipation scale from the injection scale.

These relations are consistent with what is anticipated from dimensional analy-
sis. However, for the relevant case of molecular diffusion κ = 1, we find that the

dissipation scale `
(η)
uv is instead obtained by solving the following transcendental

equation
(

`0

`
(η)
uv

)3/2

ln

(

`0

`
(η)
uv

)

=

[

1

R
(η)
0,uv

η
1/3
uv `20
ν

]3/4

. (2.29)

We see that in most cases the result is consistent with dimensional analysis and with
“Hypothesis 3” of Eyink [8]. The interesting exception is the case κ = 1 which is
consistent with “Hypothesis 2” of Eyink [8] but not “Hypothesis 3”. These results
should be modified if there are intermittency corrections to the cascades or if it
should turn out that the fusion rules fail. A similar calculation for the subleading
cascades gives the other two dissipation scales

`(ε)uv = `0

[

R
(ε)
uv

R
(ε)
0,uv

]3/(2−6κ)

=

[

1

R
(ε)
0,uv

ε
1/3
uv

ν

]3/(2−6κ)

`
(η)
ir = `0

[

R
(η)
ir

R
(η)
0,ir

]1/(2m)

=

[

1

R
(η)
0,ir

η
1/3
ir

β

]1/(2m)

,

(2.30)

where, R
(ε)
uv and R

(η)
ir , are defined as

R
(ε)
uv =

ε
1/3
uv `

2κ−2/3
0

ν

R
(η)
ir =

η
1/3
ir `−2m

0

β
.

(2.31)

For the case of Ekman damping m = 0, the expression given for `
(η)
ir is invalid. If

we allow the logarithmic correction, then the expression for `
(η)
ir should be replaced

by an exponential function. However it is far more plausible that this result means
that a constant inverse enstrophy flux may not be possible for this case. That would
imply that the energy flux cannot be constant either, as we will show in the next
section. It should be stressed again that these results hinge on the validity of the
fusion rules.

For the case where there is the dominant downscale enstrophy flux and the dom-

inant upscale energy flux, the interesting dissipation scales are defined as `ir ≡ `
(ε)
ir

and `uv ≡ `
(η)
uv . That is, `ir is the leading upscale energy dissipation scale, and `uv

is the leading downscale enstrophy dissipation scale.
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To put this theory on solid ground, it is necessary to consider a number of
subtle questions, such as locality and stability. The crucial condition that needs to
be established to show that energy and enstrophy cascades will form both on the
upscale and downscale side of injection is threefold: First, the homogeneous solution
shouldn’t be hidden by the particular solution. Second, the dissipative corrections
to the homogeneous solution should not destroy the inertial range but allow ample
room for a cascade to form. Third, the dissipative scales must be positioned so that
the incoming energy and enstrophy can be dissipated. Further development of this
theory promises to show under what circumstances this condition is satisfied.

3. On the coexistence of constant energy and enstrophy flux. The notion
of an inertial range where constant (in wavenumber) energy flux and a constant
enstrophy flux coexist runs against a common misconception. It is widely believed
that Kraichnan [19] showed, in his original paper, that it is not possible for constant
energy flux and constant enstrophy flux to coexist in the same inertial range. As a
matter of fact, the conclusion itself is false, and a careful examination of the actual
argument that Kraichnan made will show that it can be adopted to corroborate
the opposite conclusion: that it is possible for constant energy flux and constant
enstrophy flux to coexist. We will begin with a presentation of our own simpler
proof. Then, we will discuss Kraichnan’s argument in detail.

3.1. Proof that fluxes can coexist. There are several objections that can be
raised against the claim that constant energy flux and constant enstrophy flux
cannot coexist. First, we can argue that the claim is inconsistent with numerical
simulations. Consider for example the case of the direct enstrophy cascade. Lind-
borg and Alvelius [24] report that they were able to produce a direct enstrophy
cascade where the enstrophy flux is constant. Because the simulation takes place in
a finite domain and the dissipation wave number is itself finite, there is inevitably
a certain amount of energy dissipated with the enstrophy. This energy has to find
its way from the forcing range to the dissipation range. Because the enstrophy flux
is observably constant in the inertial range, the energy flux is constrained to be
constant as well, from the relationship (3.4), which we will prove in a moment.

In our opinion, nothing more needs to be said to settle the matter. However,
because this claim is considered, by many, controversial, it is still useful and inter-
esting to support it with a theoretical proof. We begin with showing that when one
of the two fluxes is constant, the other flux is also required to be constant. In other
words, the possibility where either the energy or the enstrophy flux is constant and
the other flux is not constant is not allowed. Then, we will show that the scenario
where both fluxes are constant and non-zero is allowed.

Let ε(k) be the amount of energy and η(k) be the amount of enstrophy trans-
ferred by triad interactions from the (0, k) interval to the (k,+∞) interval. The
conservation of energy and enstrophy by the triad interactions implies the following
boundary conditions for ε(k) and η(k)

ε(0) = lim
k→+∞

ε(k) = 0

η(0) = lim
k→+∞

η(k) = 0.
(3.1)
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Recall that the evolution of the energy and enstrophy spectrum is governed by

∂E(k)

∂t
+

∂ε(k)

∂k
= −D(k)E(k) + F (k)

∂G(k)

∂t
+

∂η(k)

∂k
= −D(k)G(k) + k2F (k),

(3.2)

where D(k) is the dissipation operator given by

D(k) = 2νk2κ + 2βk−2m, (3.3)

and F (k) is the forcing spectrum. The second equation can be obtained from the
first equation by multiplying it with k2. It follows that the energy flux ε(k) and
enstrophy flux η(k) satisfy the following constraint

∂η(k)

∂k
= k2 ∂ε(k)

∂k
. (3.4)

Note that this relationship, originally proven by Leith [22], is exact, and it is an
immediate consequence of the relationship G(k) = k2E(k) between the energy spec-
trum and the enstrophy spectrum. This immediately implies that it is not permitted
for only one of the two fluxes ε(k) and η(k) to be constant in wavenumber.

To show that it is possible for a constant energy and enstrophy flux to coexist we
proceed with the following argument. It can be shown that ε(k) and η(k) are related
with the third order standard structure function S3(r) by linear transformations
written as

ε(k) =

∫ +∞

0

K1(k, r)S3(r)dr

η(k) =

∫ +∞

0

K2(k, r)S3(r)dr,

(3.5)

where K1(k, r) and K2(k, r) are the kernels of appropriate integro-differential oper-
ators. A similar relationship of this form for the energy flux ε(k) was given by Frisch
[12] for the case of three-dimensional turbulence. In a double cascade scenario, we
anticipate from the linearity of the statistical theory that

S3,uv(r) = −a1εuvr + a2ηuvr3

S3,ir(r) = a3εirr − a4ηirr
3.

(3.6)

These relationships are expected on the same grounds as the form of the energy
spectrum given by (2.22) as long as the corresponding cascades form successfully.
Without having detailed knowledge of the kernels K1(k, r) and K2(k, r), it is nat-
ural to suggest that the contributions of the energy and enstrophy homogeneous
solutions are mixed together in the evaluation of the energy flux and enstrophy
flux. This would have implied that the presence of the enstrophy solution interferes
with the energy flux ε(k), and the presence of the energy solution interferes with
the enstrophy flux η(k). If that is the case, then it is plausible to expect that it
may be forbidden for both fluxes to be constant simultaneously as a result of this
interference effect.

We will show that these interferences do not take place, and in fact we will
demonstrate that this result can be established without having full knowledge of
the mathematical form of the kernels K1(k, r) and K2(k, r). It is a direct conse-
quence of the conservation of enstrophy and the relationship between the energy
and enstrophy spectrum.
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Begin with introducing a potential function P (k), defined from the energy flux
ε(k) as

P (k) =

∫ k

0

2qε(q) dq. (3.7)

It follows that there is a kernel K(k, r), that relates the function P (k) with S3(r)
by a linear transformation

P (k) =

∫ +∞

0

K(k, r)S3(r)dr. (3.8)

The energy flux can be calculated from the following relationship

ε(k) =
1

2k

∂P (k)

∂k
. (3.9)

Likewise, the enstrophy flux is given by

η(k) =

∫ k

0

q2 ∂ε(q)

∂q
dq = k2ε(k) −

∫ k

0

2qε(q) dq

=
k

2

∂P (k)

∂k
− P (k).

(3.10)

These relationships imply the following corresponding relationships between the
kernels K1, K2, and K.

K1(k, r) =
1

2k

∂K(k, r)

∂k

K2(k, r) =
k

2

∂K(k, r)

∂k
− K(k, r).

(3.11)

For an inertial range (k1, k2) with a double cascade of energy and enstrophy we
require that

ε(k) = ε, ∀k ∈ (k1, k2)

η(k) = η, ∀k ∈ (k1, k2).
(3.12)

It is sufficient to show that there is a unique function P (k) that can satisfy both
conditions. Indeed, the requirement that the energy flux be constant gives

1

2k

∂P (k)

∂k
= ε ⇐⇒ P (k) = c1 + εk2. (3.13)

where c1 is an integration constant. Likewise, the requirement that the enstrophy
flux be constant gives

k

2

∂P (k)

∂k
− P (k) = η ⇐⇒ P (k) = −η + c2k

2. (3.14)

where c2, likewise, is an integration constant. It follows that both conditions can
be satisfied by P (k) if c1 = −η and c2 = ε, yielding

P (k) = εk2 − η, ∀k ∈ (k1, k2). (3.15)

The fact that the two forms of the function P (k) are consistent so that adjusting
the integration constants c1 and c2 can yield a function P (k) consistent with dou-
ble energy and enstrophy fluxes, provides the evidence that the double cascade is
indeed allowed. The permission is also implicit in the constraint given by equa-
tion (3.4), however this argument establishes the necessary consistency between
equations (3.12) and (3.6). In realistic situations P (k) has an additional term for
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dissipative adjustments, which can be safely neglected when universal cascades form
successfully.

The well-known derivations of the scaling of S3(r) for the cases of a pure energy
cascade and a pure enstrophy cascade, suggest the following implications

∫ +∞

0

K(k, r)S3(r)dr = εk2 ⇐⇒ S3(r) = aεr

∫ +∞

0

K(k, r)S3(r)dr = −η ⇐⇒ S3(r) = bηr3.

(3.16)

Since our theory already predicts the form of S3(r), as a linear combination it is
only sufficient to show that

S3(r) = aεr + bηr3 =⇒ P (k) = εk2 − η

=⇒ [ε(k) = ε] ∧ [η(k) = η].
(3.17)

The first step follows from the converse of (3.16), and the second step from (3.13),
(3.14). Thus, both steps can be justified without detailed knowledge of the kernels
K1,K2.

3.2. A review of Kraichnan’s argument. There is a widely believed folklore
argument, sometimes attributed to Kraichnan. According to this argument, one
begins by subdividing the inertial range wavenumber interval into logarithmically
spaced little intervals. Then, one argues that, because of locality, there exists
a cascade of adjacent pair interactions such that both energy and enstrophy flow
from one interval into the next. Consequently, from the point of view of a particular
interval, it is being forced only by the preceding interval, and therefore the energy
and enstrophy flux into the interval has to satisfy

η(k) = ε(k)k2. (3.18)

It follows, according to this (incorrect) argument, that it is not possible for constant
energy flux and constant enstrophy flux to coexist, because (3.18) cannot be satisfied
by ε(k) and η(k) if they are both constant.

As a matter of fact, Kraichnan has explicitly argued against the foundation
of this argument in the fifth paragraph of section 1 of his paper. He explained
that the concept of the dominant interactions as adjacent pair interactions between
logarithmically spaced intervals may be valid in three-dimensional turbulence but
is not applicable in two-dimensional turbulence, where transfers can only occur
between the middle member of a triad and the two triad members, one on the
long-wave side and one on the short-wave side.

However, Kraichnan continues in the seventh paragraph, with the following ar-
gument. He claims that for “similarity cascades”, for the case where the energy flux
is constant, for example, the enstrophy flux is given by

η(k) = Aεk2, (3.19)

using a “similarity argument”. It follows that when the constant A is non-zero, there
is a violation of the conservation of enstrophy, therefore it must be that A = 0. That
would imply that the enstrophy flux itself is zero. A similar argument can be made
for the case where the enstrophy flux is constant. This argument appears to prove
that constant energy flux and constant enstrophy flux cannot coexist.
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Kraichnan takes it for granted that inertial ranges are self-similar, so he does not
consider it necessary to define his notion of self-similarity explicitly in section 1 of
his paper. The definition he gives in section 2 is

E(λk) = λ−nE(k)

T (λk, λp, λq) = λζT (k, p, q),
(3.20)

where T (k, p, q) are the spherically integrated transfer rates of the triad interac-
tions. As long as we assume that there are no intermittency corrections, the scaling
exponent ζ is given by

ζ = −
1 + 3n

2
= −

7 + 3ζ2

2
, (3.21)

where n = 2 + ζ2 is the absolute value of the slope of E(k) ∼ k−n and the scaling
exponent actually used by Kraichnan. The energy cascade corresponds to ζ = −3
and the enstrophy cascade to ζ = −5.

There is no physical justification behind asserting this similarity condition, and
this is precisely where the flaw in Kraichnan’s argument is located. We agree with
Kraichnan that if one assumes this similarity condition, then the cascades have to
be pure cascades. However, it is obvious that by asserting a similarity condition on
the energy spectrum one axiomatically excludes the energy spectrum of the double
cascade, which has two spectral slopes in linear combination. The same problem
arises if one imposes a self-similarity condition on the transfer rates T (k, p, q) or
the structure functions S3(r). In our theoretical framework, the self-similarity of
the generalized structure functions is applicable only to the individual homogeneous
solutions but not to a linear combination of those solutions. The same principle
applies to the triad interactions transfer rates used in Kraichnan’s argument.

The rest of Kraichnan’s argument proceeds as follows. The fluxes can be obtained
from the triad interactions transfer rates by the following integrals

ε(k) =
1

2

∫ ∞

k

dκ

∫ k

0

∫ k

0

T (κ, p, q) dp dq −
1

2

∫ k

0

dκ

∫ ∞

k

∫ ∞

k

T (κ, p, q) dp dq

η(k) =
1

2

∫ ∞

k

dκ

∫ k

0

∫ k

0

κ2T (κ, p, q) dp dq −
1

2

∫ k

0

dκ

∫ ∞

k

∫ ∞

k

κ2T (κ, p, q) dp dq.

(3.22)

These relations are exact. Using his similarity condition, and the constraint between
energy and enstrophy transfer rates, and some algebra, Kraichnan shows that the
fluxes are given by

ε(k) = kζ+3

∫ 1

0

dv

∫ +∞

1

dw Wε(v, w, ζ)T (1, v, w)

η(k) = kζ+5

∫ 1

0

dv

∫ +∞

1

dw Wη(v, w, ζ)T (1, v, w).

(3.23)

This relation is similar, in spirit, to the relation (3.5) between ε(k), η(k) and S3(r).
The relation η(k) = Aε(k)k2, used by Kraichnan in section 1, follows immediately
from (3.23), which is correct only when the self-similarity condition on T (k, p, q)
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holds. The functions Wε and Wη read

Wε(v, w, ζ) = −
1

w2 − v2

[

(1 − v2)

∫ w

1

u−ζ−4du − (w2 − 1)

∫ 1

v

u−ζ−4du

]

Wη(v, w, ζ) = −
1

w2 − v2

[

(1 − v2)w2

∫ w

1

u−ζ−6du − (w2 − 1)v2

∫ 1

v

u−ζ−6du

]

.

(3.24)

A simple evaluation of the integrals shows that

Wη(v, w,−3) = 0

Wε(v, w,−5) = 0.
(3.25)

The other two relevant combinations Wε(v, w,−3) and Wη(v, w,−5) are non-zero.
From these Kraichnan derives, implicitly, the following equivalences:

ζ = −3 ⇐⇒ [ε(k) = ε] ∧ [η(k) = 0]

ζ = −5 ⇐⇒ [ε(k) = 0] ∧ [η(k) = η].
(3.26)

Therefore it follows that, as long as the similarity condition2 holds, double cascades
are not allowed.

If we assume that Kraichnan’s self-similarity condition applies to the homoge-

neous solutions only, then it follows that the energy cascade solution transfers no
enstrophy and the enstrophy cascade solution transfers no energy. This is a desirable
conclusion since in the case of a pure cascade there will be only one homogeneous
solution present. In a double cascade of energy and enstrophy, the transfer rate can
be decomposed into two parts

T (k, p, q) = Tε(k, p, q) + Tη(k, p, q), (3.27)

with each part being individually self-similar with different scaling exponents as
follows

Tε(λk, λp, λq) = λ−3Tε(k, p, q)

Tη(λk, λp, λq) = λ−5Tη(k, p, q).
(3.28)

The first part Tε(k, p, q) is responsible for the energy transfer and transfers no
enstrophy. The second part Tη(k, p, q) is responsible for the enstrophy transfer and
transfers no energy. Therefore, Kraichnan’s argument can the leveraged to show
that the interactions responsible for the enstrophy transfer do not interfere with the
energy transfer and vice versa. We have given a simpler proof of the same result in
the preceding section, but some readers might find this argument more convincing.

4. Conclusions. Unlike the very idealized and clearly unrealizable scenario of pure
upscale energy cascade and pure downscale enstrophy cascade envisaged by Kraich-
nan, Leith and Batchelor for two-dimensional turbulence, in realistic situations there
are double cascades, as long as universality does not fail. Upscale of energy and en-
strophy injection, there are upscale fluxes of both energy and enstrophy. Downscale
of injection there are downscale fluxes of both energy and enstrophy. We establish
theoretically that constant energy flux and constant enstrophy flux can co-exist in
the same inertial range. When both are present, dimensional analysis which was

2It should be noted that, the self-similarity of the energy spectrum has not been used in this

argument, and it is in fact violated for the case of a pure enstrophy cascade by the logarithmic
correction. Only the self-similarity of the triad interactions has been invoked.
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used by Kraichnan to yield the energy spectrum is no longer valid. A correct form
for the energy spectrum is derived here, which turns out to be a linear superposition
of the k−5/3 spectrum associated with the energy flux (regardless of the direction),
the k−3 spectrum associated with the enstrophy flux, and a particular solution con-
tributed by forcing and the boundary conditions. This follows from the linearity of
the infinite system governing the inertial range behavior for the structure functions.
These two results apply for finite viscosities as well as in the limit of small viscosi-
ties. In the second part of this series, we show that the subleading contribution to
the energy spectrum remains hidden in two-dimensional turbulence, although it is
exposed in atmospheric turbulence. The successful formation of a double cascade
that can be observed in the energy spectrum requires that the contributions of the
homogeneous solution dominate the particular solution, and that the the dissipative
corrections to the homogeneous solution allow a spectral region where it remains
unmodified. A detailed development of this theory promises to tell us under what
conditions these requirements are satisfied.

Acknowledgement. It is a pleasure to thank Dr. Sergey Danilov for his meticu-
lous comments on our manuscript that helped us improve our paper. We also thank
Dr. Chuong Van Tran and Dr. John Bowman for comments and discussions. This
work is supported in part by the National Science Foundation, under grants ATM
98-13770, ATM 01-32727, and DMS 03-27650.

Appendix A. Relationship between energy spectrum and F2. The relation-
ship between the energy spectrum and the second order structure function has been
part of the folklore of the statistical theory of turbulence for a long time. The
one-dimensional version of this result was discovered independently by Wiener [45],
Khinchin [16], and Einstein (for reprint and interesting commentary see [7, 13, 46]),
and its relevence to turbulence was first highlighted by Taylor [40]. The three-
dimensional version was used by Batchelor [2] in his famous monograph, as well as
his papers, and a version for any dimension can be found in Panchev [33], without
proof. The one dimensional and three-dimensional version have also been stated
without proof by Frisch [12].

The version shown here has been derived independently while referring to Panchev
[33], and using the definition of the energy spectrum given by Frisch [12]. The lo-
calized energy spectrum is defined as

Eαβ(k,x, t) =
1

2

d

dk
〈u<k

α (x, t)u<k
β (x, t)〉, (A.1)

where u<k0

α is the filtered velocity field defined as

u<k0

α (x, t) =
1

(2π)d

∫

dk

∫

dl uα(l, t) exp(ik · (l − x))H(k0 − ‖k‖), (A.2)

where H is the Heaviside function

H(x) =







1 , x > 0
1/2 , x = 0
0 , x < 0

. (A.3)

Integrating over the spatial dependence gives the standard energy spectrum

E(k, t) =

∫

dxEαα(k,x, t). (A.4)
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Likewise, we define a 2nd order structure function S2(ρ) in terms of F2 as follows

S2(ρ) ≡
1

γd

∫

dx

∫

SO(d)

dΩ(A)F2(x,x + ρAe,x,x + ρAe), (A.5)

where e is a fixed unit vector, and dΩ(A) represents spherical integration defined
as

dx = rd−1drdΩ(A)

dΩ(A) =

d−1
∏

α=1

(sin φα)d−1−αdφα,
(A.6)

with φ ∈ [0, π]d−2 × [0, 2π) and

γd ≡

∫

SO(d)

dΩ(A) =
2πd/2

Γ(d/2)
. (A.7)

With these definitions in place, the following relationship between the energy spec-
trum and the second order structure function can be derived rigorously

S2(ρ, t) = 4

∫ +∞

0

dkE(k, t)[1 − Φd(kρ)], (A.8)

where, Φd(x) is the kernel of the spherical Fourier transform given by

Φd(x) ≡
1

γd

∫

SO(d)

dΩ(A) exp[ixe · (Ae)]

=
(2π)d/2

γd

J(d−2)/2(x)

x(d−2)/2
.

(A.9)

For d = 2 we have Φ2(x) = J0(x), where J0 is the Bessel function.
Using this relationship, it is then possible to prove the relationship between

the scaling exponent of F2 and the scaling exponent of the energy spectrum. In
particular, it can be shown that for 1 < m < 3

E(k) = ak−m, ∀k � k0 ⇐⇒ S2(r) = aC(d)rm−1, ∀r � k−1
0 , (A.10)

where the constant C(d) depends on the dimension d and reads

C(d) = 4

∫ +∞

0

1 − Φd(x)

xm
dx. (A.11)

Appendix B. The terms of the balance equations. Recall that the balance
equations for the generalized structure functions read

∂Fn

∂t
+ Dn = νJn + βHn + Qn, (B.1)

To write equations concisely, we introduce the following notation to represent ag-
gregates of position vectors

X = (x,x′)

{X}n = {X1,X2, . . . ,Xn}

{Xα}
k
n = {X1, . . . ,Xk−1,Xk+1, . . . ,Xn}.

(B.2)

We use the notation {X}n + ∆r as a shorthand to represent shifting all the con-
stituent vectors of {X}n by the same displacement ∆r.
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We now describe the terms in detail. The dissipation terms are given by

Hn =
n

∑

k=1

(∇−2m
xk

+ ∇−2m
x′

k
)Fn

Jn =

n
∑

k=1

(∇2κ
xk

+ ∇2κ
x′

k
)Fn,

(B.3)

where ∇2k
xk

differentiates with respect to xk and similarly with ∇2k
x′

k
, ∇−2m

xk
and

∇−2m
x′

k
. The forcing contribution is given by

Qn({X}n, t) =
n

∑

k=1

Qkn({X}k
n,Xk, t)

Qkn({X}n−1,Y, t) =

〈[

n−1
∏

k=1

wαk
(Xk, t)

]

ϕβ(Y, t)

〉

,

(B.4)

where

ϕα(X, t) = fα(x, t) − fα(x′, t). (B.5)

If we assume that the velocity field is globally homogeneous, it can be shown that
Dn can be rewritten exclusively in terms of velocity differences. Specifically, Dn

can be obtained by applying a linear operator O on Fn+1, and we write

Dn({X}n, t) =
n

∑

k=1

Dkn({X}n, t)

Dkn({X}n, t) =

∫

O(Xk,Y1,Y2) Fn+1({X}k
n, ,Y1,Y2, t) dY1dY2

(B.6)

In the more general inhomogeneous case, the correct expression for Dn is

Dn({X}n, t) =
n

∑

k=1

Dkn({X}n, t) + In({X}n, t), (B.7)

where In represents the effect of inhomogeneities given by

In({X}n, t) =
n

∑

k=1

(∂β,xk
+ ∂β,x′

k
)

〈

Uβ({X}n, t)

[

n
∏

k=1

wαk
(Xk, t)

]〉

, (B.8)

where Uβ({X}n, t) is defined as

Uα({X}n, t) =
1

2n

n
∑

k=1

(uα(xk, t) + uα(x′
k, t)) , (B.9)

The O operator is too cumbersome to write explicitly. However, Dkn can be written
as

Dkn({Xn}) =

∫

dxPαkβ(x)

〈





n
∏

j=1,j 6=k

wαj
(Xj)



 Lβ(Xk − x, {X}n)

〉

Lβ(Y, {X}n) =
1

n

n
∑

k=1

[wγ(y,xk)∂γ,y + wγ(y,x′
k)∂γ,y′ ]wβ(Y),

(B.10)
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where Pαβ is the projection operator defined as

(δαβ − ∂α∂β∇
−2)vβ(x) =

∫

dy Pαβ(x − y)vβ(y). (B.11)
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