
DISCRETE AND CONTINUOUS Website: http://AIMsciences.org
DYNAMICAL SYSTEMS–SERIES B
Volume 3, Number 2, May 2003 pp. 145–162

ON THE DIFFERENCES BETWEEN 2D AND
QG TURBULENCE

Ka Kit Tung

Department of Applied Mathematics

University of Washington; Seattle, WA 98195-2420

Wendell Welch Orlando

(formerly Wendell Tyler Welch)
Northwest Research Associates, Inc.
Colorado Research Associates Div.

3380 Mitchell Lane, Boulder, Colorado 80301

Abstract. Due to their mathematical tractability, two-dimensional (2D) fluid
equations are often used by mathematicians as a model for quasi-geostrophic
(QG) turbulence in the atmosphere, using Charney’s 1971 paper as justifica-
tion. Superficially, 2D and QG turbulence both satisfy the twin conservation of
energy and enstrophy and thus are unlike 3D flows, which do not conserve en-
strophy. Yet QG turbulence differs from 2D turbulence in fundamental ways,
which are not generally known. Here we discuss ingredients missing in 2D
turbulence formulations of large-scale atmospheric turbulence. We argue that
there is no proof that energy cannot cascade downscale in QG turbulence.
Indeed, observational evidence supports a downscale flux of both energy and
enstrophy in the mesoscales. It is suggested that the observed atmospheric
energy spectrum is explainable if there is a downscale energy cascade of QG
turbulence, but is inconsistent with 2D turbulence theories, which require an
upscale energy flux. A simple solved example is used to illustrate some of the
ideas discussed.

1. Introduction. Two-dimensional incompressible fluid flows satisfy the following
equation in the absence of forcing and dissipation:

∂

∂t
ω + J(ψ, ω) = 0, (1)

where

ω = ∇2ψ ≡
(

∂2

∂x2
+

∂2

∂y2

)
ψ

is the vertical component of vorticity, (x, y) are the horizontal coordinates, and ψ is
the streamfunction for the horizontal velocities (u, v) =

(
− ∂

∂y ψ, ∂
∂xψ

)
. J(A,B) ≡

∂
∂xA ∂

∂xB − ∂
∂xB ∂

∂y A. The mechanism of vortex stretching, which is paramount in
transferring energy from large to small scales in 3D turbulence, is absent in 2D
turbulence.

Large-scale atmospheric motion is confined in a shallow layer of fluid, whose
horizontal dimension is of the order of the radius of the earth (a = 6, 400km), while
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its vertical dimension is measured, depending on application, by either the scale
height (H = 7km, the scale over which the density of air decreases by a factor of e) or
by the thickness of the troposphere (D = 10km). Consequently most of the kinetic
energy of large-scale motion is contained in the horizontal velocities, the vertical
velocity, w, being smaller by at least a factor of the aspect ratio: δ = H/a ∼ 10−3.
This fact is often used by mathematicians to proclaim, näively as it turns out, that
large-scale geophysical flows should be “quasi two-dimensional”, and hence could
be modeled by 2D equations such as Eq.(1). The mathematical issue is more subtle
than that, and this was pointed out by Charney (1947) in his now classic paper on
quasi-geostrophic scaling.

For QG dynamics, the vorticity equation (1) is modified to
D

Dt
(ω + f) = −f(

∂

∂x
u +

∂

∂y
v), (2)

where f is the vertical component of the planetary vorticity, ω ≡ ∂
∂xv − ∂

∂y u is the
vertical component of the fluid vorticity relative to the rotating frame of reference,
and

D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
.

In a truly 2D flow, the right-hand side of Eq.(2) is zero if the fluid is incompress-
ible ( ∂

∂xu + ∂
∂y v = 0). In that case, Eq.(2) expresses the conservation of absolute

vorticity, and it reduces to Eq.(1) if the y-variation of f is ignored. A QG flow,
however, has three dimensions, and thus the incompressibility condition is

∂

∂x
u +

∂

∂y
v = − ∂

∂z
w. (3)

[Ambient density variation is ignored here, but will be inserted later.] The right-
hand side is not negligible in the large-scale atmosphere even though w = O(δ ·u)1,
because ∂

∂z = O
(

1
δ

∂
∂x

)
. Eq.(2) becomes

D

Dt
(ω + f) = f

∂

∂z
w. (4)

The right-hand side of (4) is the vortex stretching term mentioned earlier, which
is important in 3D turbulence. A horizontally convergent flow

(
∂
∂xu + ∂

∂y v < 0
)

stretches the vortex in the vertical direction
(

∂w
∂z > 0

)
, tending to increase its rela-

tive vorticity
(

D
Dtω > 0

)
. In this respect, QG turbulence is akin to 3D turbulence.

On the other hand, like 2D turbulence, QG turbulence conserves a vorticity-
like quantity, q, called the potential vorticity (Charney originally called it pseudo-
potential vorticity):

D

Dt
q =

∂

∂t
q + J(ψ, q) = 0, (5)

where

q = ∇2ψ + f +
f2

ρ0

∂

∂z

(
ρ0

N2

∂

∂z
ψ

)
≡ L(ψ) + f (6)

ρ0(z) the ambient density of air,
N2(z) the Brunt-Väisälá frequency.

1For large-scale flows on a fast rotating planet, like the earth, w should actually be O(δ ·Ro ·u),
where Ro = (U/L)/f is the Rossby number (Ro ∼ 0.1), U is a typical horizontal velocity and L a
typical horizontal length scale. Nevertheless, the horizontal divergence, i.e. the left-side of Eq.(3),
turns out to be zero at leading order in Ro, and so (3) is balanced at O(Ro).
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In deriving (5), the anelastic approximation is used because air is not really in-
compressible. This involves replacing the right-hand side of the incompressibility
condition (3), by − 1

ρ0

∂
∂z ρ0w. Also, the temperature (T ) equation is used.

D

Dt
T = −T0N

2

g
w, (7)

which says that in a stably stratified atmosphere, sinking air (w < 0) is adiabatically
warmed

(
D
DtT > 0

)
. The vorticity equation then becomes

D

Dt

(
ω + f +

1
ρ0

∂

∂z

(
ρ0g

N2T0
T

))
= 0.

The conserved quantity, (ω+f+ 1
ρ0

∂
∂z ( ρ0

N2
g
T0

T )), is seen to be q when the hydrostatic
relation

T =
T0f

g

∂

∂z
ψ (8)

is used to express temperature T in terms of the streamfunction ψ.
Herein lies the dilemma: Is QG turbulence more like 3D turbulence in its ability

to transfer energy from large to small scales — since the vortex stretching mech-
anism remains intact in QG equation (4) — or is QG turbulence more like 2D
turbulence in its inability to transfer energy from large to small scales since the
twin conservation of energy and some form of vorticity has been argued to prevent
such a downscale transfer?

The prevailing view has been that QG turbulence is more like 2D turbulence.
As a result, intensive studies of the analytical theories of 2D turbulence have been
justified by their applicability to the atmosphere. Atmospheric data are routinely
analyzed and presented in 2D-like quantities (e.g. kinetic energy, relative enstrophy
and their fluxes), treating each atmospheric layer as if it were a 2D fluid and lumping
baroclinic terms as forcing (Boer and Shepherd, 1983; Straus and Ditlevsen, 1999;
Lindborg, 1999). Much of this perspective has its origin in a Note by Charney
(1971), which laid the foundation for QG turbulence.

However, as will be discussed here, QG turbulence has a rich range of behaviors,
from 2D-like to 3D-like. The fact that there is the twin conservation of total energy
(kinetic plus potential energy) and potential enstrophy (half the square of potential
energy) does not play as important a role as previously thought in determining the
direction of energy cascade.

In section 2 the conservation of energy and enstrophy is derived for the case
of 2D turbulence, and previous arguments for the direction of energy cascade are
reviewed. The same appears for QG turbulence in section 3. Section 4 discusses the
issue of anomalous dissipation for 2D, 3D, and QG turbulence and its implications
for the cascade direction. An example of a forward energy cascade from surface
quasi-geostrophy (a special case of QG) is presented in section 5. Finally, the
historical progression of observations and arguments for atmospheric turbulence is
included in section 6 and conclusions in section 7.

2. Energy and enstrophy conservation in 2D. In 2D turbulence, there is
conservation of both (kinetic) energy and enstrophy (half the square of vorticity)
(Batchelor, 1953). It was thought that nonlinear (triad) interactions among the
different scales satisfying this twin constraint could only direct energy upscale. The
proof originated in an important study by Fjørtoft (1953), but it has been shown to
be inadequate in determining the direction of energy flow, as we will outline below.
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However, it does turn out to be true – for reasons not considered by Fjørtoft -
that 2D flows do not transfer energy to the small scales when viscosity vanishes.
These facts are not commonly known and Fjørtoft’s proof has been repeated and
the misunderstanding carried over to QG turbulence. QG flows, however, do not
in general behave like 2D with respect to the direction of energy cascade.

Multiplying Eq. (1) by ψ and integrating over x and y yields the energy con-
straint:

d

dt
E ≡ d

dt

∫∫
1
2
∇ψ · ∇ψdxdy = 0, (9)

if the domain either (i) is doubly periodic, (ii) has no normal flows at the boundaries,
or (iii) satisfies a combination of the two. In the following, we shall assume a
doubly periodic boundary condition for simplicity and for later adoption of a Fourier
spectrum.

2.1. Relation between energy and enstrophy densities. By the Parseval’s
theorem: ∫∫

1
2
∇ψ · ∇ψdxdx =

∫∫
1
2
(k2

x + k2
y)|ψ̂(k)|2dkxdky,

where

ψ(x, y, t) =
1

4π2

∫∫
ψ̂(kx, ky, t)ei(kxx+kyy)dkxdky.

The Fourier integrals are interpreted as a sum when the wavenumbers k = (kx, ky)
are discrete.

Therefore the spectral energy density

E(k) =
1
2
(k2

x + k2
y)|ψ̂(k)|2 ≡ 1

2
k2|ψ̂(k)|2 (10)

satisfies
d

dt
E =

d

dt

∫∫
E(k)dkxdky = 0, (11)

and so energy density can only be redistributed among wavenumbers without net
gain or loss.

Similarly, if we multiply Eq. (1) by ∇2ψ and integrate over the x, y domain, we
arrive at enstrophy conservation:

d

dt
G ≡ d

dt

∫∫
1
2
(∇2ψ)2dxdy = 0 (12)

In spectral form, we have

d

dt
G =

d

dt

∫∫
G(k)dkxdky = 0, (13)

where

G(k) =
1
2
k4|ψ̂(k)|2 (14)

is the spectral enstrophy density. G(k) and E(k) are thus seen to be related by:

G(k) = k2E(k). (15)
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2.2. Fjørtoft’s proofs. The relationship (15) and the fact that in any triad ex-
change, G(k) and E(k) are individually conserved, were thought to determine the
direction of energy cascade in 2D turbulence. Fjørtoft’s proof in (1953), later re-
peated by Charney (1971) for QG turbulence and in textbooks, is really just a
convergence requirement for a spectral representation of enstrophy. That is, since
the enstrophy is conserved, the integral

G =
∫∫

k2E(k)dkxdky

must converge. This in turn requires that the energy spectrum, E(k), must decay
for large k faster than O(k−3). However, it does not say, as Fjørtoft claimed, that
energy therefore cannot be transferred to the small scales.

Furthermore, it is clear that in forced-dissipative systems, energy should flow
from where it is forced to where it is dissipated; neither of these two pieces of
information is contained in (15). Unforced inviscid flow, on the other hand, is
completely reversible. So, in the unforced inviscid case, unless an additional ad hoc
(probabilistic) statement is advanced which determines the direction of the time
arrow (e.g. Rhines, 1979, Batchelor, 1953), any proof which purports to show that
energy can go in one direction can be reversed to “prove” that energy should go in
the opposite direction by reversing time.

The essence of these arguments can be seen from a simple example used by
Fjørtoft himself. (Fjørtoft’s presentation contains a typo; Salmon (1998)’s version
is used here.)

Suppose initially the wavenumber k1 has energy E1, which is subsequently trans-
ferred via triad interaction to two other wavenumbers: k0 = k1/2 and k2 = 2k1.
By conservation of energy,

E1 = E0 + E2, (16)
and by conservation of enstrophy,

k2
1E1 = k2

0E0 + k2
2E2. (17)

Solving, we get

E0 =
4
5
E1 and E2 =

1
5
E1.

It therefore appears that 80% of the energy ends up in the lower wavenumber.
Hence it was concluded that if any fraction of the initial energy is to be transferred
downscale, “a greater fraction simultaneously has to flow to components with larger
scales”, resulting in a net upscale energy transfer.

Suppose now we switch what is “initial” and what is “subsequent”. This involves
nothing more than switching the left- and right-hand sides of Eq.(16) and of Eq.(17).
But now we have the scenario of two wavenumbers, k0 and k2, with initial energies
E0 and E2, interacting with a third intermediate wavenumber k1, which ends up
with E1 = 5

4E0 = 5E2. Suppose E0 has more energy than E2 initially, say E0 =
4E2. So of the 5E2 units of energy ending up in k1, one E2 unit was transferred
upscale from k2, while 4E2 units were transferred downscale from k0. This would
have implied a net downscale energy cascade of 3E2 units!

The above example shows that conservation principles alone are inadequate in
showing the direction of energy transfer in either direction. In addition, it presup-
poses a certain triad which transfers the entire initial energy. In general, the initial
energy E1 at k1 can be transferred by many possible triads, each taking away a
fraction, ∆E1, of the initial energy, while at the same time other triads may move
energy into k1. For this reason as well, ∆E1 can be of either sign.
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What the constraints of twin conservation and (15) actually imply is that (Mer-
ilees and Warn, 1975): “energy and enstrophy in 2D non-divergent flow cascade
both to lower and higher wavenumbers”, but “the majority of interactions are such
that more energy flows to and from smaller wavenumbers while more enstrophy
flows to and from larger wavenumbers.” [Emphasis added.] The net direction
depends on other factors. For forced-dissipative cases it should depend on the
dissipation operator, to be discussed later.

3. Energy and enstrophy conservation in QG. The conservation laws for QG
flows are due to Charney (1971). There have been concerns that the derivation given
by him is too restrictive, as the isothermal boundary condition adopted precludes
the important atmospheric processes of baroclinic instability and frontogenesis. To
avoid this, the derivation given here is more general.

Charney obtained an energy equation by multiplying Eq.(5) by −ρ0ψ and inte-
grating over the x, y, z domain. The range in z is semi-infinite, from 0 to ∞; the
x-domain is periodic; the y-domain is either periodic or satisfies no normal velocity
at the y-boundaries. This yields:

d

dt
E ≡ d

dt

∫∫∫
1
2
[∇ψ · ∇ψ +

f2

N2
(

∂

∂z
ψ)2]ρ0dxdydz

=
∫∫

f2

N2
ρ0ψ

∂

∂t

∂ψ

∂z

∣∣∣∣
∞

0

dxdy = 0 (18)

We note that, in setting the boundary terms above at z = 0,∞ to zero, Charney
(1971) used the following vertical boundary conditions:

ρ0ψ
∂

∂z
ψ → 0 as z → ∞ and

∂

∂z
ψ = 0 at z = 0. (19)

The Neumann boundary condition at z = 0 is equivalent to assuming that z = 0 is
an isothermal surface (see Eq.(8)), which is unrealistic for atmospheric applications.
A more general lower boundary condition is that of no normal flow, which is w = 0
at z = 0 in the absence of topography. With topography, it should be

w = J(ψ, h), at z = 0 (20)

where
z = h(x, y)

is the topographic elevation of the lower surface. (Consistent with QG scaling, the
boundary condition (20) is evaluated at z = 0 instead of z = h.) The presence of a
topography should not affect energy conservation, because the boundary condition
of no-normal flow is still homogeneous and does not permit flow of energy through
the boundary. Using the temperature equation (7), we have

∂

∂t

∂

∂z
ψ = −J(ψ,

∂

∂z
ψ +

N2

f0
h), at z = 0.

This, when integrated over the x,y domain, vanishes. Thus energy conservation
(18) is recovered even for the more general lower boundary condition (20), the
same as for the specific isothermal condition (19). The energy integral constraint
has previously been derived in the general case by Liu et al. (1996).

In QG dynamics, the total energy (from (18)) consists of two parts, the kinetic
energy:

1
2
ρ0∇ψ · ∇ψ =

1
2
ρ0(u2 + v2),
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and the available potential energy:

1
2

f2

N2
ρ0(

∂

∂z
ψ)2 =

1
2
ρ0

g2

N2
(
T

T0
)2.

It is the sum of these two which is conserved in QG flows.
A potential enstrophy conservation law is obtained by multiplying Eq.(5) by q

and integrating over the x, y, z domain (the z-integration, it turns out, is not
necessary):

d

dt
G ≡ d

dt

∫∫∫
ρ0(L(ψ))2dxdydz = 0. (21)

This involves only the relative potential vorticity L(ψ). (The elliptic operator L
was defined in (6).)

3.1. Relation between total energy and potential enstrophy densities.
We suppose for the moment that the z-domain is either infinite (instead of semi-
infinite), or periodic, and that the z-variations of ρ0 and N2 are ignored. Then
with the Fourier representation

ψ(x, y, z, t) =
1

8π3

∫∫∫
ψ̂(k)ei(kxx+kyy+kzz)dxdydz

(where the integral is to be interpreted as a sum for discrete wavenumbers), the
spectral conservation laws are:

d

dt
E =

d

dt

∫∫∫
E(k)dkxdkydkz = 0 (22)

with

E(k) =
1
2
(k2

x + k2
y +

f2
0

N2
k2

z)|ψ̂(k)|2 (23)

being the spectral energy density, and
d

dt
G ≡ d

dt

∫∫∫
G(k)dkxdkydkz = 0, (24)

with

G(k) =
1
2
(k2

x + k2
y +

f2
0

N2
k2

z)2|ψ̂(k)|2 (25)

being the spectral potential enstrophy density. (23) and (25) suggest the relation-
ship between E(k) and G(k):

G(k) = k̃2E(k), (26)

where
k̃ = (kx, ky,

f0

N
kz)

is a “stretched” wavenumber (N/f0 is typically 100 in the atmosphere).

3.2. Isomorphism between 2D and QG. Eq.(26) is strikingly similar to its 2D
version (15). It is in fact mathematically identical for QG flows which are isotropic
in the three stretched coordinate directions (x, y, N

f0
z), and 2D flows isotropic in

(x, y). [The isotropic assumption allows for dependence only on the magnitude
of the wavenumber, k (or k̃) instead of the components of the vector k (or k̃).
The isotropy in the three stretched coordinates is termed “Charney isotropy” by
McWilliams et al. (1999)]

It is this isomorphism between QG and 2D flows which prompted Charney to
conclude that an energy cascade to small scales is impossible in QG turbulence,
borrowing a proof from Fjørtoft (1953) on 2D turbulence. However, we showed in
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Section 2 that this proof is problematic. Furthermore, because of the rather small
aspect ratio of the atmosphere mentioned in section 1, QG flows in the troposphere
cannot be isotropic in 3D even in the stretched coordinates (x, y, N

f0
z), except for

horizontal scales less than a few hundred kilometers. Nonetheless, Charney’s re-
markable insight is finding application in the oceanic context, where the horizontal
scales are smaller. In numerical simulations of decaying turbulence in triply peri-
odic domains, Herring (1980) found that scales shorter than that of the peak in
initial energy evolve to become Charney-isotropic, albeit rather slowly. That the
QG flow, which is advected only by the horizontal velocities, can actually become
isotropic in three (stretched) dimensions is surprising, but it confirms Charney’s
insight and his explanation for the observed equipartition of components of energy
in each of the three stretched dimensions (Boer and Shepherd, 1983; Nastrom and
Gage, 1985)2. Nevertheless it still does not follow that QG turbulence in this case
should behave like 2D turbulence.

The fact that one QG equation, namely (26), takes the same form as its 2D
counterpart (15), does not by itself lead to isomorphism of the two cases. There is
another criterion. In triply periodic domains (or in doubly periodic domain with
isothermal horizontal boundaries) and in cases where the flow is Charney-isotropic,
a case can be made that the QG flow is isomorphic to 2D flow only if the dissipation
operator in QG is of a particular form. That is, if the viscous term added to the
right-hand side of the 2D vorticity equation (1) is ν∇4ψ, then the viscous term
added to the right-hand side of the QG potential vorticity equation (5) should be
of the rather contrived form: ν(∇2 + f2

0
N2

∂2

∂z2 )2ψ. This will be discussed further in
section 4.

3.3. Charney’s proofs. Charney (1971) also gave a separate proof of prohibition
of net positive energy cascade in a semi-infinite z domain, which does not rely on
the isotropic assumption. The proof involves expanding ψ in an infinite series of
eigenfunctions ψm

ψ =
∑

amψm,

defined by the Helmholtz eigenvalue problem (with λm as the eigenvalue):

L(ψm) = −λmψm

subject to the same boundary conditions for ψ in x and y and using (19) in z. Tung
and Welch (2001) pointed out that the eigenfunctions {ψm} are incomplete. In fact
there is only one eigenfunction, and so the proof is not applicable. As explained in
Tung and Welch (2001), the lack of completeness in the set of eigenfunctions defined
by Charney is caused by the fact that the eigenvalue problem involves a singular
Sturm-Liouville problem, which is overspecified by the boundary condition (19) at
the singular point z = ∞. If that (upper) boundary condition is replaced by one of
boundedness of ρ

1/2
0 ψ as z → ∞, an additional set of continuous eigenvalues would

result, making the eigenfunctions complete. However, the continuous eigenvalues
correspond to radiating waves, which do not conserve the total energy E in (18).
The zero upper boundary condition is necessary for containing the energy in the
domain. The problem of incompleteness it raises cannot be circumvented by altering
the lower boundary condition to any other linear homogeneous condition (including
the more general one we derived earlier in this section).

2In QG flow, the component of energy related to the vertical wavenumber in stretched coordi-
nates is actually the available potential energy; see Eq.(24)
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While this difficulty probably cannot be overcome in the semi-infinite domain
while still preserving energy conservation3, one can seek to represent ψ in a finite
domain, say only in the troposphere, 0 < z < D, by a complete set of eigenfunctions
defined in the truncated domain. This then allows Charney’s proof to go forward,
but that proof will ultimately fail because it is based on Fjørtoft’s convergence idea.
Therefore, Charney’s conclusion: “All the other theorems pertaining to energy
exchange among the spectral components in two-dimensional flow may now be
shown to apply to three dimensional quasi-geostrophic flow as well” is difficult
to justify without additional information. The key piece missing in Charney’s
arguments is the way energy and potential enstrophy are dissipated in QG vs 2D
flows.

4. Anomalous dissipation and direction of energy cascade. It is intuitive
that the direction of energy flow should be from the wavenumbers of injection
to the wavenumbers of dissipation (in a forced dissipative system at statistical
equilibrium), although one needs to be more careful in view of the fact that the
locations (in wavenumber space) of energy injection and dissipation in some cases
are not known a priori (Tran and Shepherd, 2002).

Suppose we could, at least in a numerical model, arrange to have the energy
injection occurring in a band of intermediate wavenumbers, and have two energy
sinks: one at the infrared end (the small wavenumbers) due to, say, a hypodiffusion,
and another at the ultra-violet end (the large wavenumbers) due to viscosity, e.g.
by adding ν∇4ψ to the right-hand side of Eqs.(1) and (5). Through nonlinear
interactions (triad interactions, and, in 3D, vortex stretching), some of the injected
energy flows upscale and some downscale. Therefore, at statistical equilibrium
we would expect the direction of energy flux to be upscale on the long-wave side
of energy injection and to be downscale on the short-wave side of injection. The
current controversy concerns the theoretical situation as one approaches the inviscid
limit. That is, what happens to the direction of energy flux when the coefficient of
viscosity, ν, is taken to be zero from above?

Since the rate of energy dissipation is given by

εD ≡ ν

∫∫∫
|∇u|2dxdydz

εD → 0 as ν → 0, unless |∇u|2 blows up. In the case of

lim
ν→0+

εD = finite

there is said to be “anomalous dissipation,” i.e. a finite dissipation even though the
viscosity coefficient is vanishingly small. The phenomenon of anomalous dissipation
is thus seen to be connected to the development of nonregular solutions of the
inviscid equations. Onsager (1949)’s conjecture that nonzero εD is related to a
lack of continuity of u was later proved by Constantin et al. (1994a) for the case
of Euler’s equation used in 3D turbulence. A review of the related mathematical
problem of blow-up of nonlinear parabolic equations can be found in Galaktionov
and Vazquez (2002) in this journal.

3It is possible, by letting N2(z) vary, to obtain a set of trapped modes in the form of Bessel
functions. See Wiin-Nelsen (1971), who assumed a constant-lapse rate atmosphere, which, how-
ever, is unrealistic above the tropopause.



154 KA KIT TUNG AND WENDELL WELCH ORLANDO

4.1. 3D turbulence. Although not yet rigorously proved, it is very likely that
singularities develop in finite time in the 3D (inviscid) Euler equation. The presence
of anomalous dissipation was in fact assumed by Kolmogorov (1941) in developing
his power law for 3D isotropic and homogeneous turbulence,

E(k) = Cε2/3k−5/3, (27)

in an inertial subrange. Here ε is the energy flux from low wavenumbers to high
wavenumbers and should be a constant in the inertial subrange (where there is
no forcing or dissipation). It should be positive (downscale) and equal to the
energy dissipation rate εD at statistical equilibrium. Kolmogorov’s argument for
the −5/3 spectrum is essentially this: For isotropic homogeneous turbulence, E(k)
should depend only on the local wavenumber k and the energy flux of the cascade
ε through that wavenumber. Then using dimensional arguments, E(k) must have
the form (27).

4.2. 2D turbulence. It has been proved (see Majda and Bertozzi, 2001 ) that the
(inviscid) Euler equation in 2D is regular (no singularity in finite time). An upper
bound on interior gradients of solutions to 2D Navier-Stokes equations is given by
Kukavica (2001) in this journal. Thus there should be no anomalous dissipation
of energy. The regularity proof is rather more difficult than a proof about the
absence of anomalous dissipation of energy, which we now outline (see also Salmon,
1998). In 2D the rate of viscous dissipation of energy is (obtained by multiplying
the viscous vorticity equation by the streamfunction and integrating over all space):

εD = ν

∫∫
|∇2ψ|2dxdy.

Since the total vorticity,
∫∫ |∇2ψ|2dxdy, is a constant for 2D flows, εD → 0 as

ν → 0.
Therefore in 2D turbulence, as ν → 0, there is no energy cascade (i.e. ε =

0) in the inertial subrange on the short-wave side of energy injection. Therefore
in this region, the −5/3 power law (27) is not present. Instead, as pointed out
by Kraichnan (1967) the energy injected in the intermediate wavenumbers goes
upscale, to the sink located at the largest scales.

There exists instead a forward enstrophy cascade in 2D turbulence, with a con-
stant enstrophy flux η from low to high wavenumbers in the inertial subrange on
the short-wave side of enstrophy injection:

η = ηD ≡ ν

∫∫
|∇ω|2dxdy.

Since enstrophy dissipation involves a higher derivative of the streamfunction than
energy dissipation, anomalous dissipation of enstrophy is possible even though the
anomalous dissipation of energy is absent. Kraichnan (1967) argued for a −3 power
law on the short-wave side of injection,

E(k) = C1η
2/3k−3, (28)

based on dimensional arguments and the local dependence of E(k) on k and η only.4

4The −3 power law does not appear to be self-consistent with the assumption of local de-
pendence of E(k) on k. Kraichnan (1971) later introduced a log correction to (28) to ensure
self-consistency.
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4.3. QG turbulence. There is a misconception that 3D-QG solutions share the
regularity of 2D solutions, and therefore that there is no anomalous dissipation
of energy in QG turbulence. It should be pointed out that the regularity of QG
solutions was proven by Bennett and Kloeden (1981ab, 1982) only if the surface
potential temperature vanishes identically. In fact, Bennett and Kloeden (1981b)
established the existence of smooth solutions only for a certain finite time which is
directly proportional to the eddy diffusivity and inversely proportional to the gradi-
ents of the initial surface potential temperature if the surface potential temperature
is allowed to evolve.

Now, the propensity of temperature fronts (discontinuities of temperature in the
horizontal) to form in finite time – by rapid collapse of any initial temperature
gradient at a surface where vertical motion is suppressed (e.g. at a rigid bound-
ary or at the tropopause) – is a known feature of QG dynamics (Holton, 1979).
The collapse is even more rapid in the semi-geostrophic equations (Hoskins and
Bretherton, 1972). The singularity (“front”) does form in finite time in the semi-
geostrophic theory. No rigorous proof is available at the present time, however,
about the formation of singularity in QG systems in finite time (see the numerical
results of Majda and Tabak (1996), and Constantin et al., 1994b), but it is known
(Cordoba, 1998) that a surface QG front collapses very rapidly (as eet

). Thus, even
if there is no actual singularity of the inviscid equations in finite time, it seems
likely that there will be anomalous dissipation.

Unlike the 2D case, in QG, one cannot show in general that εD → 0 as ν → 0.
For the following case, however, it is indeed true: (i) the dissipation operator added
to the right-hand side of the potential vorticity equation (5) is of the form: ν(∇2 +
f2
0

N2
∂2

∂z2 )2ψ, and (ii) the vertical domain is periodic, or the isothermal boundary
condition is used on horizontal boundaries. Under these circumstances, we can
show, by multiplying Eq.(5) by ψ and integrating over three dimensions, that the
dissipation rate of total QG energy is given by:

εD = ν

∫∫∫
|(∇2 +

f2
0

N2

∂2

∂z2
)2ψ|2dxdydz = ν

∫∫∫
q2dxdydz.

Since the integral, which is the total potential vorticity squared, is conserved and
therefore bounded, εD vanishes as ν is taken to be zero. There is no anomalous
dissipation in this case. For other cases, especially when the more commonly used
form of diffusion of potential vorticity, ν∇2q, is adopted as the viscous term, the
above proof fails, and the possibility of downscale total energy flux, ε > 0, must at
least be considered in QG turbulence along with a downscale potential enstrophy
flux, η > 0.

5. An example of forward energy cascade in QG turbulence. We now use
a particularly simple case of QG turbulence to illustrate some of the points raised
in previous sections. This example concerns surface quasi-geostrophic flows (SQG)
(Blumen, 1978a,b; Pierrehumbert et al., 1994; Held et al., 1995).

5.1. SQG solution. SQG equations are the QG equations specialized to the case
of zero relative potential vorticity, i.e.

L(ψ) ≡ 0 in the interior of the flow domain. (29)

The domain is semi-infinite in the vertical, i.e. 0 < z < ∞, and doubly periodic
in the x, y directions. The vertical variations of ρ0 and N2 are ignored. [The
surface, z = 0, can be taken to be either the ground or the tropopause. In the
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latter case, the z−coordinate points downward.] The boundary condition, w = 0 at
z = 0, reduces the temperature equation (7) to a conservation equation involving
the advection of temperature T by the surface flow:

∂

∂t
Θ + J(ψ,Θ) = 0, at z = 0 (30)

where
Θ ≡ g

NT0
T =

f0

N

∂

∂z
ψ (31)

from (8). The upper boundary condition is ψ → 0 as z → ∞.
Let F̂ denote the horizontal Fourier transform (or series) of F , so that

ψ(x, y, z, t) =
1

4π2

∫∫
ψ̂(kx, ky, z, t)ei(kxx+kyy)dkxdky.

We find, from solving the elliptic equation (29), that:

ψ̂(kx, ky, z, t) = ψ̂0(kx, ky, t)e−|k|(N/f0)z (32)

where k2 ≡ k2
x + k2

y. Thus at the surface

Θ̂ = −|k|ψ̂0. (33)

5.2. Energy and enstrophy conservation. The spectral kinetic energy at the
surface is

1
2
(|û|2 + |v̂|2) =

1
2
k2|ψ̂0|2,

while the available potential energy at the surface is,

1
2

g2

N2

∣∣∣∣∣
(

T̂

T0

)∣∣∣∣∣
2

≡ 1
2
|Θ̂|2 =

1
2
k2|ψ̂0|2,

using (33). Therefore the total energy at the surface is equally partitioned between
the kinetic and available potential energies. Since the latter is the same as temper-
ature variance, and since temperature itself is conserved at the surface from (30),
available potential energy and kinetic energy are each separately conserved at the
surface (when horizontally integrated). They are also conserved when integrated
over z, since the solution is exponential.

The potential enstrophy conservation is satisfied identically and pointwise by the
zero relative potential vorticity assumption (29):

1
2
(L(ψ))2 ≡ 0, z > 0.

This holds also at the surface, as can be seen by substituting the solution (32) into
L(ψ) before evaluating the expression at z = 0. Thus, in SQG flows, there is no
flux of potential enstrophy because there is no potential vorticity. There is only the
possibility of energy cascade.

5.3. The direction of cascade. The direction of the energy cascade in SQG
turbulence is downscale. In Pierrehumbert et al. (1994), 1

2Θ2 is interpreted—
mathematically—as “enstrophy”, since Θ in (30) plays the role of vorticity ω in
2D turbulence (1). Because it is known that enstrophy cascades downscale in 2D
turbulence, by analogy 1

2Θ2 also cascades downscale in SQG, although this fact has
not been rigorously proven. As pointed out above, 1

2Θ2 is actually the available
potential energy, and is half the total energy. Therefore the flux of the total energy,
ε, should be positive (i.e. downscale) in SQG by this argument.
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5.4. Anomalous dissipation. If the flux of energy is downscale, where does the
energy go at statistical equilibrium? The answer must be that there is anomalous
dissipation at the small scales. (In fact, it is the presence of anomalous dissipation
at the small scales that gives rise to downscale flux of energy into this small-scale
sink.)

If Θ and ψ were not related, and temperature advection (30) were treated as
tracer advection, the gradients between temperature filaments would increase expo-
nentially (see Holton (1979) for a simple solution involving a deformation-advecting
flow field). The nonlinear case where the advecting velocity is related to the field
being advected (as in (31)) was considered by Constantin et al. (1994b), and they
found that the gradients increase even more quickly than exponentially. The phe-
nomenon involved is that of frontogenesis discussed in earlier sections.

We therefore expect that the energy dissipation rate

εD = ν

∫∫
|∇Θ|2dxdy

will be finite in the limit ν → 0+. Furthermore the energy flux ε satisfies

ε = εD > 0. (34)

5.5. The shape of the energy spectrum. The total energy spectrum for SQG
flow at the surface is

E(k) =
1
2
(|û|2 + |v̂|2) +

1
2
|Θ̂|2

= k2|ψ̂0|2 = |Θ̂|2

Since |Θ̂|2 is conserved, its flux from low to high wavenumbers (defined to be ε)
should be a constant in an inertial subrange at statistical equilibrium between
forcing and small scale dissipation. Using the same argument as Kolmogorov and
Kraichnan, except that there is now no enstrophy flux (η ≡ 0), we assert that E(k)
can only depend on ε and k, and so must be of the form

E(k) = Cε2/3k−5/3 (35)

This spectral shape is consistent with the observations in the mesoscales of the
upper troposphere (Nastrom and Gage, 1985) and near the earth’s surface above
the boundary layer (Högström et al., 1999), where frontogenesis is often observed.
There is no η2/3k−3 part of the spectrum associated with SQG turbulence because
there is no interior potential vorticity by assumption. In the atmosphere, however,
it is likely that the forcing mechanism of baroclinic instability produces both a
downscale potential enstrophy flux (η > 0) as well as downscale total energy flux
(ε > 0). As presented in Tung and Orlando (2003), there is a k−3 spectrum
dominated by η on the long-wave side of the k−5/3 part, with the change in slope
occurring near a wavenumber ∼ (η/ε)1/2. 5

Blumen (1978a) in fact already derived the k−5/3 behavior (where k is horizontal
wavenumber) for available potential energy on horizontal surfaces based on Leith’s
(1968) diffusion approximation, and he concluded that its cascade is toward higher
wavenumbers. Later authors tended to treat 1

2Θ2 as an enstrophy and hence its
downscale flux was regarded as an enstrophy flux consistent with 2D turbulence.
We note also that Held et al. (1995) identified

∫∫
(−ψΘ)dxdy as the total energy

5There is no singularity in finite time in the two-level model used in that study. The sink for the
downscale energy flux was instead provided in the numerical model by the subgrid hyperdiffusion.
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(kinetic plus available potential energy). This would indeed have been true if Θ were
a potential vorticity (see section 3), but Θ should be temperature at the surface.
Thus their finding of a k−8/3 spectrum corresponds to a quantity different from
energy.

In discussing the mathematical analogies between 2D and SQG flows, Majda and
Tabak (1996) correctly pointed out the redundant conservation of kinetic energy
in SQG, and the fact that

∫∫
(−ψΘ)dxdy is not energy. They further showed

that the formal analogy between 2D and SQG breaks down when one studies the
development of sharp fronts.

It is not our intention to focus unduly on the rather pedagogical issue of anoma-
lous dissipation (although the example in this section owes its downscale flux to
the existence of such a sink as the viscosity coefficient vanishes). In the real atmo-
sphere and in numerical models the issue is moot because one cannot really take
viscosity to zero, and there is always a finite dissipation at the small scales. The
-5/3 spectral slope arises whenever there is a finite small-scale sink of energy (see
Tung and Orlando, 2003).6

6. Observations and historical development. As reviewed above, 2D turbu-
lence is probably not an appropriate model for atmospheric turbulence because of
a few missing but crucial ingredients. Ironically, observational evidence has ac-
tually played an important role in justifying and sustaining the development of
2D turbulence theories over the years. Recent observational evidence now points
to important discrepancies between 2D theory and data, which cannot be easily
resolved.

Evidence that the atmospheric energy spectrum in the mid-latitude upper tro-
posphere (away from the planetary boundary layer) may be in the form of simple
power laws was first presented by Wiin-Nielsen (1967). Because of the sparseness
of observational stations, only results for the planetary scales (tens of thousands of
kilometers) and synoptic scales (thousands of kilometers) were shown. That paper
drew attention to the fact that atmospheric turbulence apparently behaved like
what had just been predicted by Kraichnan (1967) using 2D turbulence inertial
subrange theory. Kraichnan had argued that 2D turbulence, which conserves en-
strophy in addition to energy, should possess two power laws: one k−3 range due to
a forward enstrophy cascade and one k−5/3 range due to an inverse energy cascade.
Wiin-Nielsen’s data at the time appeared to fit this picture, with approximately a
−3 power law for wavenumbers between 8 and 16, and a (less defined) −0.4 power
law for wavenumbers smaller than 8. The break in the slopes was identified by
Wiin-Nielsen, and later by Chen and Wiin-Nielsen (1978), as the location of en-
ergy injection by baroclinic instability, which they assumed to occur in a narrow
wavenumber band around 8. Numerical 2D turbulence simulations (Lilly, 1969)
of energy injection near wavenumber 8 appeared to show a −5/3 power law for
scales larger than the injection scale, and close to −3 power law for scales shorter,
matching the observational data then available.

In the Note by Charney (1971) mentioned earlier, observational evidence of power
law behavior was also presented from several sources. It probably had become
apparent to Charney that there was no power-law behavior for the large scales

6Although the same -5/3 spectral slope can also arise with upscale energy cascade, the ar-
gument in favor of the downscale cascade explanation is that of consistency with observational
evidence about the flux direction and the robustness of the spectrum in regions with and without
small-scale energy source, e.g. thunderstorms.
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(wavenumbers less than 8). Charney instead concentrated on the −3 power law
presumably due to the forward potential enstrophy cascading subrange between
wavenumbers 7 to 20. The data presented by Charney show a slope closer to −4
than −3. Later global data sets analyzed by Boer and Shepherd (1983), and Straus
and Ditlevsen (1999), show kinetic energy spectrum slopes which vary with height,
increasing as one approaches the tropopause, but all shallower than −3.

Numerical simulation of 2D turbulence at the time mostly showed spectral slopes
steeper than −3; Lilly’s fortuitous −3 slope was attributed to too coarse a resolution
(Fornberg, 1977; Basdevant et al 1981; McWilliams, 1984; Maltrud and Vallis 1991).
The steeper-than-predicted slope found was attributed to various causes, e.g. space-
and time-intermittency. See additional discussions in Lilly (1969, 1972), Maltrud
and Vallis (1991), Smith and Yakhot (1994), Bowman (1996), and Lindborg (1999).
Recently, however, Lindborg and Alvelius (2000) produced an almost perfect k−3

spectrum in a 2D model with very high resolution (4096×4096), using hypodiffusion
for the large-scale and hyperdiffusion for the small-scale sinks (see comments by
Tran and Shepherd, 2002).

Higher resolution observational data, collected using commercial airplane flights
in the upper troposphere and lower stratosphere in the late 70’s, were presented by
Nastrom, Gage and Jasperson (1984) and Nastrom and Gage (1985). They showed
two remarkably robust power laws: a −3 slope in the spectra of kinetic energy
and of available potential energy in the synoptic and subsynoptic scales down to
800km, and a −5/3 slope in the spectrum of the same quantities in the mesoscales
from 600km to a few kilometers. The transition from one slope to the other occurs
gradually between 600km and 800km. The position of the two slopes, with the
−5/3 slope occurring on the short-wave side of the −3 slope, is not consistent with
the prediction of Kraichnan (1967) using 2D turbulence theory. This observational
result has since been confirmed by other analyses of independent aircraft campaigns
(Marenco et al., 1998; Cho et al., 1999a,b).

By analyzing the latter aircraft data using a 2D turbulence formulation, Lind-
borg (1999) first argued for an inverse energy cascade for the mesoscales in the
atmosphere akin to the inverse energy cascade of 2D turbulence, and thus giv-
ing hope that the newfound −5/3 slope in the atmosphere could be explained by
upscale energy transfer from the thunderstorms in the small scales, a theory first
proposed by Lilly (1983). Later Cho and Lindborg (2001) pointed out a sign error
in the third-order structure functions in Lindborg (1999). When corrected, they
now conclude that the data “at mesoscales in both the upper troposphere and lower
stratosphere provide no support for an inverse energy cascade [of] 2D turbulence.”
Furthermore, Cho and Lindborg themselves used third order structure functions
and calculated a downscale energy flux in observed data.

A conceptual QG model is presented in Tung and Orlando (2003) for the ob-
served two-slope spectral shape, which involves a simultaneous downscale potential
enstrophy cascade and a downscale total energy cascade.

7. Concluding remarks. We have discussed the similarities and differences be-
tween 2D turbulence and QG turbulence. Unlike 3D turbulence, which conserves
only energy, there are two conserved quantities in 2D and in QG turbulence: an
energy and an enstrophy. The twin conservation of energy and enstrophy by itself
does not prohibit net downscale energy transfer in either 2D turbulence or QG tur-
bulence, although it has been thought so for many years. In 2D turbulence, energy
does not cascade downscale due to another property: the absence of “anomalous
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dissipation” in 2D turbulence when the viscosity coefficient vanishes. Related to
this result — but not strictly dependent on it — is the absence of singularities
in finite time in 2D flows. In QG turbulence, the prohibition against a downscale
energy cascade appears not to be valid. Nevertheless, in idealized cases studied
in numerical models of decaying turbulence, with isothermal horizontal boundaries
(e.g. McWilliams, 1989), or in triply periodic domains (e.g. Herring, 1980), strong
similarities with 2D turbulence are found, such as predominately upscale energy
cascade and downscale potential enstrophy cascade.

QG turbulence, at least as applied to the atmosphere, differs from 2D turbulence
in two important ways. It has the self-contained mechanism of baroclinic instability
as the source of energy and enstrophy injection (not discussed here, but see Welch
and Tung, 1998), and it has frontogenesis and the possibility of anomalous dissi-
pation as a sink of energy at the small scales near non-isothermal surfaces. Both
are possible in QG turbulence but not in 2D turbulence. Furthermore, small-scale
processes in the real atmosphere (some of which, such as gravity wave radiation,
are not resolved by the QG equations), are now found to provide a sink for the
downscale flux of energy in the mesoscales. This is quite apart from the purely
mathematical issue of the existence of anomalous dissipation in the QG equations
themselves, for the sink does not need to be always described by QG theory. It is
important then to point out that there is nothing in the theories for QG turbulence
that prohibits such a downscale cascade of energy in the scales resolved by QG
theory, and therefore one cannot automatically rule out a QG explanation.

Despite many attempts over the last 30 years, the observed atmospheric turbu-
lence spectrum has not been explained, principally because of an over-reliance on
2D turbulence theories. The −5/3 slope in the spectrum over the mesoscales can
possibly be explained by a forward energy cascading inertial subrange (Tung and
Orlando, 2003).
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