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ABSTRACT

The concept of wave overreflection is reviewed. The physical origin of this effect is discussed as is its
relation to hydrodynamic instability. It is noted that the instabilities associated with overreflection are
likely to be identical to what are commonly called critical layer instabilities.

The bulk of this paper examines baroclinic instability in terms of the overrefiection of vertically
propagating Rossby waves. This approach leads to rapid estimates of growth rates and phase speeds of
unstable modes for arbitrary distributions of zonal velocities in models with and without lids; it also leads
to efficient algorithms for calculating unstable modes ‘‘exactly.””

Among our findings are the following: (i) Charney and Green modes are both essentially critical-layer
instabilities. (ii) When tropospheric shear is brought to zero above some height (one scale height, for
example) so that long waves may radiate to infinity (ignoring for a moment the growth rate), the growth
rates are reduced somewhat, but the modes remain unstable. (iii) Baroclinic instability can be eliminated
by stretching the transition region from zero shear at the ground to the interior shear sufficiently without
altering the shear above this region. Explicit calculations show this depth to be about a quarter of a
scale height.

Consistent with item (iii) above, we show that the potential vorticity flux of baroclinically unstable
modes (a measure of their interaction with the mean flow) is confined primarily to a layer between the
ground and the neighborhood of the steering level—even when the unstable eigenmodes extend to

VOLUME 37

The Concept of Wave Overreflection and Its Application to Baroclinic Instability’

much greater heights.

1. Introduction

A wide variety of problems in dynamic meteorology
(and in many other fields) are described in terms of
an equation of the form

¢VH+Q(y!ks---aw)"‘=0’ (1)

where y is some spatial coordinate (north-south
distance or height), k, ... are other parameters
such as wavenumber in some direction orthogonal
to y, static stability, etc., and o is a time fre-
quency. Typically, the same form of Q applies to
both a wave propagation problem and a stability
problem. Among such problem-pairs are the merid-
ional propagation of barotropic Rossby waves and
barotropic instability; the vertical propagation of
internal Rossby waves and baroclinic instability; and
the vertical propagation of internal gravity waves
and the instability of stratified shear flows.

For the wave propagation problems we gen-
erally, have forcing somewhere in the fluid at a
specified frequency w. Eq. (1) then determines the
behavior of the wave away from the forcing. When

! A slightly different version of this paper was presented in July
1978 at the NCAR summer colloquium on the General Circula-
tion of the Atmosphere, and will appear in the proceedings of
the colloquium.
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Q is negative, wave fields vary exponentially and
there is no wave propagation; we will refer to this
as ‘‘trapping.”” When Q is positive and slowly vary-
ing the wave propagates away from the region of
forcing. By slowly varying we mean that

\ 8Q/8y

o | < @

Eq. (2) is the usual criterion for the WKB approx-
imation (Schiff, 1955). It turns out that when (2)
is violated, the wave may again vary exponentially
(explicit examples are given in Appendix 1). This last
remark has not been generally recognized. Finally,
inhomogeneities in Q lead to wave reflections which
may be partial, total or (as we shall describe shortly)
we can have overreflection where the reflected wave
is stronger than the incoming wave.

For the stability problems, homogeneous bound-
ary conditions are applied to Eq. (1), and o is
treated as an eigenvalue. One seeks conditions
under which @ is complex with the imaginary part
being of such a sign as to lead to exponential
growth (i.e., instability).

The wave solutions and the instabilities will be
shown to be related to each other through the con-
cept of wave overreflection. This concept has arisen
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in a number of contexts in recent years. Jones
(1968), for example, found the following for stably
stratified shear flow: If in a portion of the fluid where
the Richardson number (Ri) is greater than 0.25 there
is an internal gravity wave propagating toward a
level where the horizontal phase speed of the wave
equals the flow speed (i.e., a critical level where
the Doppler-shifted frequency of the wave goes to
zero) and if at the critical level Ri > 0.25 then there
will always be a partial reflection. However, if at
the critical level Ri < 0.25 then there can be over-
-reflection. Without a critical level there is always
partial reflection. As shown by Miles (1961) and
Howard (1961), Ri < 0.25 somewhere in the flow is
a necessary condition for instability. There would
thus appear to be some connection between over-
reflection and instability. Lindzen (1974) suggested
that in the case where a wave propagating upward

is overreflected, the insertion of a reflecting lower

boundary should give rise to instability. This sug-
gestion was confirmed by Lindzen and Rosenthal
(1976), Davis and Peltier (1976) and others. The
instabilities found in these studies were, however,
distinguishable from and weaker than conventional
Kelvin-Helmholtz instabilities.

A more general approach to the problem was re-
cently taken by Lindzen and Tung (1978) wherein
the Kelvin-Helmholtz instability could be related to
wave overreflection as well. A review of this work
will be presented in Section 2 and the application
of overreflection to baroclinic instability will be
given in Section 3.

2. Wave overreflection in barotropic instability

In order to establish notation and preserve con-
tinuity of presentation we will briefly review some
results in Lindzen and Tung (1978) (subsequently
referred to as LT). LT considered barotropic flow
wherein the stream function satisfies the equation

2 -
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where i is the basic zonal flow, 8 = df/dy, f being
the Coriolis parameter, y the northward coordinate,
and where dependence on eastward direction x and

time ¢ is taken to be
eik(.z‘—ct).

@

Perturbation zonal and meridional velocity are ap-
proximately related to s by the geostrophic relations
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The perturbation pressure is given by

p = pfy, @)
where p, is the basic pressure. Defining
— 1 m
T) = — f (Ref)-Re g)d(ko), )
27 0
LT show that .
uv = constant 9
if ¢ is real and ¢ # &, and
pv = —(@ ~ ¢)pouv, (10)

where ageostrophic contributions are included.
Now, the sign of pv yields the direction in which
waves are propagating energy. This fact is exploited
by LT to determine the presence of overreflection.
Let

an

and let
Be = B — iy, (12)

We consider a flow where Q > 0 and slowly varying
for y > y,. (Details of the geometry are given in
Fig. 1 of LT; a more detailed description will also
be given later in this section.) For convenience we
take # > ¢ and B, > 0 in the region y > y,. We
further assume all wave sources are to the right of
the wave region. Then in the absence of a critical
surface in y <y,, LT use (9) to show that pv < 0
in the wave region. This is shown to imply partial
or total reflection, the latter being associated with
pv = uv = 0. Thus, if overreflection exists, it is in-
timately associated with the presence of critical
layers. The procedure followed by LT is to obtain
the Frobenius expansions of the two linearly in-
dependent solutions to (3) about the critical surface
and use these solutions to obtain the jump in uv
across the critical layer. The solution is of the form

Y(y) = Af(y —yc) + Bg(y — yo), (13)

where u(y.) = c; f is regular while g has a logarith-
mic singularity. It is this singularity which is re-
sponsible for the discontinuity of uv aty = y.. LT
show that

u—v+ _ u_v_ — Ii Be(YC)

2 ayye)

where uv, is uv for y > y,,-uv_ is uv for y <y,.
Recall y, < y,. From (10) we see that for y >y,
(where &z > c)pv, will have the opposite sign of uv, ;
moreover, i,(y.) > 0. For simplicity we will next
restrict ourselves to problems where we either have
a boundary someplace to the left of y. where v = 0
and henceuv_ = 0, or where in a semi-infinite region
at some point_to the left of y,, O is negative in
which case uv_ again is zero. (Less restrictive

|B|2, (14)
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cases are discussed in LT and in Section 3 of this
paper.) Eq. (14) then becomes

— _k_ Be(yc)

UV, = =T —
2 ayye)

(we have adopted the convention that k is positive).
Overreflection is uniquely identified with pv, >0
oruv, < 0. From (15) we see that this occurs when
Be(yc) < O (unless |B|? = 0). When B.(y.) = 0, uv,
= 0 and we have perfect reflection. The case |B|?
= 0 corresponds to the regular part of (13) satisfy-
ing the boundary condition to the left of y.. As we
shall see in Section 3, this can happen, but it repre-
sents a very special case.

_The above tells us that if 8. changes sign be-
tween the wave region and y. then we will have
overreflection. Incidentally (but we think im-
portantly), the change of sign of 8. also implies a
trapped region (i.e., Q < 0) between the wave re-
gion and y, and a wave region to the left of y,.
Evidence is accumulating that such a distribution of
‘wave regions, trapping regions and singularities is
basic to the stability of plane-parallel flows in
general. The above configuration is schematically
depicted in Fig. 1 and will be discussed in detail
later in this section.

LT note the obvious relations between the above
conditions for wave existence and overreflection
and the necessary conditions for barotropic in-
stability. Most notably Rayleigh’s inflection point
theorem requires B, to change sign within the flow
domain while Fjortoft’s theorem guarantees the
existence of regions where Q > 0. It would thus
appear that the necessary conditions for instability
are also sufficient conditions for the existence and

|B|*
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overreflection of waves. This is generally true
though Q > 0 may not always be sufficient for the
existence of waves if (2) is not satisfied (viz.
Appendix 1).

Before ending this section a number of points (not
all of which are discussed in LT) should be discussed.

a. Overreflection and instability

If one has overreflected waves in a region
which is bounded on the right (using the above-
described configuration) by a reflecting surface
(either a rigid wall or a turning point where Q be-
comes negative), then we expect amplification to
occur when an overreflected wave is reflected back
to the overreflecting region. Thus, although over-
reflection is a property of waves with vanishingly
small.imaginary frequencies, it would appear to de-
mand growth in bounded configurations. Lindzen
and Rosenthal (1976) have shown, however, that
only when the phase of the overreflected waves
are in phase with the reflected waves do we have
normal mode (exponentially growing) instabilities.
Lindzen and Rosenthal and LT refer to this condi-
tion as quantization. The above argument for growth
would nonetheless appear to be true even without
quantization. We discuss this case in Section 2f.

b. Critical layer instability and overreflection

Taylor (1915) and Bretherton (1966) have noted
that solutions to (3) with boundary conditions cor-
responding to rigid walls on each side of an ‘“‘in-
flection’ point (i.e., a point where 8, = 0) have no
net integrated vorticity flux. Moreover, they show
that away from a critical layer such a flux exists

I I——Wove confinement here

essential to obtaining
instability from
overreflection.

Trapping here appears important for
overreflection in region (ﬁ

i

Some measure of containment
here in order to produce
overreflection in region

may be due to wall, turning
point and/or sufficiently rapid
change in Q to produce partial
reflection

(P-R: partially reflected
0O-R: overreflected)

|

The presence or absence of such
o trapping region does not appear
crucial for overreflection in
region

FiG. 1. Configuration of wave propagation regions, wave trapping region(s),
singular surface, and boundaries associated with wave overreflection and resulting
instabilities. (Dotted regions represent trapping.) Surface II refers to critical sur-
face. Surface I contains waves in wave region @ from the left, while surface I11
contains waves in wave region @ from the right.
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only if there is an imaginary part of the fre-
quency. On the other hand, there exists a finite
down-gradient flux of vorticity at the critical layer
even in the limit of vanishing imaginary frequency
(growth rate), In order to balance this flux it is
concluded that one must in fact have a growing
solution.

Both Taylor’s result and overreflection relate
properties of critical layers in the limit of vanishing
growth to the need for growing solutions, and we
would suggest that both approaches are equivalent.
The resulting instability is often referred to as
critical layer instability. In contrast to the vorticity
flux approach, wave overreflection allows an im-
mediate estimate of growth rates associated with
critical layer instabilities. If, for a given wave-
number k£ and phase speed ¢, we have overreflec-
tion, R (>1), and if the time it takes such a wave
to traverse wave region (1) of Fig. 1 is 7, then (fol-
lowing Lindzen and Rosenthal, 1976) we expect the
disturbance to amplify by a factor R in a time 27,
As a rule, quantization will only obtain at a partic-
ular value(s) of c¢,. However, as we shall note in
Section 2¢, this is a matter of some delicacy; quanti-
zation is not always determinable in the limit ¢; — 0.
More generally, if for some c,’s (regardless of
quantization) the above estimate of growth rate
exceeds the explicitly calculated growth rate for an
instability, then it is reasonable to identify that
instability as a critical layer instability.

Details of calculations of the above type are pre-
sented in Section 3. In particular, for baroclinic
instability, Bretherton (1966) suggested that the
growth rates associated with critical layer insta-
bilities would be less than growth rates normally
calculated for baroclinic instability since the in-
stability was essentially convective in origin. In
Section 3 we will show that this is not the case;
critical layer growth rate estimates for the most un-
stable mode overestimate actual growth rate.

c. Critical surfaces and critical layers

The preceding two points describe how critical
surfaces (and associated wave overreflection) leads
to disturbance amplification. As has already been
noted, the prediction of amplification is based on

wave properties in the limit ¢; — 0. Only in this

limit is the critical surface a discrete surface. Once
one has a growing disturbance, c; is no longer zero,
and the singularity associated with the former
critical surface moves into the complex plane. Its
projection on real y is no longer a discrete surface
but a layer whose width is proportional to c;.
Thus, the identification of the steering level (where
¢, = &) with the critical surface (where ¢ = &) for
overreflection is not, as a rule, appropriate. Rather,
one expects that if critical layer instability is re-
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sponsible for a particular instability, then there will
exist, within the relevant critical layer, a critical
level (or surface) whose associated overreflection is
more than sufficient to account for the instability’s
growth rate.

‘Also, when c; is sufficiently large, it will signif-
icantly affect wavelengths in wave region @ (of Fig.
1) and hence, the conditions for quantization men-
tioned in Section 2a. In fact, as we shall see in Section
3, the quantization condition commonly used (in the
limit ¢; — 0) is only an approximate relation for
satisfying the boundary condition at the right-hand
boundary in Fig. 1. Exact quantization may depend
on ¢; to such an extent that approximate quantiza-
tion in the limit ¢; > 0 may not even exist. An
example of such a situation is given in Section 3c.

d. The geometry of overreflection and the stability
of stratified shear flow

Earlier in this section, we noted that an over-
reflecting situation involved a particular configura-
tion of wave regions, trapping regions and singu-
larities, which we suspect may be of general im-
portance. This configuration is shown in Fig. 1.
Although such a configuration emerges automati-
cally from the preceding analysis for barotropic
configurations, our work on other problems suggests
that it may be general. Noteworthy in this con-
nection is the problem of stratified shear flow. The
basic equation for this problem is given in Appendix
1. No simple counterpart of the inflection point
theorem and Fjgrtoft’s theorem are currently avail-
able for this problem. Instead we have a theorem
due to Miles (1961) and Howard (1961) which states
that a necessary condition for instability is that the
Richardson number

2
Ri = N

(i)
be less than ¥4 someplace in the flow, where N is
the Brunt-Viisila frequency. Now, in Appendix 1
we show that the wave propagation occurs where
Ri > V4. Thus, for Ri > V4, a wave with a critical
level will be wavelike on both sides of the singu-
larity. In terms of Fig. 1, the trapped (exponential
as opposed to sinusoidal) region to the right of the
singularity is missing. It is also shown in Appendix
1 that when Ri < 14, waves are trapped even though
Q in Eq. (1) is positive. This proves suggestive
for the following classical problem, namely, the
stability of flow where &, and N2 are constant
everywhere and where Ri = constant < %4. Such a
flow is stable regardless of whether it is unbounded,
bounded below or bounded above and below
(Taylor, 1931; Case, 1960b). From our present per-
spective we might suspect that the absence of waves
isrelevant. We have therefore considered a modified

(16)
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flow where. & = constant = u, for 0 < z < z,, and
U =uy + i,z — z,)forz = z, where it, = constant;
‘N? remains constant and Ri < 4 above z,. We can
now have internal gravity waves in (0,z,) [as well
as vorticity waves in the corner at z = z;] which
have critical levels above z,. Thus we have waves
separated from a critical level by a trapping (or
exponential) region, but no wave region above the
critical level. In calculations which are now being
prepared for publication by Rosenthal and Lindzen
we show that in this case waves are not overre-
flected and there are no instabilities. Fig. 1 suggests
that we are still lacking wave region ®. To insert
such a region, we leave the velocity profile un-
changed but increase N? above some z, > z; so that
in this region (z > z,) Ri > 4. There will now be
waves in (0,z) with critical levels in (z,,z,) whose
continuation will be wavelike above z,; because i is
increasing with height, there will be a turning point
at some z; > z, above which Q [viz., Eq. (1) will
be negative]. This is now a configuration exactly
like that in Fig. 1 and we find that waves in region
® are overreflected and associated with this we do
find instabilities.? )

It should be noted that the above velocity profile
has no inflection point. There is no need for an
inflection point because a stratified fluid can sustain
internal gravity waves in addition to vorticity waves,
i.e., waves whose restoring force arises from
vorticity gradients. Waves can exist in regions of
large 2" and instabilities can arise from these waves
just as in barotropic flows. Conventional Kelvin-
Helmholtz instabilities are examples of this.

It should be noticed that in problems with ex-
ponential (trapping) regions on both sides of the
singularity (as in the above stratified shear flow
problem), overreflection is possible for waves in
both wave regions @ and @ of Fig. 1. This compli-
cates matters relative to the results in LT.

e. Qualitative mechanism for overreflection

The role of the inflection point in instability
has always seemed a little obscure. The present
work implies that the inflection point is essential

to an unstable configuration but that the locus of in-~

stability is the critical layer and the associated wave
overreflection. This statement hardly relieves the
obscurity. Fig. 1 suggests a somewhat fuller ex-
planation.

By explicit calculations, we find that waves in
region @, though not overreflected from surface II
(at least when the exponential region between wave
region @ and the singularity is missing), are partially

2 This suggests the possibility that a necessary condition for the
instability of stratified shear flows may be that the Richardson
Number must be greater than % someplace in the flow.
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reflected with reflection coefficients very close to
unity. Thus wave region @, as bounded by surfaces
1 and II, forms a slightly imperfect waveguide
which exhibits enhanced response to forcing—even
if the forcing is off-resonance. The additional
peculiarity of the critical layer, with the trapped re-
gion on its left, is that it permits waves in region ®
which are propagating toward II to force the wave-
guide in region @ with the resulting magnified re-
sponse manifesting itself as overreflection in region
®. The presence of surface III then forces the time
growth of the disturbance. The role of the singular
critical layer must be emphasized. Thus when |B|?
is zero [viz., Eq. (15)} wave region ® forms a per-
fect waveguide. However, |B|?> = 0 means that the
singular solution is zero and hence, waves in wave
region @ can neither excite nor respond to resonant
amplification in wave region @.

For those familiar with the physics of lasers (and
frankly, we don’t number ourselves among them), it
has been suggested that I, II and III could be
associated with the essential three excitation levels
and associated mirrors required for a laser. The
mechanisms for wave amplification in both cases
seem similar.

If the above is a correct explanation of plane-
parallel flow instability, then the need for the two
wave regions separated by the critical layer and its
adjacent trapped region is relatively clear. The un-
questionable existence of lasers in optics renders the
existence of a similar wave amplification mechanism
in fluids at least conceivable.

f. Quantization and instability

We have already noted (Sections 2a and 2b)
that, intuitively, the existence of overreflected
waves whose energy is contained (by surface III
in Fig. 1) should lead to growing disturbances.
Lindzen and Rosenthal (1976) have shown, how-
ever, that exponential growth requires that reflected
and overrefiected waves be in phase with each
other (quantization condition). LT put forth the con-
jecture that when one has contained overreflected
waves which, however, do not satisfy quantization,
one might obtain algebraic growth. There is sub-
stantial reason to doubt this conjecture. For a wide
variety of cases, it has been shown that in the
absence of exponential growth one will not have
long-time algebraic growth (Case, 1960a). Some of
these stable cases seem to have contained over-
reflected waves. ‘ '

At this point we can only suggest a possible solu-
tion to this situation. Apparently, without quantiza-
tion, phase discrepancies will grow with successive
reflections and overreflections leading to eventual
cancellation and decay. This behavior would be
analogous to the behavior of the function
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T
1+ -06)12°

For 6 = 6' (analogous to quantization), F(7) in-
creases linearly with T, but when 6 # 6’ (regardless
of how small the difference is) F(T);_. — 0. Never-
theless, when 6 — ¢’ is in some sense small, F(7T)
will grow with T for a substantial range in T until
decay eventually sets in. If this analogy holds, it
suggests that long-time algebraic decay may be
associated with significant initial growth. One may
then question whether long-term decay is an ade-
quate measure of stability. We are currently study-
ing such cases. :

F(T) =

3. Baroclinic instability
a. Basic analysis

In this section we apply the concepts of the previ-
ous section to the problem of baroclinic instability.
We restrict ourselves to a pure baroclinic flow
[i.e.,# = @(z)] on a B-plane, and to quasi-geostrophic
perturbations. The equations are derived and dis-
cussed in Charney (1947, 1973). Solutions have been
obtained in these works as well as others (Kuo,
1952; Burger, 1962; Miles, 1964; Geisler and Garcia,
1977; Green, 1960). As in most of the above works,
we will confine ourselves to configurations with a
constant Brunt-Vaisila frequency N.

The equation for the geostropic streamfunction
T is

B, 1di du
2
Yoo + € f{ dz dz
u—-c
k? 1
- — = =0, 17
€ 4H? v a7
where solutions of the form
¥ = l[l(Z)ezmHeik(‘t—m (18)

have been assumed and where

H scale height for basic density (assumed constant)
[=RT/S]

height

fYN?

Coriolis parameter

dfidy

eastward distance

northward distance.

< RpTha N

Requiring the vertical velocity to vanish at the
ground implies

di

¢+1w_5
* 2H i—c

$=0 at z=0. (19)
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Various choices are commonly taken for an upper
boundary condition

g0 as z-—> o, (20a)
$=0 at z =z, (20b)
or
dii
1
¢2+2_f-1—l1b~ L_ld_z l,ll=0 at Z=ZT' (200)

If one chooses to use the Boussinesq approxima-
tion, it is equivalent to taking A — « in the above
equations.

It has been noted by LT and Bretherton (1966)
that (17) is mathematically identical to Eq. (3) for
barotropic modes where we now set

(21)

Since Bl/e and di/dz are generally positive while
|d%i/dz?| is generally smaller than the other two
terms, 8, tends to be positive everywhere in most
problems. Thus, we appear to lack the ‘‘inflection”’
point necessary for instability. However, (19) differs
from the boundary condition used in barotropic
problems; Bretherton (1966) and Charney (1973)
show that when dit/dz > 0 (corresponding to tem-

‘perature decreasing toward the pole) at z = 0, Eq.

(19) leads to the possibility of baroclinic instability.
LT and Bretherton (1966) show, furthermore, that
the problem defined by (17) and (19) is equivalent
to a problem where iz, = 0 at z = 0 and increases
from zero to its value just above the ground in an
infinitesimal distance requiring that d%i/dz? be infinite
in this infinitesimal region, thus rendering 8, negative
in this region. 8, now changes sign, thus providing
a configuration capable of instability. For dis-
turbances with critical levels, wave region @ of
Fig. 1 exists in an infinitesimal neighborhood of the
ground while wave region ®@ exists above the critical
level. The overreflected waves discussed in Section
2 are in the infinitesimal neighborhood of the ground.
Although this may seem highly artificial we shall
soon see that there are no real problems associ-
ated with this notion.

Before proceeding to the computational details, it
is important to remark on one consequence of the
above analysis. In Charney’s (1947) treatment of
baroclinic instability, # profiles with constant shears
were considered, and it was found that such profiles
were unstable regardless of the shear—provided
that the shear was not zero. This has given rise to
the faulty idea that neutrality with respect to baro-
clinic instability is achieved only by eliminating
shear (or equivalently, horizontal temperature gradi-
ents). However, consistent with Charney (1973) and
references therein, if we smooth the delta function
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transition, between zero shear at the ground and the
interior shear, over a broad enough region so that
the transition can be made by a profile for which
B. = 0, then we will have an ‘‘inflection’’-free pro-
file which must be stable. The details of this smooth-
ing are given in Appendlx 2 where it is shown that
the required depth for this smoothing is approx-
imately 34 H and within the smoothing region the
average shear is about half of what it is in the un-
smoothed profile. Thus, the elimination of about
30% of the available potential energy in a constant
shear profile is sufficient to neutralize the flow. We
will show, later in this section, that this is a sub-
stantial overestimate of the smoothlng needed for
neutrality.

Before computing, it is useful to nondimen-
sionalize (17) and (19). Let

. d'
m=2L at z2=0, (21a)
dz
uo=a at z=0. (21b)
We define
_ U —uy
= , 21c
i (21¢)
. C — Uy
¢ = , 21d
s (21d)
and
' z
I=—, 2le
= Qe
k*H?
o = . 21f)
€
From (21) we have
ﬂl— =1 at z=0
dz

a=0 at z2=20

Note also from (21d) that ¢ is the height of the
critical level in scale heights (for a constant shear

profile). _
Egs. (17) and (19) become
+ da  d%
55 + dz  dz* o — lry=0, (22
i—¢é 4
1 1 .
q;2+—1p+—np=0 at Z =20, (23)

where r = BH/em.

_ Inordertoinvestigate overreﬂectlon and calculate
unstable modes we must expand the infinitesmal re-
gion of transition from zero shear at the ground.
To do this we lower the ground a small distance
to —d. We now seek a continuous i such that ii;
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=0atZ=—dand 4; = 1at z= 0. Computations
are greatly simplified by choosing & in [—d,0] such
that the bracketed quantity in (22) (which we will
again refer to as Q) is constant. Indeed for real
¢ we may always find such a & by solving

LA I Y
—_———= -
iz @ F
for i, where
u? = positive constant
125 =0 at Z=—d )
i:=1 at =0 : (25)
i=0 at z=0.

Although (24) is only second order in Z, we can
satisfy all three boundary conditions since the con-
stant in (24) is disposable. This procedure for de-
termining & is not without problems: first, # must
be recomputed for each ¢, and second, if ¢ is com-
plex (as it will be in some computations) the & will
also be complex. These problems can be avoided by
exploiting the smallness of d By choosing d always
much smaller than
|é| and Q can be approximated as
L, da &
di  d#  , 1
0 — o - <
and the approximate constance of Q can be achieved
by setting

(26)

== e @7)

where a? is a positive real number. The solution to

(27) satisfying (25) is

i=—-(r+a>i+(+r+a*e*—(1+r+a?), (28)
where
at = — L r. 29)
el -1
For very small d, - |
a? =~ = 30)

In view of the approximate constancy of Q in
[—d, 0], we may write the solution to (22) in this

region as '
Y = e + Re™ 31

where A = Q% and where the root of Q is chosen so
that Im A < 0. Initially the complexity of A arises
from the assumed presence of a small positive c; due
to linear damping. The above branch choice then
guarantees that the first term on the right-hand side
of (31) corresponds to an upward propagating in-
ternal Rossby wave while the second term cor-
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responds to a downgoing wave; R is then a complex
reflection coefficient.

The computation of R is straightforward. One in-
tegrates (22) subject to whatever upper boundary
condition one is using. Because of the singularity
at the critical level one must introduce a small
amount of damping (i.e., a small positive ¢;), and,
if one is proceding numerically, one must have suf-
ficient resolution to resolve the smoothed singularity.
Since we are not using (23) as a lower boundary
condition, we are free to use any value for ¢,, since
it is no longer an eigenvalue. For obvious reasons
we will restrict ourselves to values of ¢, which have
critical levels. The resulting solution is completely
determined except for an arbitrary amplitude. In-
stead of (23) we require that this solution and its
derivative equal (31) and its derivative, respectively,
at Z = 0. These conditions serve to determine the
arbitrary amplitude of the solution to (22) and
R in (31). From a trivial extension of Eq. (15)
we know that |R| will generally be greater than 1
except at isolated points where |B[? = 0. A nu-
merical algorithm for the determination of R is given
in Appendix 3. R, as an overreflection coefficient,
is meaningful only in the limit of ¢; — 0; however,
regardless of interpretation, R is calculable for
any c;. _

As discussed in Section 2, the presence of a lower
boundary at Z = —d should, in the presence of over-
reflection, lead to growing solutions. In order to see
this better, let us study the implications of the lower
boundary condition in detail. At 7 = —d, using our
non-dimensionalization, Eq. (20c) becomes

Y + By =0 at z=—d, 32)

where s is formally given by (31). From (26), (30)
and (31) we have

A~ d-1e (33)
and since d is very small, (32) can be approximated by
;=0 at %= —d. (34)

This approximation is not at all essential, but it sig-
nificantly simplifies our discussion. In addition, we
will initially allow ¢; to be arbitrary rather than
vanishingly small. Substituting (31) into (34) yields

R e—i)\d — eiAd =

or i

R e~ = 1, (35)
We now let |R| = % and

R = R e, (36)
Moreover, since ¢; # 0, A is complex, i.e.,

A=A+ A ‘ (37)

where, as we will soon see, \; is approximately
proportional to ¢;. Eq. (35) becomes
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R @2Mig—2irrd+i0 — | (38)

or .
cos(—=21d + 0) =1 (392)

and )
R et = 1. (39b)

Eq. (39a) implies
0 =2nd +2nm, n=0, =1, 2, etc. (40)

In practice we find solutions to (40) only for n = 0
(in the present problem). Clearly, in the limit of
vanishing ¢; when A; vanishes and # > 1, Eq. (39b)
cannot be satisfied; there must be a finite ¢; (i.e.,
growth).

Egs. (39a) and (39b) form the basis for a variety of
iterative procedures which lead to the determina-
tion of the complex ¢’s corresponding to the un-
stable eigenmodes of the baroclinic instability prob-
lem. One such procedure is particularly illuminating.
In this procedure our initial choice for ¢; is the
smallest value allowed by the numerics for the cal-
culation of R (essentially ¢; — 0). We then vary &,
(which causes both 6 and A, to vary) until (40) is
satisfied. This proves possible only for n = 0 and
leads to what we refer to as our quantization
condition. Having thus determined our initial values
of ¢, (and \,) as well as our initial estimate for
R we turn to (39b) to estimate ¢;:

\ = Im A2
2\,
and using (31) and (26)
—a?
)\i = —— éi 41
20é |2\, @b
and
— a2
i = -2 g = _qg,
EHES
Rewriting (39b)
e¥i = R (42a)
or
In #
c 3 (42b)

Our first estimate for ¢, is ‘obtained by evaluating the
right-hand side of (42b) on the basis of results for
¢; ‘‘vanishingly small,”” i.e., for the values of ¢,,
A, and R obtained above. With this choice for ¢;
(instead of ¢; ‘‘vanishingly small’’) we may repeat
the calculation of ¢, and R and use (42b) to obtain
our next estimate ¢;. The whole process is continued
until convergence is obtained, leaving us with the ¢’s
at each a corresponding to the unstable eigen-
modes.

The first estimate of ¢; is independently interest-
ing. Insofar as it is based entirely on the behavior
of the internal Rossby waves in the limit of vanish-
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ing ¢;, it is an estimate of the growth rate due to
critical layer instability as discussed in Section 2.
‘Thus comparisons of the initial estimates of ¢ with
the converged values of ¢ indicate the importance
of the role of critical layer instability in baroclinic
instability. As a rule, if the initial estimate of ¢;
is comparable to or greater than the converged
value, one may conclude that baroclinic instability
is fundamentally a critical layer instability. This
matter is discussed in greater detail in Section 2b.
It should be stressed that the identification with
- critical layer instability does not require that the
initial estimate be an accurate approximation.

Before proceeding to explicit calculations, we
show that this initial estimate is identical to that
described in Section 2b, and in Lindzen and
Rosenthal (1976). Consider Eq. (17) in the re-
gion 0 >z > —d (where d = dH). The bracketed
quantity is the square of the dimensional vertical
wavenumber (we will call this quantity n?; n? = \¥H?).
Using (27) it is readily shown that

m
_a2 —_
A2 H kK 1
e~ | — - . (@3)
H? Uy — C € 4H?
which may be rewritten
e %k ko1
e | —_— - - R 44
@ € 4H? “4

where @ = k(u, — ¢) is the Doppler-shifted wave
frequency. In the limit of vanishing ¢;, n = MH
=n, = \,/H, and the vertical group velocity is
given by

ce = 1/(dnld®).

The time 7 for a Rossby wave to traverse the
region 0 > z > d is given by

a® —k
2n d_n = H ,
dé P
1 dn a’mk
e do  2ne
_dH _ a®mkdH _  a*mkdH
T e e RemiHE
ke = ”;Cic" = Q¢ [viz. Eq. (42a)].

Thus (42a) may be rewritten
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R = ekeim, (45)

Eq. (45) states that c; is the growth rate pertaining
to a Rossby wave which is magnified by a factor R
eachtime it travels from z = 0to the lower boundary
at z = —d and back to z = 0. Eq. (45), sometimes
called the laser formula, was used by Lindzen and
Rosenthal (1976) and is discussed in LT. The ex-
ponential growth implied by (45) can only occur
when the overreflected and reflected waves are in
phase with each other. The quantization condition
approximately assures this.

b. Numerical results for the Charney and Green
. problems

We will first apply the above to two extensively
studied cases: those dealt with by Charney (1947)
and Green (1960). Charney’s problem assumes a
basic state where

dii
— = 1; 46
dz (46)

in which case (22) reduces to

+1
! —az—ltb:O.

i-¢ 4 @

Yzz +

Boundedness is assumed as Z — «. We find results
are not significantly modified by assuming a rigid lid
at a sufficiently great height which depends on r.
A more general discussion of the role of upper
boundary conditions in baroclinic instability is given
in Section 3c. For the present we will take r = 1
(corresponding to a shear of about 2.0 m s=! km~?)
and place a lid at Z = Z, = 4. Fig. 2 shows plots of
¢, and ¢; vs a for both the initial estimate (labeled
overreflection) and for the converged eigenvalue.
The similarity of the two is striking. Both have
the same qualitative behavior including the apparent
node (at least to the accuracy allowed by the nu-
merics) in ¢, and ¢; at a ~ 0.87. One can see from
Fig. 2 that the first estimate of instability (labeled
OVER-REFL.) is remarkably good when compared
to the finally converged value (labeled EXACT),
which is the same as the eigenvalue result. This
suggests that critical layer instability, as analyzed
in Section 2, is the fundamental basis for baroclinic
instability. This has sometimes been suggested to be
the case for a < 0.87 (sometimes referred to as
Burger or Green modes) but not for a = 0.87
(sometimes referred to as the Charney mode); no
such distinction appears in the present calculations.
The nature of the neutral point at o =~ 0.87 war-
rants further comment. Clearly, for ¢; = 0, we must
have & = 1. But, since ¢, = 0 (corresponding to
a critical level at Z = 0 which is essentially the
inflection point in the present problem) it is not clear
from Eq. (15) whether this.is due to [B[2> =0
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Charney Probiem (with rigid lid at Z=4, and ¥ =1)

F1G. 2. ¢, and ¢; vs « for the Charney problem. Shown are
‘‘exact’”’ results for unstable eigenmodes as well as estimates
based on overreflection.

orto B, = 0. In Fig. 3 we show & — 1 vs &, (in the
limit of vanishing ¢;) for a sequence of «’s above
and below o = 0.87. Itis clear that ® — 1 — 0. The
approach is smooth for a =< 0.87, but seemingly
non-uniform for « = 0.87. The latter accounts for
the precipitous rise in é; to the right of ¢ ~ 0.87.%

Some insight into the nature of this critical value
of a can be obtained from a reconsideration of Eq.
(47). Let

F=(r+ 1)z
¢ =(r+ 1) (48)
o = at+ Y
(r + 1)?
Eq. (47) becomes
524‘ l" ! - "62}[[1:0. (49)
Z—¢

In the limit ¢; — 0, we have a critical level at 2 = ¢,
above which

1
Q=-—

zZ—C

_62

(50)

is positive. Wave region ® of Fig. 1 exists for Z > ¢
and is bounded above by a turning point where Q = 0:

(5D

3If n is the zonal wavenumber at 45° latitude, o = 0.224n
(viz. Appendix 4).
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We now consider the thickness of wave region @
in terms of phase, i.e.,

é+1/81 1/82 1 1/2
J =J Qids = J (— - 62) dx.  (52)

0 X

Eq. (52) is exactly integrable, yielding
w r+1

J

Neutral points occur whenever J is an integral
multiple of =, i.e., when

r+1
2(a® + la)v?
Eq. (54), as a condition for neutral points, has been
found by independent means by Burger (1962) and
Miles (1964). The result is discussed in Charney

(1973). The above provides an interpretation of (54)
in terms of the waves in region @. Solving (54) for

« yields
. r+1)2 1
o = - -
( 2n 4

Clearly, the critical o’s depend on r (i.e., on the
mean shear), and only for a finite number of n’s do
we have positive solutions to (55) for «?. In partic-

=n, n= 54)

(33)

IRI-1
07—

05

(65)
03 (701
(75)
el (80)
o i L L I (85)
/01 03 .05 07 09 1 13 Er

3 1RI1-)

(90)

(a indicoted in parentheses)

Fi1G. 3. R — 1 vs é, (as ¢; = 0) for a’s just below . and just
above «.. a. is the value of a at which the Charney problem has
a neutral eigenmode.
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< ——————
~

Ei Green Problem
S (r=1)

R

|
.02 4 6 8 10

F1G. 4. ¢, and é; vs a for the Green problem. Shown are exact
results for unstable eigenmodes as well as estimates based on
overreflection.

ular, for r = 1, there is a neutral point only atn = 1

where
a = /2 =~ (.87.
: 4

We next turn to Green’s (1960) problem. Green
also deals with flows where dii/dZ = 1, butassumesa
lid at Z =1 and a Boussinesq fluid. The latter
requires that we drop all terms in our dimensional
equations which are O(H™!) and their counterparts
in the non-dimensional® equations. Eqs. (22) then
becomes

(56)

Vs + [ - —az]w=o.
Z—¢
The comparisons of ‘‘overreflection’ and ‘‘exact”
values for ¢, and ¢; in this case are shown in Fig. 4,
again we have taken r = 1. In this case we once
more have a pronounced dip in ¢, and ¢é; at a partic-
ular « = 1.3. For smaller «’s, overreflection esti-
mates are accurate approximations to the exact
values; however, for a’s > 1.3, overreflection sub-
stantially overestimates ¢;. This still leads us to the
conclusion that overreflection underlies the insta-
bility; however, one may ask why one has such a
large overestimate in one case and not in another.
In this connection we should note that when one
redoes Green’s problem for a non-Boussinesq fluid
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[i.e., (56) is replaced by (47)], the degree of over-
estimation is greatly diminished. We should also
note that the ‘‘exact’ values of ¢; are of similar
magnitude in all cases.

At this stage we can only speculate on what is
going on. In Charney’s problem, wave region ® (the
waveguide region of Section 2) is distributed be-
tween Z. and a turning point [viz. Egs. (50) and (51)
with some bias toward Z. (viz. Eq. (52)]. In Green’s
Boussinesq problem (with r = 1), the upper bound-
ary occurs before the turning point and wave region
® is concentrated at the upper boundary (where
again we have to consider the effectively infinite
curvature). In Green’s non-Boussinesq problem, r
in Eq. (56) is replaced by r + 1, which causes the
contribution of the region, between Z, and the upper
boundary, to wave region @ to be more important.
Now the picture of overreflection presented at the
end of Section 2 suggests that overreflection results
from the establishment of a forced waveguide mode
in wave region @. Such a process takes time and if
that time exceeds twice the wave travel time in wave
region @ [viz. Eq. (45)] then one expects Eq. (45)
to yield an overestimate for ¢; [a very special ex-
ample of this is given in McIntyre and Weissman
(1978)1. The above suggests that the increased isola-
tion of wave region @ leads to enhanced values of

- R, without, however, simultaneously increasing the

time available for setting up the waveguide mode.
Recall, the available time is determined by wave
region @. Thus in these cases, increased & does not
lead to notably increased ¢;.

A few remarks are in order for the exact solution
of Green’s problem. Note that, in contrast to
Charney’s problem, the dip in ¢, at « = 1.3 leads
to a minimum value ¢, =~ 0.15 rather than zero. In
view of the discussion of Fig. 3, this is not alto-
gether surprising. The dip in ¢; brings é; very close
to zero, but as Tung will show in a forthcoming
paper, such dips in problems other than Charney’s
will not, in general, reach zero. It can also be seen in
Fig. 4 that ¢; for a <.1.3 is much smaller than it is
for a = 1.3. This has suggested the possibility that
the low a (Green) modes are intrinsically weak and
physically different from the high « (Charney)
modes. However, the small é;’s for the Green modes
is a peculiar property of Green’s problem. It is not
found in the Charney problem (viz. Fig. 2); nor is it
found in calculations by Geisler and Garcia (1977).

c. The radiation condition and baroclinic instability

In the Charney problem the region between the
critical level (or, in the presence of ¢;, a region within
¢; of where 7 = ¢,) and Z, [viz. Eq. (51)] constitutes
wave region @ in Fig. 1. If one really had a constant
shear, one would expect that the choice of an upper
boundary condition would not matter much as long
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as one applied it well above z,. However, from Eqgs.
(51) and (48) we see that for small «’s

B o~E + A(r + 1)]

>4 ©7)

i.e., the turning point which contains the waveguide
region would occur above four scale heights. In
general, tropospheric shears do not continue beyond
0.7-1.5 scale heights in which range # reaches its
maximum. It would thus appear that for small o’s
there might not be a turning point at some reasonable
height, and the choice of an upper boundary condi-
tion could prove important. In particular, it seems
possible that for «’s without turning points the use
of a radiation condition could substantially eliminate
instability. What follows will show that this is
unlikely.
We consider profiles for which

@-=1<1—tanhzi23) (58)
dz 2 [
and
s cosh 222
=t |—|] . 69
2 2 7g
cosh T

where [ is the thickness of the region and where
dii/ dz makes a transition from unity below Z to zero
above Zz. Above %,

i = Zzg.

(60)

An example of such a profile (¢; = 0.7,1 = 0.1) is
shown in Fig. 5. For such profiles, Q (the bracketed
quantity) in Eq. (22) becomes, for 7 > Zzg,

r
—-af - -,

Q=

(61)

Zgp — C

Ignoring ¢&;, Q will be positive everywhere above
z, for
1

ZB_C—' 4

a? <

For realistic parameter choices, this will be the case
for o® < 1 or wavenumbers 4-5 on a sphere (see
Appendix 4). In any event, Q will be essentially
constant sufficiently above Z.

We have examined cases with a wide variety of
zp’s and I’s. As long as I is moderately small, its
choice doesn’t matter. The choice of z; is of some
consequence, but calculations based on the i shown
in Fig. 5 are completely indicative of the general
results; we therefore restrict ourselves to this case.
For the following calculations our integration ceases
at Z = 4. In half the calculations we assume a rigid
top and use Eq. (20c) (or rather its non-dimensional
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FIiG. 5. ii(2) for zz = 0.7 and I = 0.1. This profile is used to
examine the effect of a radiation upper boundary condition.
Also shown is Q(Z) for the choice of &(Z). O(Z) is the bracketed
quantity in Eq. (22); we have taken r = 1 and é, = 0.3 in
evaluating Q.

form). In the other half we apply a radiation condi-
tion. The latter is easily done in view of the near
constancy of Q at Z = 4 [viz. Eq. (61)]. We assume
our solution to be of the form

Yy = A exp(iQ'?3),

where A is an arbitrary constant, and the square root
of Q is so chosen, that for positive ¢;, the imaginary
part of Q2 is positive. With this choice of 92, the
radiation upper boundary condition is obtained by
differentiating (62):

Y = iQwJ’-

Equation (63) is appropriate regardless of the actual
value of ¢;.
Fig. 6 shows ¢, vs « for the following cases:

(62)

(63)

1) Initial quantization based on Eq. (40) for radi-
ating solutions in the limit of ¢; — 0.

2) Initial quantization based on Eq. (40) for solu-
tions with a rigid lid at Z = 4.

3) Converged eigenmode with radiation condition.

4) Converged eigenmode with lid at Z = 4.

Fig. 6 shows ¢, vs a for the above four cases;
¢; vs a is shown in Fig. 7. In the first two cases,
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r=1. ZB=0.7
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FIG. 6. ¢, vs a for baroclinic instabilities of the profile i#(z) shown in Fig. 5. Results are
shown for ‘‘exact’’ eigenmodes when a rigid lid is assumed at Z = 4 and when a radiation
condition is applied at Z = 4. Also shown are wave overreflection estimates for each of the

above cases. In all cases, we have takenr = 1.

c; is an estimate [Eq. (42b)] based on wave over-
reflection. i

There are many features in Figs. 6 and 7 which
warrant comment. We will restrict ourselves to a
few of the more salient ones.

eRestricting ourselves to case 1) above (i.e., over-
reflection estimates with radiation condition), we see
from Fig. 7 that positive é;’s (implying the existence
of overreflection) are found at all «’s, showing that
wave radiation does not eliminate instability. The

1 ZB=07

r

reason for this emerges from Fig. 5 where we show
Q as a function of Z for & = 0.6. Although Q remains
positive as Z — =, it undergoes a marked change in
the neighborhood of Z = Z,. This provides sufficient
partial reflection at Z = Z, so that the region between
Z. and Z, still constitutes an adequate waveguide.

e A comparison of cases 1) and 2) shows an addi-
tional dip in both ¢, and ¢; near a = 0.87 for the
lidded case. The overreflection estimates also sug-
gest that ¢; for the lidded case is much larger than
with radiation for « = 1. Moreover, in case 2) for

Lid(exact)
1 J
5 1.0 15 20 25

FI1G. 7. As in Fig. 6 but for ¢; vs a..
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0.7 < «a =< 0.85 one has two ¢,’s where quantization
occurs and for 0.85 < a < 0.9 there are no values
(though there are values of ¢, where quantization
nearly occurs).

® A comparison of cases 2) and 4) in Figs. 6 and 7
shows that the above described behavior for the
approximate overreflection quantization is not found
in the converged eigenmodes. Unique eigenmodes
are found at all o’s. As discussed in Section 2c,
this simply means that the initial quantization is
an inadequate approximation. It can still be shown
that wave overreflection is the fundamental feature
of the instability.

oWe see from Figs. 6 and 7 that for a = 1.4 the
presence or absence of a lid is of no consequence.
For these a's, Z, is below the lid.

eFinally, and perhaps most important, we see that
results for the converged eigenmodes are similar
regardless of the upper boundary condition. The re-
sults with a lid are qualitatively similar to the cor-
responding overreflection estimates. However, in
cases 3) and 4) the differences are greatly diminished
from cases 1) and 2). Clearly, the explicit inclusion
of growth (i.e., ¢;) reduces the impact of the upper
boundary, which is not surprising since é; is mathe-
matically undistinguishable from the presence of
linear friction. It appears that baroclinic instability,
even for long waves, is not significantly affected
by the presence of lids providing, of course, that the
lids are placed well above the anticipated jet
maximum.

d. Effectively neutral profiles

It was noted in Section 3a (and in Appendix 2)
that if the transition from zero shear at the ground
to the interior shear were effected by a & profile
for which 8, = 0[{u? = 0in Eq. (24)] then the result-
ing profile is rigorously neutral. The question arises
as to whether ‘‘effective neutrality’’ might not be
achieved with u?’s greater than zero (i.e., with less
smoothing of the transition). By effective neutrality
we mean that the calculated growth times [(kc;)™]
are longer than normal frictional spin down time
[O(10 days)]. One may obtain a conservative answer
to this question without explicit stability calculations
by means of overreflection calculations. To do this
one must note the following: If for a given «, one
evaluates a¢; using Eq. (42b) for all c, regardless
of whether (40) is satisfied (i.e., regardless of
whether we have quantization) then the maximum
value one obtains for a¢; is invariably an overesti-
"~ mate of the a¢; for the actual eigenmode (usually
a very large overestimate).

In this section we will consider i#(Z) profiles where
dit/dz goes from unity below Z = 1.5 to zero above
% = 1.5. The transition from dii/dz = 0 at the ground
(¢ = 0) to dia/dz = 1 at 7 = d will be made by pro-
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FiG. 8. i(Z) for a Charney profile where there is a transition
from constant shear to no shear at Z = 1.5. The neutralization
of this profile is studied by spreading the transition from zero
shear at the ground to the interior shear over increasingly deep
regions. Also shown are profiles of #(Z) which are rigorously
neutral and ‘‘effectively’’ neutral. These terms are explained in
Section 3d.

files in 2 which satisfy Eq. (24). With Eq. (24) and
““vanishingly small’’ ¢;, Q is constant in the transi-
tion region, even when d is not small. We consider
large values of d by allowing u? to become progres-
sively smaller, recalling that u? = 0 is rigorously
neutral. For each choice of u?> we use (42b) to cal-
culate a¢; for all ¢,’s and all a’s. The maximum
aé;, so obtained, should be an upper bound for any
actual growth rate. In the calculations which follow
we take r = 1 (corresponding to a shear of 2.05 m
s~' km~! between d and Z,). Profiles of i for various
choices of u? are shown in Fig. 8. In calculating
(aC)max as a function of a we find that relative
maxima for (ac¢;)max OCCUr at two a’s until u? gets
smaller than about 2.5 [note that the range of a’s
for which waves can exist below Z = d diminishes
as u? — 0 as may be seen from Eq. (22); we will
refer to the maximum « for which waves can exist
as aeuorrl; for smaller u?’s there is only-one maxi-
mum. In Fig. 10a we show (af;)nax as a function
of u?; where relative maxima exist for two values
of «, both are shown. In most cases the larger
(a€;)max 1S associated with the larger value of a. For
r = 1 (parameter choices are explained in Appendix
4), a time scale for growth of 10 days corresponds
to a¢; = 0.075. We note in Fig. 9a where (af;)max
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FI1G. 9a. (ac',)max vs u?; see Section 3d for explanation.
FI1G. 9b. a vs u?, where a is the wavenumber correspondmg
to (ac'l)max

= 0.075. Since our estimates are likely to be gross
over-estimates, we also indicate (a€;)max = 0.15.

In Fig. 9b we show the variation of the a’s asso-
ciated with maxima in (a¢;) as functions of u?. Also
shown is acyorre Fig. 9¢ shows the values of ¢, at
which (a€;)max occurs.* Fig. 9d shows the variation
of d with u? [one can show from Eq. (24) that d
has a mild dependence on ¢,]. Also shown in Fig. 9d
“are the values of d associated with (a€;)max = 0.075
and (a¢;)max = 0:15. The profile of i associated with
the former is shown in Fig. 8. We see that d for
‘‘effective neutralization’’ is substantially less than
half that needed for rigorous neutralization.

Fig. 9¢ shows the phase discrepancy A¢ [i.e.,
0 — 2\.d; viz. Eq. (40)] for (a€;)max as a function of
n?. We see that (ac;)nax is achieved far from quan-
tization conditions for u* < 20 but approaches quan-
tization for larger u2. This supports our contention
that (aé;)max iS @ substantial overestimate of actual
growth rates.

Finally, we should note that while r = 1 corre-
sponds to typical tropospheric shears, maximum
zonally averaged shear is more nearly associated
with r = 0.6. Even for such shears, ‘‘effective neu-
tralization’’ is achieved for d < 0.4. Thus we may
plausibly conclude that neutralization of baroclinic

4 &, is here defined as the height, in scale heights, above z = d
for the steering (or critical) level.
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FI1G. 9¢c. ¢, vs u?, where ¢, is the phase speed corresponding

to (ali)max-
FI1G. 9d. d vs u?, where d is the transition depth correspondmg
to the ¢, associated with (a€;)max-

instability calls for only very modest reductions of
mean tropospheric shears.

\
e. Divergence of wave action

In view of the results of the preceding section
one may reasonably ask whether the fluxes due to
unstable modes (in the Charney problem, for exam-
ple) are such as to modify the basic state toward
increasing neutrality. As noted in Section 3d, this
involves, primarily, altering # below the steering

Adldeg)
L ®
180
L
90— -
| 1 i | i 1
0O . 10 20

30 #2

FIG. 9¢. A vs p?, where A¢ (in degrees) is the extent to which
the overreflected wave associated with (a€;)nax does not satisfy
Eq. (40).

Note that in (a) and (d) we specially indicate (a¢;)max = 0.075
(which for r = 1, corresponds to (af;)masx~! = 10 days and is
hence associated with ‘‘effective’” neutrality) and (a¢;)max = 0.15
which may be a better indicator of ‘‘effective’’ neutrality since
(¢ )max Should be a very substantial overestimate.
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level so as to broaden the delta-function curvature
near the ground. We have not, as yet, completed
the calculations relevant to this question. However,
some preliminary results may prove of interest.

As noted by Andrews and Mclntyre (1976), the
most basic measure of wavemean flow interaction is
the divergence of wave action, which for the present
problem is associated with the meridional flux of
potential vorticity, pv'q’. Only where we have sucha
flux does the wave exchange energy with the mean
flow. For wave overreflection in the limit of vanish-
ing c;, this flux is concentrated at the critical level.
The situation is significantly different for unstable
eigenmodes which can have significantc;’s. We have
calculated pv'q’ for the eigenmodes of the Charney
problem (where as in Section 3b we have taken r
= 1 and have placed a lid at Z = 4). Since we are
dealing with solutions of linearized equations, ampli-
tudes are, of course, arbitrary. Distributions of
pv'q’ with altitude for various choices of @ are shown
in Fig. 10. The most important thing to note is that
pv'q’ is always restricted primarily to a region be-
tween the ground and a layer of thickness ~2¢; cen-
tered at ¢,. As noted in Section 2, the integral of
pv'q’ over the whole domain must equal zero. The
negative values shown in Fig. 10 are balanced by
large positive fluxes in the immediate vicinity of the
ground (which, for the methodology of Section 3a is
located slightly below Z = 0); the large positive
fluxes are not shown in Fig. 10. From Fig. 2 we see
that for all modes with reasonable growth rates, é,
= 0.2 and more generally ¢, < 0.25. This implies
that the direct interaction between baroclinically un-
stable modes and the mean flow is restricted to a
boundary layer of depth ~0.3 scale heights.

Three additional points should be made:

F1G. 10. The distribution (units arbitrary) of potential vorticity flux with Z for unstable
eigenmodes of the usual Charney problem (with r = 1) at various o’s.

(i) The restriction of pv'q’ to a boundary layer
does not arise from a similar restriction of the un-
stable eigenmodes. In Fig. 11 we show the distribu-
tions of the perturbation pressure magnitudes ( IPI
= |¥|e~?) of the eigenmodes whose potential vor-
ticity fluxes are shown in Fig. 10. For a = 0.45,
|Pl is of large amplitude throughout the domain;
even for « = 1.5 and « = 5.0, |P| extends to much
greater depths than does pv'q’.

(i) As a general rule, one expects potential vor-
ticity fluxes proportional to ¢; wherever | d;| is finite.

F4

2.0
1P

FIG. 11. The absolute value of the unstable eigenmodes as func-
tion of Z for the usual Charney problem (with r = 1) at those
a’s considered in Fig. 10.
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The above results show that the coefficient of pro-
portionality is much larger in the critical layer and
below it than above it.

(iii) The fact that pv'q’ is restricted to a boundary
layer does not imply that modifications of the basic
state are restricted to this layer. The interaction can
force a meridional circulation which extends above
the layer where we have significant potential vor-
ticity fluxes; and this meridional circulation will in
general lead to alterations of & (and T). As a rule,
however, these alterations will decay exponentially
above the layer where we have pv'q’. We are cur-
rently involved in calculating these alterations. The
results, so far, however, do support the notion that
instabilities tend to neutralize the basic state.

4. Concluding remarks

We have, in this paper, examined the nature of
overreflection, and how wave overreflection can
1ead to instability (Section 2). In Section 3 we under-
took a study of baroclinic instability from the per-
spective of wave overreflection. Without repeating
our detailed results, we can state as our most funda-
mental conclusion that the underlying mechanism
for baroclinic instability is, indeed, the overreflec-
tion mechanism, and that the locus of instability is
the critical layer (a layer of approximate depth 2¢;,
centered at the steering level). This conclusion is at
variance with the more usual view that baroclinic
instability is a convective response to available po-
tential energy (or more simply, horizontal tempera-
ture gradients).> To be sure, since our equations
are energetically consistent, the energy for the grow-
ing disturbance does come from the available po-
tential energy of the basic state, but the available
potential energy, per se, is not the cause of the in-
stability. From Section 3 we see that by altering the
basic state so as to prevent the overreflection mech-
anism we eliminate the instability even though the
same alteration eliminates only a relatively small
fraction of the available potential energy.
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5 This view is not completely original. It is implicit in the identi-
fication of the Eady problem with the stability of Couette flow
with free boundaries. It is also found in the identification of
Green modes with critical layer instability. These matters are
reviewed in Charney (1973). However, even in Charney (1973),
the so-called **Charney’’ modes continue to be incorrectly dis-
tinguished from critical layer instabilities.
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APPENDIX 1

Slow V?riation and the Existence
of Wave Propagation

It was noted in Section 1 that Q, in Eq. (1), being
positive, does not guarantee the existence of wave
propagation. This point is best introduced by con-
sidering the equation for vertical velocity perturba-
tions in a stably stratified, Boussinesq fluid, with a
plane parallel basic flow u(z):

d*w N2(z)

dz? (u —¢)*

uZZ

-0 -k }w =0, (AlD

where the form
W(Z)eik(r—ct)

is assumed for perturbations. N%(z) = (—g/pe)dpo/
dz. Consistent with the Boussinesq approximation,
variations in p, have been ignored except insofar as
they enter N2. For Eq. (Al.1),

"N2(z
0- N@__
(u — ¢)? u
where N%(z) > 0. ‘
Consider now a situation where N? and u, are
constant. Also let u = ¢ at z =z,. Then u — ¢
= u,(z — z.). For simplicity, let z, = 0. We then
have

uzz

— k2, (Al1.2)

- C

N? i
= —k? = Ri_ k2, (A1.3)
u,’z? z?
where Ri = N%/u,?, a constant, and
d? Ri :
- {_‘ - kz}w = 0. (A1.4)
dz? 72

Although (A1.4) can be solved compleiely, one ob-
tains the same results more simply by setting k2 = 0.
This leaves

d>w  Ri

E r (A1.5)

w = 0.
Note that Q = Ri/z? is always positive. Although

(A1.5) has a pair of simple exact solutions we first
consider the WKB approximations

w0 exp( =i [ Q') (AL6)

~ z12 exp(=i Ri'?2 Inz) (A1.6b)
~ gI2=Ri (A1.6¢)
For this problem Eq. (2) yields
Riliz > 1/2
or
Ri > V4., (A1.7)
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Interestingly, (A1.7) guarantees stability as well.
(For accuracy of the WKB approximation one would
really want Ri > 14.) To see what happens when
Ri becomes less than 4, we turn to the exact solu-
tions of (A1.5):

w ~ zV2xiVRi-14 (A1.8a)
~z¥2 exp(xiVRI — V4 Inz). (A1.8b)

From (A1.8b) we see that for Ri > 14 we do indeed
have wave propagation. However, for Ri < !4,
(A1.8b) becomes

w ~ z!2 exp(=V% — Rilnz) (Al.8c)

and we have trapping, despite the fact that Q > 0.
The above results are fairly general for stratified
shear flow (except where u" is very large), and show
that rapid variation of positive Q may lead to trap-
ping rather than propagation. It would be nice if Eq.
(2) determined a boundary between propagation and
trapping. Unfortunately, this does not appear to be
the case in general. The coincidence of the prop-
erties in the case of stratified shear flow seems for-
tuitous. It appears, for example, from exact solu-
tions that although (2) is violated in the neighbor-
hoods of critical levels and turning points in Eq.
(3) that there is nonetheless propagation in these
neighborhoods. Thus, LT may have been basically
correct in ignoring rapid variation in Q.

What is probably called for is consideration of
the Ricatti equation associated with Eq. (1). Let

by

w=—--=. (A1.9)
¥
Then u satisfies the Ricatti equation
d
“E - 00) + (A1.10)

dy

In general, we associate propagation with u being
complex. In the case of (A1.5) we have exact solu-
tions for u; but normally the situation is much more
difficult.

APPENDIX 2
Rigorously Neutral Baroclinic Profiles

For convenience, we consider the ground to be
atZ = —d, where 7 and d are heights z and d scaled
by the scale height H. The transition region is taken
to be between Z = —d and Z = 0. Above Z = 0 we
have a constant shear. Rather than &, we consider
# as defined in Eq. (21c). The transition profile is
given by Eq. (28) with a? = 0. From Egs. (28) and
(29) we have

IZ —4

—rz + (1 +r)ef — 1), (A2.1)
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q= ln(l + l) , (A2.2)

,
wherer = BH/em and m is the dimensional shear for
z>0.

In the absence of smoothing we would have &(— d)
= —d. Thus the fractional reduction of average
shear in the region (—d, 0) is given by #(—d)/—d,
where ii(— d) and d are taken from (A2.1) and (A2.2).
For typical atmospheric conditions (see Appendix
4),r =1, and

d = 0.693,
i(—d) = —0.307,
#=d) _ o4

~d

For conditions corresponding to the zonal jet maxi-
mun r = 0.6, and

d = 0.981,
i(~d) = —0.412,
a=d) _ o 419,

—d

We finally turn to the question of available po-
tential energy. In this paper we simplistically adopt
the following measure for available potential energy:

= — J 0 diz

—dp.
Psurface

T (A2.3)
For the Charney problem dit/dZ = 1 and @ = pgysace-

Clearly, (A2.3) is a bit peculiar in that it is inde-
pendent of the dimensional shear m. However, it
suffices for estimating the reduction in available po-
tential energy resulting from altering an unstable
profile to a neutral profile in the manner discussed
in this appendix. Let Z = —d correspond to the
ground where p = py = Pgurface- L€t Z = 0 be associ-
ated with a pressure p = p; = Poursace® % (Recall i
= 0 at z = 0.) Finally, assume that prior to neutral-
ization we have a Charney profile [for which #(—d)
= —d] which extends to some height Z; (as in Fig. 5),
rather than infinity, and let p = p; = pgurtace€ " ¢%8)
at Z = Z. The fractional reduction in ® due to neu-
tralization is then given by

AP _ [ - dn(=d)/=d)(po ~ py)
‘D()r (Po - ps2)

where i, is the neutralized profile and ®,, is the
unneutralized value of ®. Recall that i, = it,, for
z > 0. For the usual Charney problem, p, = 0. For
the case withr = 1
" AD
- w |

, (A2.4)

0.307
1 —_ )(1 —_ e—0.693)

0.693
= (.278 or a 27.8% reduction.
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For the case withr = 0.6

) . '
A (1 0 412)(1 _ gmoam)
O, 0.981

0.3625 or a 36.25% reduction.

i

APPENDIX 3
Numerical Algorithm
We wish to solve o
s+ Q@Y =0 (A3.1)
subject to an arbitrary upper boundary condition
ay; + by =0 at Z =25 (A3.2)

At 7 = 0 we require that the solution of (A3.1) and
its derivative be continuous with (31) and its deriva-
tive, i.e.,

P0) =1+R, (A3.3)
P:(0) = iNR — ). (A3.4)

This problem is readily solved-by finite-difference
methods. We first change variables. Let

xX=1Zr—Z, _ (A3.5)

where 2 = Z; now corresponds tox = 0, and z = 0
corresponds to x = zy. Eq. (A3.1) becomes

Yre.+ QY =0 (A3.6)
and (A3.2) becomes ‘
—ay, +by =0 at x=0. (A3.7)

. Egs. (A3.3) and (A3.4) now become
P(x) =1+ R
Pz(x) = —iIMR — 1)

"We now divide the interval 0 < x < Z;into N + 1
levels x, = 0, x;, X3, . . . , Xy = Zr, With constant
separation 8. In order to apply (A3.7) we also allow
a fictional level x_,. The finite-difference approxi-
mation to (A3.6) is

Y1 T (Qn62 - 2)'1’71 + Y- = 0, (A39

where the subscript n refers to evaluation at x = x,.
(A3.9) is solved by Gaussian elimination. This is
most easily implemented by letting

‘pn—l = an‘pn-

] at x =%, (A3.8)

(A3.10)
Similarly
Yo = Qni1Pntr. (A3.10a)

A recursive formula for the a,’s is obtained by sub-
stitution (A3.10) into (A3.9) and comparing the result
with (A3.10a). This yields

' -1

(Qn8* — 2 + o)

Qpyy =

(A3.11)
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Thus, when we have «,, we have all subsequent
a,’s. a is obtained from (A3.7) and (A3.9). The finite
difference approximation to (A3.7) is

—a(; — Yo,) + 2b8Y = 0. (A3.12)
From (A3.9) we have
U + (008 — D + Y, = 0. (A3.13)

We usé (A3.13) to eliminate ; from (A3.12). A com-
parison of the result with (A3.10) yields

_ {a(Q8* - 2) + 253}

a . A3.14
0 5 ( )
We now turn to (A3.8) which become
Yy =1+R, (A3.15)
Uy — Py = —IAS(R— 1). (A3.16)
Now, :
Un-1 = anin,

and, using (A3.15), (A3.16) becomes
(1 —ay)(1+R)=—iA8(R - 1),
which may be solved for R:
—(1 — ay — i\
(1 — ay +ir8)

Note that |R| = 1 if ay is real. The complexity of
ay arises from arbitrarily small é; in the neighbor-
hood of the singularity in Q.

R = (A3.17)

APPENDIX 4
Numerical Values

Our analysis has been in terms of nondimensional
parameters. Characteristic values for these param-
eters are derived in this appendix.

Evaluating f and B at 45° latitude, we get

f=10"%s71,
, B~1.6x 10" s m,
Typically, N? = 1.6 x 107* s72. Thus

3
e =2 0625 x 104,
N2

(A4.1)
Now |
a? = keH , (A4.2)
€
where H ~ 8 X 10° m and
n
k = )acosd> , (A4.3)

where 7 is the zonal wavenumber at latitude a and
a is the earth’s radius (~6.4 x 10° m). From (A4.1),
(A4.2) and (A4.3) (taking ¢ = 45°) we get



JANUARY 1980 RICHARD S. LINDZEN, BRIAN FARRELL AND KA-KIT TUNG 63
a = 0.224n (A4.4a) turbances from the lower into the upper atmosphere. J. Geo-

or phys. Res., 66, 83~109,
9 2 Davis, P., and W. R. Peltier, 1976: Resonant parallel shear in-
o* =~ 0.05n*. stability in the stably stratified boundary layer. J. Atmos.

Sci., 33, 1287-1300.
We next turn to Geisler, J. E., and R. Garcia, 1977 Baroclinic instability at long
- BH (A4.5) wavelengths on a B-plane. J. Atmos. Sci., 34, 311-321.

r= om . . Green, J. S. A., 1960: A problem in baroclinic stability. Quart.

For the above choices of 8, H and € we have
, 2.048 x 107°s7!  2.048 m s km™*
m m '

Thus r = 1 corresponds to m = 2.05 m s™! km™!,
while r = 0.6 corresponds to m ~ 3.4 m s~t km™!.
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