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ABSTRACT

Analytic and numerical solutions are found for the nonlinear Hadley circulation problem with respect to the
dependence of the strength and the extent of the Hadley circulation on the thermal relaxation time. The dependence
on the thermal relaxation time is a crucial parameter to investigate since the simplifications used in previous studies
assumed a large thermal relaxation time, to justify the geostrophic assumption, but in the presence of moist
convection, thermal relaxation may be fast in the convection regions. In this study, a primitive equation model is
used to investigate the effect of different latitudinal distribution of thermal relaxation time on the extent of the
circulation cells, the zonal wind, the temperature distribution, and the strength of the meridional circulations. It is
found that the extent of the Hadley circulation is insensitive to the value of the thermal relaxation time t, while
the strength of the circulation is very sensitive to t (but in a way that is predictable based on the 1/t scaling).

1. Introduction

In the study of the nonlinear axially symmetric cir-
culations in the ‘‘nearly inviscid’’ limit, Held and Hou
(1980) developed a simple approximate theory based
on the conservation of absolute angular momentum
and potential temperature. The theory predicts, as a
function of Rossby number Ro, the extent of the Had-
ley circulation, the latitude of the upper-level jet of
the zonal wind, and the region of surface easterlies
and westerlies. This theory also predicts the total po-
leward heat flux, the mass flux in the surface boundary
layer, and the surface zonal wind distribution, which
are found to be inversely proportional to the thermal
relaxation time. It is noted in Held and Hou (1980)
that this simple theory is self-consistent only in a
restricted parameter domain of Rossby number (Ro),
Ekman number (E), and the thermal relaxation time
(t). One of the requirements is that the relaxation time
(made dimensionless by multiplying by 2V, V 5 2p/
day) be large, that is, t k 1. In their studies, t is
considered to be a constant throughout the model do-
main.

In Fang and Tung (1996), we found that to model
the Hadley circulation with moist convection it is de-
sirable to allow the thermal relaxation time to be a
function of space. It is suggested that results from
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moist convective models can be incorporated and re-
interpreted in the Newtonian cooling formulation by
assuming a small t in the convecting region, which
leads to a fast convective adjustment to a moist adi-
abat. A simple case was considered where it was as-
sumed that t is so small in the ITCZ (intertropical
convergence zone) that the local temperature there
quickly relaxes to its thermal equilibrium value. In
light of this reinterpretation, the thermal relaxation
time t can vary widely with latitude and can range
between 0 and `.

To understand the axisymmetric circulation in a
more realistic moist-convecting atmosphere, it is use-
ful to have a systematic study of the effect of the
thermal relaxation time on the structure and the mag-
nitude of the circulation. In this study, using both
scaling arguments and numerical results, we derive
the extent of the Hadley circulation (in the equato-
rially symmetric case) for any constant t and for a
latitudinal distribution of t. Since geostrophy fails at
small values of t, the primitive equations are used
here. The dependence of the strength of the circulation
and the temperature deviation from its equilibrium
value on t are also discussed.

2. The model

A set of axially symmetric primitive equations is
used here for a Boussinesq fluid on a sphere of radius
a rotating with rate V, confined between a solid bot-
tom surface and a stress-free lid at height H. The set
of nondimensional equations is given in Fang and
Tung (1996) and is listed below:
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2]u ]u ]u ] u
1 Ro y 1 w 2 uy tanf 2 sinfy 5 E (1)

21 2]t ]f ]z ]z

2]y ]y ]y ] y ]F
21 Ro y 1 w 1 u tanf 1 sinfu 5 E 2 (2)

21 2]t ]f ]z ]z ]f

1 ](y cosf ) ]w
1 5 0 (3)

cosf ]f ]z

]F
5 Q (4)

]z

2]Q ]Q ]Q E ] Q Q
1 Ro y 1 w 5 1 , (5)

21 2]t ]f ]z Pr ]z Cp

where Q is the potential temperature and (u, y, w) the
velocity of the fluid in the longitudinal, latitudinal (f),
and the vertical (z) direction respectively; Ro [ U/(2Va)
is Rossby number where U is a typical zonal velocity,
E [ n/(2VH2) is Ekman number, and Pr [ n/k is Prandtl
number. We suppose that the diabatic heating can be
approximated by the Newtonian cooling law with a vari-
able relaxation time:

Q Q 2 QE5 , (6)
C t(m)p

where m [ sinf. The equilibrium potential temperature
QE is given as a function of latitude and height. Held
and Hou (1980) used the following as their (dry) equi-
librium potential temperature

QE 25 Q 2 D m 1 D z. (7)0 H VQ00

It needs to be modified to include regions of moist con-
vection, where QE should be interpreted as the moist
convective radiative equilibrium value. Thermal relax-
ation time t is generally a function of space. Here we
confine our attention to a latitude-dependent profile t(m)
only.

The boundary conditions for the velocities are no-slip
conditions at the bottom and stress-free lid at the top.
The boundary is considered to be insulated so that no
heat flux crosses it. There is no poleward velocity, that
is, y cosf 5 0, at the poles. These are the same as in
Fang and Tung (1996).

To test the dependence of the Hadley circulation on
thermal relaxation time t, we have also performed a
series of numerical calculations for various relaxation
time profiles. The value of the parameters used in those
calculations are DH 5 1/6, G 5 6 K/km, Gd 5 9.8 K/
km, H 5 15 km, T0 5 300 K, n 5 3.5 m s22. These
lead to Dv [ Gd 2 G 5 3.8 K/km and E 5 1 3 1024.
The typical velocity U is taken from the thermal equi-

librium solution as gHDH/(2Va) and it leads to a thermal
Rossby number Ro 5 R 5 gHDH/(2Va)2 5 0.0283. The
solution sought in this study is the steady solution.

3. Scaling

In the ‘‘nearly inviscid limit’’ (E → 01), from Eq. (5)
we can see that the steady state of (y, w) is proportional
to Q and therefore is scaled by 1/t0 except in the viscous
boundary layers. Here t0 is a typical value of t. We can
rescale them by introducing y 5 /t0, w 5 ŵ/t0. Theŷ
steady version of the angular momentum equation (1)
can be rewritten as

2]u ]u ] u
Ro ŷ 1 ŵ 2 uŷ tanf 2 sinfŷ 5 Et . (8)0 21 2]f ]z ]z

It can be seen that if Et0 K 1, the absolute angular
momentum is conserved along streamlines away from
viscous boundary layers; that is,

]L ]L
ŷ 1 ŵ 5 0 for Et K 1, (9)0]f ]z

where L [ cos2f 1 2Rou cosf is the absolute angular
momentum.

The meridional momentum equation (2) can be re-
written as

2Ro ]ŷ ]ŷ E ] ŷ ]F
2ŷ 1 ŵ 1 Rou tanf 1 sinfu 5 2 .

2 21 2t ]f ]z t ]z ]f0 0

(10)

For t0 k 1, (10) results in a statement about cyclo-
strophic balance:

]F
2Rou tanf 1 sinfu 5 2 . (11)

]f

The thermodynamic equation (5) can be rewritten as,
for the case of uniform t 5 t0,
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FIG. 1. The strength of the circulation and the deviation of the
temperature from its equilibrium value, as a function of the thermal
relaxation time: solid line with ‘‘V’’ is for the strength of the cir-
culation; dashed line with ‘‘3’’ is for the temperature deviation at m
5 0, z 5 0.5; dashed–dotted line with ‘‘*’’ is for the deviation at m
5 0.3 and z 5 0.5.

]Q ]Q Et0 2Ro ŷ 1 ŵ 5 ¹ Q 1 (Q 2 Q). (12)E1 2]f ]z Pr

If Pr 5 O(1) or larger, the thickness of the thermal
diffusive layer has the same or higher order as that for
the zonal wind. Under the assumption of Et0 K 1, we
have

]Q ]Q
Ro ŷ 1 ŵ 5 (Q 2 Q), (13)E1 2]f ]z

which actually is presumed in the beginning of the re-
scaling of y and w.

Held and Hou (1980) discovered a simple formula
for the extent of the Hadley circulation. The derivation
of that formula is based on a few assumptions:

1) The absolute angular momentum is conserved in the
upper branch of the circulation, from (9).

2) The cyclostrophic balance is satisfied, from (11).
3) The potential temperature is conserved in the bulk

of the Hadley circulation; that is, the integral of the
right-hand side of (13) over the whole circulation
region is zero. [This can also be derived more gen-
erally from the integration of Eq. (5) since the in-
tegral of the left-hand side is zero and the integral
of the diffusion term is also zero because of the
insulated boundary condition.]

What we have briefly shown above is that these ‘‘as-
sumptions’’ are derivable from asymptotic scaling.
What we have further shown is that for the case of
uniform t 5 t0 and under the assumption of t0 k 1 and
Et0 K 1, the extent of the Hadley circulation, the zonal
wind, and the potential temperature are independent of
t, while the strength of the meridional circulation is
inversely proportional to t. This is because in the scaled
equations (9), (11), (13), (3), and (4), t no longer ap-
pears.

To confirm this conclusion, which was based on scal-
ing arguments, we carried out a numerical solution of
the full primitive equations (1)–(7) for various uniform
values of t. The solution is obtained by time stepping
until a steady state is reached. The result is shown in
Fig. 1. The strength of the Hadley circulation is found
to be proportional to 1/t for all values of t. The extent
of the circulation is found to be independent of t.1 The
same is also true for the deviation of the temperature
from its equilibrium value. The calculated zonal winds
show that the location of the jet does not change with
t, but the horizontal gradient at the poleward side of
the jet becomes steeper, and the absolute angular mo-

1 Note that the numerical solution is not ‘‘nearly inviscid.’’ A value
of E was used for practical reasons, which is not as small as one
would have preferred. Consequently, the extent of the circulation in
the numerical solution is affected by the viscous boundary layer when
t $ 250.

mentum conserving behavior is more obvious for small-
er t.

4. The more general case

a. The effect of t on the extent

The discussion in the last section shows that the extent
of the Hadley circulation is independent of t for a uni-
form t, in the limit t k 1. We shall now discuss the
case of a latitudinal-dependent t(m). The full primitive
equations are used here because t(m) cannot be consid-
ered as uniformly large.

The ‘‘equal area’’ rule for potential temperature con-
servation (Held and Hou 1980; Lindzen and Hou 1988),
which is valid for uniform t, is

mH

¯ ¯(Q 2 Q) dm 5 0, (14)E E

0

where mH is the edge of the Hadley circulation and ( )·̄
[ (·) dz, is here modified for the case of variable t(m)1∫0

to
mH ¯ ¯Q (m) 2 Q(m)E dm 5 0. (15)E t(m)0

Equation (15) is obtained by integrating the steady, near-
ly inviscid version of (5) vertically and meridionally.
We still have (9), which is a statement of the conser-
vation of angular momentum L [ cos2f 1 2Rou cosf
in the upper branch of the Hadley circulation in the
nearly inviscid limit. Thus, the zonal wind at the ‘‘top’’
in the Hadley region is given by

2 2sin f 2 sin f1u 5 , (16)t 2Ro cosf
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FIG. 2. The extent of the Hadley circulation for an equatorial sym-
metric potential temperature: solid line is for t 5 0 and dashed line
is for t k 1.

where f 5 f1 is where u 5 0 (and L 5 cos2f1). The
subscript t denotes the value at the top branch.

From the primitive equation (2) for the meridional
velocity we have, for the upper (horizontal) branch of
the Hadley circulation and in the inviscid limit,

]y ]Ft t2Ro y 1 u tanf 1 sinfu 5 2 . (17)t t t1 2]f ]f

The same equation, (2), when applied to the lower,
no-slip boundary yields

2]F ] y
5 E .) )2]f ]zz50 z50

This quantity has been shown in Fang and Tung (1996)
to be zero in the limit E → 01 for an equatorially sym-
metric QE. We can thus set F(z 5 0) to zero. The hy-
drostatic equation (4) can be integrated from z 5 0 to
the top to yield

Ft 5 .Q̄ (18)

Equation (18) can be substituted in (17) and integrated
meridionally from m 5 0 to m, yielding

Ro Ro¯ ¯2 2 2 2y 5 Q(0) 2 Q(m) 1 (y (0) 1 u (0) 2 u (m)).t t t t2 2

For the symmetric case, u 5 0 and y 5 0 at the equator
(see Fang and Tung 1996). The use of (16) then gives

4Ro m¯ ¯2y 5 Q(0) 2 Q(m) 2 . (19)t 22 8Ro(1 2 m )

The extent of the Hadley circulation is given by the
region where . 0, with the edge mH determined by2yt

(mH) 5 0. Therefore, to find the location of the edge2yt

of the Hadley circulation, we use
4mH ¯ ¯5 Q(0) 2 Q(m ). (20)H28Ro(1 2 m )H

Held and Hou (1980) introduced the constraint that at
the edge of the Hadley circulation, the vertically inte-
grated temperature is continuous and hence is given by
its equilibrium value outside the circulation region; that
is,

(mH) 5 E(mH).¯ ¯Q Q (21)

Consequently, (20) becomes

F(mH) 5 c, (22)

where
4m ¯ ¯F(m) [ 2 2 Q (m) 1 Q (0)E E28Ro(1 2 m )

is a known function of m, and

c [ E(0) 2 (0)¯ ¯Q Q

is always positive because the equator is in the up-
welling region where 2 E , 0. In the extreme (but¯ ¯Q Q
unrealistic) case of t → 0, → E and so c → 0. The¯ ¯Q Q
extent of the circulation in that case is determined from

F(mH) 5 0 as t → 0. (23)

For the symmetric E(m) given by (7) and used by pre-Q̄
vious authors, E(m) has the dimensionless formQ̄

E(m) 5 E(0) 2 m2.¯ ¯Q Q (24)

Equation (23) can be solved explicitly to yield

8Ro
m 5 . (25)H !1 1 8Ro

For nonzero t, the extent mH can be determined graph-
ically from (22) for a given c . 0. However, c cannot
be arbitrarily given; it has to satisfy a constraint similar
to the the equal-area rule (15), which in the present case
can be written as

m mH HF(m) 2 c Ro
2dm 5 y dm . 0. (26)E E tt(m) 2t(m)0 0

For the case of large, uniform t, considered previously
by Held and Hou (1980), (26) becomes

mH1
c 5 c(`) [ F(m) dm (27)EmH 0

since is negligible because of its O(1/ ) scaling. Sub-2 2y tt 0

stituting (27) into (22) then yields an equation for mH:
51 m 1 1 1 mH H3(16Ro 2 1)m 2 2 m 1 ln 5 0, (28)H H23 1 2 m 2 1 2 mH H

which was previously obtained by Held and Hou (1980).
It is seen that, in general, the extent of the circulation

depends on t. We denote this dependence by writing
mH 5 mH(t). We have now found two extreme values,
mH(0) from (25) and mH(`) from (28). These are plotted
in Fig. 2 as functions of Ro, mH(0) as a solid line and
mH(`) as a dashed line. We see that these two have a
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FIG. 3. The graphical solution for mH. The solid curve is F(m). The
top horizontal line is c(`), while the lower horizontal line is c(0).
The two parts that make up F(m) are also shown: 1/2 by the2Rout

dotted line and E(m) 2 E(0) by the dashed line.¯ ¯Q Q

difference of less than two degrees of latitude for all
values of Ro.

For other values of t between these two limits, we
can easily show that

mH(`) # mH(t) # mH(0) (29)

for the case of constant t. For this case, c 5 c(t) is
given by

m mH H1 1 Ro
2c(t) 5 F(m) dm 2 y dm. (30)E E tm m 2H H0 0

In Fig. 3, F(m) is plotted in the solid curve. In the
absence of the last term in (30), c would be determined
by the equal-area rule to be the line c(`) that intersects
F(m) in such a way that there is an equal area bounded
by the curve F(m) above and below the line c(`). The
outermost intersection of the F(m) curve and the c line
then determines mH. Equation (30) states that for t not
necessarily large, c should be smaller than the value
determined by the equal area rule since the last term in
(30) always subtracts from c(`); that is,

0 # c(t) # c(`). (31)

From Fig. 3, the graphical solution for (30), we see that
a c between c(`) and 0 should yield a mH(t) between
its two limiting values, thus the inequality in (29).

For a variable t(m), we still have (22), which implies,
since c $ 0,

F(mH) $ 0. (32)

Thus, only the positive portion of F(m) needs to be
considered in our graphical solution for mH. We can
immediately conclude that

mH(t) , mH(0) for t(m) . 0. (33)

For the (realistic) case where t(m) varies in such a way

that the larger values of t(m) are found away from the
equator, toward mH, we can show that

c(t(m)) , c(`). (34)

If (34) were not true, the left-hand side of Eq. (26) would
have been negative, a contradiction. For c , c(`), (22)
can be satisfied only if

mH(t) . mH(`) (35)

(see the graphical solution in Fig. 3). Thus we have
shown that the extent of the Hadley circulation is bound-
ed by

mH(`) , mH(t) , mH(0). (36)

This is true for a uniform t as well as for a variable
t(m), provided that t(m) does not decrease with latitude
in the subtropics. Furthermore, since the upper and low-
er limits have been found to be within two degrees of
each other, we conclude that the extent of the Hadley
circulation is insensitive to t(m). The simple, explicit,
formula (25) for mH(0) can be used as an approximate
formula for mH in general.

It should be pointed out that the statement that the
upper and lower bounds on mH differ from each other
by less than two degrees of latitude depends on the
particular profile of equilibrium temperature we have
chosen. While that smooth profile may be appropriate
for a dry radiative equilibrium temperature, in the pres-
ence of moisture QE should be considered as the con-
vective–radiative equilibrium, and so QE can be very
different in regions of moist convection as compared
with the dry regions. Even for this more general case,
we still have the conclusion (36) except that the bounds
do not necessarily differ from each other by two degrees
of latitude. The quantitative values need to be calculated
case by case, but this is a simple task since these two
limits, mH(0) and mH(`), can be calculated easily using
the procedure outlined above.

b. The effect of t on the strength

In contrast to the insensitivity of the extent of the
Hadley circulation to the distribution of the relaxation
time, it is found that the strength of the circulation is
strongly dependent on t. It is found that the strength of
the circulation is inversely proportional to t in the case
of uniform t, in which the deviation of the temperature
from its equilibrium value was found not to change with
t. This turns out not to be generally true for latitudinally
varying t(m). The change of t in a very narrow region
could have a strong impact on the temperature and hence
on the strength of the circulation.

Based on our work in Fang and Tung (1996) and Fang
(1995), where explicit solutions were obtained for var-
ious piecewise constant t profiles, the following con-
clusions can be inferred. As long as t(m) in the whole
circulation region is longer than the timescale of trans-
port of the large-scale circulation (i.e., t k 1), the tem-
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perature in the Hadley circulation will be determined
hydrostatically from the zonal angular momentum trans-
port by the Hadley circulation. In this case the temper-
ature distribution will then be independent of t. Hence
the strength of the Hadley circulation will be inversely
proportional to t0, same as discussed previously for the
uniform t case.

If somewhere in the circulation region t attains a
value much smaller than the dynamical transport time
(i.e., t(m1) K 1 for some m1) as in the case of local
moist convection, the temperature locally will be de-
termined by this faster thermal relaxation to the local
moist radiative–convective equilibrium value. If outside
this region t values are still large, the Hadley circulation
will still attempt to homogenize the temperature hori-
zontally, as discussed in Fang and Tung (1996) for the
general case. The strength of the circulation is still given
approximately by the negative of the temperature de-
viation from the radiative equilibrium temperature di-
vided by t. However, the temperature achieved is influ-
enced strongly by the equilibrium distribution in the

region of small t (i.e., at m1). Aside from this compli-
cation, the strength of the circulation still scales ap-
proximately as 1/t in the dry regions.

The reader is referred to Fang (1995) for the quan-
titative results for various piece-wise constant t cases
treated.
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