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Large Amplitude Internal Waves of Permanent Form

By Ka- Kit Tung, Tony F. Chan, and Toshi Kubota

In this paper the weakly nonlinear theory of long internal gravity waves propagat-
ing in stratified media is extended to the fully nonlinear case by treating Long’s
nonlinear partial differential equation for steady inviscid flows without restriction
to small amplitudes and long wavelengths. The existence of finite amplitude
solutions of “permanent form” is established analytically for a large class of
stratification profiles, and properties are calculated numerically for the case of a
hyperbolic tangent density profile in a large range of fluid depths. The numerical
results agree well with the experimental data of Davis and Acrivos over the full
range of wave amplitudes measured; such agreement is not obtainable with
existing weakly nonlinear theories.

Introduction

Large amplitude internal waves that effectively maintain their shape over long
propagation distances are often observed in nature [10, 15, 16, 18, 23], and it has
been suggested that they occur in the Jovian atmosphere as the Great Red Spot
[29]. The surprising ease with which large amplitude internal waves on a pycno-
cline can be repeatedly produced in the laboratory and the durability of the
waveshape both over long distances and in collisions with walls and other such
waves have been noted by many researchers. (For example, Maxworthy [28]
stated, “Quite general and uncontrolled mixing events create solitary wave trains
and lead us-to suspect that they should be excited under many circumstances in
natural systems.”) With a few exceptions [6] (including calculations for interfacial
waves), most of the existing theories [3-5, 22, 32] of internal solitary waves, as
they are called, are limited to the case of small amplitudes and long wavelengths.
(The first assumption allows the nonlinear equation to be obtained in an
asymptotic expansion in terms of amplitude, with the lowest order equation being
linear, while the long wavelength assumption reduces the partial differential
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equations of hydrodynamics to an ordinary differential equation.) In applications
the results from the weakly nonlinear theories are often extrapolated into ampli-
tude regimes in which the assumptions under which they are derived are violated.
While it is a remarkable fact that the predictions of the weakly nonlinear theories
for some flow quantities agree quite favorably with experimental data even for
moderately large wave amplitudes, notable discrepancies, both quantitative and
qualitative, exist for other important flow quantities. For example, the weakly
nonlinear theories predict that the phase speed of a solitary wave becomes larger
for larger wave amplitudes in direct proportion. However, the experimental data
of Davis and Acrivos [13] show a definite and substantial slower rate of increase
with amplitude as the amplitude passes the weakly nonlinear regime. Also, the
weakly nonlinear theories predict that the wavelength of the solitary wave
contracts for larger wave amplitudes, while observations show the opposite effect
past a certain wave amplitude, especially when recirculation regions are present
inside the wave.

In this paper we shall show, both analytically and numerically, that waves of
permanent form can indeed exist under the hydrodynamic balance between
nonlinearity and dispersion. As dispersion becomes strong for large amplitudes,
the long wavelength assumption has to be discarded and a partial differential
equation studied. Long’s equation applicable to steady internal waves in a
stratified fluid is used. The amplitudes of the solutions are not restricted to be
small and the wavelengths are not required to be long as in the weakly nonlinear
theories. We shall, however, make the Boussinesq approximation since density
changes in the lower atmosphere and in the ocean are usually small (in the sense
that o = Ap, /p, seldom exceeds 1072 across a thermocline). The validity of such
an assumption is also supported by the experimental evidence of Davis and
Acrivos, as we shall also discuss.

Previous work on the existence of finite amplitude waves of permanent form
has been principally concerned with surface waves, for which the governing
equation 1s the much simpler Laplace equation (for an irrotational flow), although
the boundary condition at the free surface is rather complicated. Nebrassov [30,
31] and Levi-Civita [24] established the existence of periodic progressive surface
waves of finite amplitude in water of infinite depth. Struik [33] extended the proof
to water of finite depth. Lichtenstein [25] and Gerber [17] also give alternative
proofs. By transforming into a streamline coordinate system, Dubreil-Jacotin [14]
extended.the convergence proof of Levi-Civita to the case where the fluid vorticity
is not zero but is a function of streamline only. Benjamin [2] later used the same
technique in his study of weakly nonlinear solitary surface waves in the presence
of mean flow vorticity. Using the integral equation derived by Byatt-Smith [7] for
finite amplitude surface waves, Byatt-Smith and Longuet-Higgins [8] computed
both the shape and the phase speed of large amplitude solitary waves. The
governing equation for the internal wave problem is more complicated than for
surface waves, since the density variations in combination with the passage of the
wave can generate vorticity in the flow field which is not conserved along
streamlines. To isolate the internal wave modes we have imposed a “rigid lid”
upper boundary condition for the present study.

The problem to be considered is defined in Sec. 1, the existence of solitary
waves of modes 1 and 2 is established in Secs. 2 and 3, and periodic waves are
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treated in the Appendix. Section 4 studies the dependence of the solitary wave’s
amplitude on its phase speed. It is found that slight changes in the ambient
density stratification can produce quite different solutions at large amplitudes,
though the existence of such solitary waves is not sensitive to such changes. We
also succeeded in establishing numerically the existence of finite amplitude waves
by computing solutions to Long’s equation by a combination of Newton’s method
and numerical continuation techniques due to Keller [19]. The details of the
numerical procedure will appear elsewhere [9]. In Sec. 5, we present and discuss
these numerically computed waves for a hyperbolic tanh density profile in fluid
depths ranging from shallow to deep. Calculated results for mode-2 waves
compare favorably with the experimental measurements of Davis and Acrivos
[13]. The improvement over the weakly nonlinear theory is substantial when the
wave amplitude is of order 1 and regions of recirculation appear within the wave.

1. Problem definition
For two-dimensional incompressible flows, a stream function Y can be defined:

0 0

M = u, axp— v, (1.1)
where u,v are the fluid velocities in the horizontal (x—) and vertical (y )
directions, respectively. The governing equations of motion and continuity are

p[%%—.f(lp,%)}: —ptrviy, (1.2)
d _ 2

p{arhe W) | = B+ pg +rvy,, (13)

o= I(p) = k¥, (1.4)

where p is the fluid density, p the pressure, and » and x the coefficients of
viscosity and (temperature or salinity) diffusion, respectively. J(y, a) represents
K@, —Y,a..

Though we are primarily concerned in this paper with steady inviscid flows, it
is important to point out here the order in which the limits 7 — oo, (v, k)—=(0,0)
are to be taken. We shall seek steady solutions of inviscid flows; that is, we first
take the limit (», k)—(0,0) and then let 7 — co. Physically we are to examine the
waves at a time long enough so that the transient behavior is negligible but not
sufficiently long for the small viscosity and diffusivity to develop significant
influence on the waves. Such a quasi-steady interpretation has been previously
adopted by Benney and Ko [6]. The opposite limiting process is first 1 — oo and
then »,k - 07 . One is then seeking the steady state solution of a slightly viscous
fluid. This approach, adopted previously by Batchelor [1], would yield the true
steady state solution (as opposed to quasi-steady) if such a solution exists. It is
known that the two approaches give different solutions, especially for large
amplitude waves possessing recirculation regions.
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We shall first assume that a progressive waveform exists in an inviscid fluid
and that this waveform moves with a steady phase speed c. We then examine the
resulting steady state equations and inquire about the existence and character of
the solutions. We fix the coordinate system with respect to the steady waveform,
so that there is a steady upstream (x — — co) current of speed ¢ flowing towards
the positive x-direction. The fluid flow caused by the steady state finite amplitude
wave is described by Long’s equation [26], which can be easily derived from the
steady inviscid form of (1.2)—(1.4) [6] and is given by

1 dp 1

v? ¢+fd¢2(¢2+¢)+gy=H(¢) (1.5)

where
p = p(y¢) and v2 = 3%/ax? +03%/8y>

H(y) is a function to be determined from the upstream conditions. Using

Y = ooy
and
p = poly) as x — —oo, (1.6)
one finds
1 dpy 1
H() =G get + Y. (1.7)
Thus (1.5) becomes
1 dpy Y
v 1P+ tP (Wﬂbz )+g(y—;):0- (1.8)

Introducing the dimensionless variables
=y/h, x*=x/h,  yF=y/ch,
where 24 is a characteristic length scale for the pycnocline thickness, and writing
p = po(0)(1—aF(¥*)),

where o can be interpreted as the relative density change across the entire
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pycnocline, one has from Eq. (1.8)

[+ Jor = (g LD gy
(1.9)
In (1.9), we have defined
A= ogh/c?, (1.10)

and since y/ogh is the correct scaling for linear interfacial wave speeds, we expect
A to be of order 1. It is convenient to express (1.9) in terms of the perturbation
streamfunctions ¢*, defined by

Pr = pr 4 g* (1.11)
Thus one has, after dropping the asterisk notation,

F(y+¢) 1 F(y+e)
4 S ey i e e A 2 2
Tt M 25" l1—oF {62 +0] +29,). (1.12)

The boundary conditions are
$—-0 as x—>*eo (1.13)

and

¢, =0 at y = H, and — H,. (1.14)
Applying (1.13) to (1.14) then gives
¢ =0 at y = H, and — H,. (1.15)
For a Boussinesq fluid, ¢ <1, (1.12) reduces to the following simpler system:
V% +AF(y+4)p =0,
¢ —0 as x — oo, (1.16)
¢ =0 at y = H, and — H,.

For weak stratifications the system (1.16) is a valid approximation to Eq. (1.12)
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provided

(i) the wave amplitude is not too large, i.e., |$| ,,, NOt much larger than unity;
(ii) the wavelength is not too short and the vertical mode number is not too high,
1.e.,

| 62 + &} | max 7 0@ | max):

(iii) the Brunt-Viisald profile F'(y) is not a constant.

For the special cases of constant F’(y) i.e., linear and exponential density
profiles, the governing equation (1.16) to the lowest order in o is linear even for ¢
not small. The Boussinesq approximation for these two cases is problematic since
the linear equation does not possess a solution in the infinite domain [3, 27].

For constant F’( y) terms of higher order in ¢ have to be included, and solitary
waves have been shown to exist in these two cases [6] for long waves. The case of
nonconstant F'(y) is treated in this study.

For obvious reasons infinite domains, such as that in (1.16), are not well suited
to numerical calculations. Therefore, we shall first seek solutions in a finite “box”
and then take the width of the box to be so large that the solutions are no longer
sensitive to further width increases. It turns out also that a theoretical analysis of
the equation in a strictly infinite strip is also rather delicate. Consequently we
shall first analyze Eq. (1.16) in a finite domain and then take the limit as the
width of the box tends to be very large.

Define the finite domain 0, by

q, = {—~H,<y<H, —L<x<L}. (1.17)

The solution in ODL will, of course, depend on L. We shall show that both the
eigenvalue and the eigenfunction depend on L continuously and that their limits
exist as L — oo. The most natural conditions to be applied on the boundary of the
region ), (denoted 9%, ) are the periodic boundary conditions

¢(—L,y)=9(L,y), ¢(x,—H)=0=¢(x,H). (118

The solution (if it exists) to the equation subject to conditions (1.18) will be a
periodic nonlinear wave (known as a cnoidal wave) whose wavelength is 2L. We
shall show, in the Appendix, that such periodic solutions exist. The proof is brief,
as our main interest lies in the solitary wave case.

In-principle, one can obtain the solitary wave solutions from the periodic wave
solutions by letting the wavelength of the latter approach infinity. However, it
turns out to be difficult to extract additional information concerning the solitary
wave from such a limiting process. For example, since periodic waves have both
positive and negative displacements in a full cycle, it is difficult to determine
whether the solitary wave obtained in the limit of the wavelength tending to
infinity would have a positive or a negative displacement or both. Thus, for the
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purpose of determining the properties of a solitary wave, we shall consider in Sec.
2 wave solutions in a half domain

== x% L2

and seek solutions that are of one sign (positive or negative) in this domain (apart
from variations in y). Making use of, and modifying, the work of Keller and
Cohen [20] on positone solutions for the nonlinear heat equation, we show that
nonlinear wave solutions of either elevation or depression exist.

2. The existence of a mode-1 solitary wave solution

In this section we consider the existence and properties of mode 1 solitary waves,
which are defined as solutions to Eq. (1.16) that do not have any nodes in the
infinite strip °0 ={— H, < y<H|, —00<x<oo)} and vanish on its boundaries,
Positive solutions (¢ >0 in D) correspond to waves of depression, whereas
negative solutions represent waves of elevation.

As mentioned in Sec. 1, we shall approach the infinite domain problem as the
limit of the problem in a finite box;

9= lim %D, ,  where C’DL/ZZ{*H2<y<HI,—L/2<x<L/2}.

L — o0

Thus we shall first consider the system

VH+M(6,0)=0 in @,
(2.1)
¢ =0 on aC‘DL/z,

where f(¢, y)=F'(y+ ¢)¢ and seek solutions that do not change sign in the
domain. The methodology that will be used here is similar to that developed by

Keller and Cohen for positone solutions of the nonlinear heat equation for an
electrically conducting medium with temperature dependent resistance:

—-viu= A f(u,x),

where u represents the perturbation temperature and f(u,x) is the electrical
resistance. An underlying assumption in their work is

f(0,x) # 0,

which reflects the fact that the electrical resistance should not vanish when the
lemperature perturbation is zero. For our case, however,

f(¢.x) = F'(y+¢)o,
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and therefore the situation where f(0,x)=0 has to be faced. In addition to this
assumption, two other important restrictions in Keller and Cohen’s formulation,
namely,

f(u,x) >0
and

fug,x) > flu,x) il uy >, >0,

also must be removed in the present analysis. For the heat problem the restriction
f(u,x)=01s a statement of the fact that the electrical resistance is always positive.
For our problem, this condition translates to F'( y)>0, meaning that the stratifi-
cation has to be everywhere positive (i.e., stably stratified). In relaxing this
restriction, we allow F’(y) to have a countable number of zeros in the domain,
but we still assume that F’(y) cannot be negative. The last restriction is made so
that the medium in which steady wave propagation is to take place is not
convectively unstable. The second restriction, the so-called monotonicity require-
ment f(u,,x)> f(u,,x), is not always met in our case and is therefore also
removed in the following study. ‘

2.1 The existence of waves of depression

We seek positive solutions (¢ >0, A>0) to the system defined by (2.1). The
linearized problem is

VO +AF(y)¢? =0 in D ,,

: (22)
@ =0 on SGDL/T
The linear solution with one peak can be written
¢ = acos(kx)¥(y. k), 0<a<l, (2.3)
k=wa/L, (2.4)
where , >0 satisfies
d?_
5% +[AF(y)= K]y, =0,
(2.5)

Yo=0 at y=H, and —H,.

Since it is assumed that

I FOW(r)dy >0 (26)
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for any nontrivial square integrable continuous real function h(y) vanishing at
the boundaries, A >0 is assured. The system (2.5) is known to possess an infinite
number of discrete positive eigenvalues,

A= NOk), = 132,300
which can be arranged in the following way:
0 <P <P < W, ., (2.7)

with the only limit point at +oco. In the present problem A is proportional to the
reciprocal of the square of the linear phase-speed of mode-1 wave, A9 to that for
the mode-2 wave, etc. In this section only A? is considered, and the subscript will
be omitted for convenience.

Let

7(x) = lub { =31 (¢, y)/30}, (2.8)
¢ >0

where again f($, y)= F'(y + ¢)é. From this definition we have the following
inequality

Ti(¢s—¢)) + f(9y, ¥) = f(61, ¥)=0,20 (2.9)

if by, =y
We let £ be the elliptic operator defined by

=—vi+Arn, A0, (2.10)

£ is a positive operator' for 7, =0. If =, <0, £ is positive only for A < u, where
p =0 is the least eigenvalue to the following system for T, <0:

— v+ png =0 in 6DL/2=
(2.11)
v=0 on 39 ,.

We propose to establish the existence of the nonlinear positive solution for
A <A,

A* (2.12)

e if 7, <0,
e ifr =0,

'That is, if ¢ is twice continuously differentiable dnd satisfies E[¢])=0,#0in D, ,, and ¢ =0 on
3D, 5, then ¢ >0 in Dy
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by iteration starting from the linear positive solution, ¢* >0, X% >0, satisfying
(2.5). A sequence of iterates ¢’ is defined by a scheme similar to that used by
Cohen [11]:

ﬁ[(b(n)] == ?\[f(‘ib(nuns J’)+71¢(n_”] n GDL/Zs
' (2.13)
=0, ¢?=0 ondd,,,

forn=1,2,3,....
The iterates defined this way turn out to be monotonically positive (or

positone):

THEOREM 1. The iterates ¢'") defined in (2.13) for A<A* are increasingly
positive functions of n. That is,

0< ¢{0) &= (lb(l) < ¢(2} ey e ¢,(H_1) < qb("). — (214)

Proof: We first establish that ¢ is positive and greater than ¢®. We have,
from (2.13) and (2.9),

LlM] = Al (¢ —0)+ £(62, y)— £(0, y)] = 0,0
since ¢ >0. Therefore, by the maximum principle for elliptic operators, we have
P
¢t >0 in ), ,.

Observing that the linear solution ¢ can be made arbitrarily small, we can also
have

o — ¢ = 0,
Next, we show by induction that if
¢ — gn=1 = g
is true for some n, then
Bl D — ] = A[ (¢, y) = A($77Y, p)+ (¢ —¢"= V)] = 0, 0
[from (2.9)]. So applying the maximum principle again yields

¢(ﬂ+1) > ¢l O
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Since the ¢¢") are monotonically increasing functions, an obvious question is
whether they are bounded. For stratifications satisfying F'( y)y < oo the following
result establishes the boundedness of ¢"';

THEOREM 2. The ¢\") defined by (2.13) are uniformly bounded in Dy o for all n
and for all positive finite A, A < \*,

Proof: We define a function
D(x, y,\)
by the following inhomogeneous equation:

—v2® = An(x) in GDL/Q,

(2.15)
D=9 on BGDL/Z,
where 7,(x) is the least upper bound of f(¢, y). That is,
(¢, 1) < m(x, ) (2.16)

for all ¢ and all y in 90, ,,. It is assumed that , is finite and positive in & L2 Let
G be the Green’s function for the operator — v 2, satisfying G =0 on 9D, e
Then the solution to (2.15) can be written for any A

o(x,y) = A j@ GO(x, £)7,(£) dt. (2.17)

The solution (2.17) is known to be positive and finite for positive finite A.
Subtracting (2.13) from (2.15) and assuming ® > ¢"~ ", one has

Rl[@®—¢™] = A[7,(@— ¢ D)+ 7, — f(g" D, y)|=0.#0,

and so ®>¢") by the maximum principle. To complete the proof by induction,
we show @ > ¢V by observing

e[o—¢P] = A[r(@—¢)+ 7~ (¢, y)] 20,2 0.

Therefore ¢ is uniformly bounded from above by ® in D ,,foralln. O

The existence of a positive nonlinear solution to (2.1) is established by the
following theorem. -

THEOREM 3. The iterates ¢ defined by (2.13) converge uniformly to a minimum
positive solution of (2.1) for A < A*.
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Proof: Equation (2.13) can be converted into the following integral form:

SN = A dEGO( B A6, £)+ 7 (67 (&)~ $(8))],

L/2

(2.18)

where G© is the Green’s function for the operator — v ?, satisfying G =0 on
999, ,,. Since the ") are uniformly bounded, they converge in the limit n — o0 to

a positive function:
o(x,A) = n}{r& #"(x,A) > 0.
The function ¢ is also uniformly bounded; i.e., for some finite positive number M,
é(x,\)<M in D ,.
Therefore, the integrand in (2.18) is bounded by
GO(x, £)[ £($,8)+ M| = GO, E)[m, + 7 M],

and thus the limit n — oo can be taken under the integral sign to vield
B M) = A [ GO )F(B(6:1).8) dé: (2.19)
L/

It is clear, since ¢ defined by (2.19) satisfies (2.1), that it is a solution to that
system. Further, it is a positive solution as it is obtained from the positone iterals.

It can be established that ¢ is a minimum positive solution of (2.1) by noting
that if ¢(x, A) is any positive solution to (2.1) and if ¢(x, A)>¢'"~ V(x, A) is true,
then it follows that ¢(x, A)=>¢'")(x, ) because

E[o— o] = A £(¢, y)— A(¢" 0, y)+ m(o— ¢ V)] =0,20.

Having ¢(x, A)>¢'"(x, A) for all ﬁ, if follows that ¢(x, A\)= ¢(x, A), and there-
fore ¢(x, A) is the minimum positive solution. [

2.2. The existence of waves of elevation

Mode-1 waves of elevation are given by solutions to (2.1) with ¢ <0 in ¢, /2 and
A >0. Defining u = — ¢, one is again seeking positive solutions (x>0 in ), s2)-
Using f(u, y) now to denote F'( y — u)u, the governing equation becomes

—v2iu=A(u,y) in D, (2
u=20 on BGDL/Z. '
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This is in the same form as the system considered in Sec. 2.1; the results presented
there can easily be carried over to the present case. We again define a sequence of
iterates u'", :

Clum] = )\[f(u("“},y)-?-'r,u("_”] in D,
(2.21)
u=0 on 39, ,,

n=1,2,3,..., where 7, is now defined as the least upper bound of (—3/(u, y)/0u)
for u>0, and u®>0 is the linear solution satisfying (2.2) with ¢ replaced by
U(O).

The proofs of the following theorems are similar to those in Sec. 2.1 and will
not be repeated.

THEOREM 1. The iterates u'™ defined in (2.21) for 0<A<A* are increasing

positive functions of n, i.e.,

0< uQ < 4D < 4@ <« ... <yl um < (222)

THEOREM 2. The u'™ as defined by (2.21) are uniformly bounded. in D, ,, for all
n and all X in 0<<A < A*,

THEOREM 3. The iterates u'™ defined by (2.21) converge uniformly to a minimum
positive solution of (2.20).

2.3. Solitary waves in the infinite domain

Having established the existence of positive and negative solutions in the finite
domain 0, /2, it is desired to extend the domain to

¢ ={—H,<y<H, —0<x<ew),

as we take the limit L — co. Let k = m/L as in (2.4). We observe that as k —0 the
linear eigenvalue has a positive finite limit,

gim XO(k) = X920), 0< A90) < 0. (2.23)
-0

For a hyperbolic tangent density profile (i.e., F( y)=tanh(y)), X9(0)=2 if H, and
H, are both large.
The linear eigenfunction also exists in the limit kK —0*. Thus, take (2.3):

¢ = acoskx yy(y, k). (2.24)

It satisfies the zero boundary conditions at x == L /2.
Now take the limit X —0%. Then

Jim 69 = ayy(y,0%) %0 for finite x. (2.25)
S0+
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Thus, the limit exists (though nonuniform in x), and it is nontrivial; Le.,

O £ 0.

Given that the linear eigenvalue and eigenfunction exist and are nontrivial, our
iteration scheme would establish the existence of the nonlinear solution provided
that the maximum principle used in the proofs can be extended to the infinite
domain. There is a delicate mathematical problem concerning the maximum
principle in the infinite domain. While there is little doubt that for our problem
the limit L — cc can be taken and the maximum principle remains valid, we shall
avoid the mathematical details by treating our results in a “very large box.”

3. The existence of mode-2 solitary wave solution

A mode-2 solitary wave is defined as a steady finite amplitude wave in o) with
only one node in the vertical direction. For a symmetric density stratification it
can be shown that such a node is located at the point of symmetry. That is, if

F(y)= F(—»), (3:1)
then
o(y) = —o(—») (32)

For the antisymmetric waves defined by (3.2), the analysis of Sec. 2 for waves
of one sign can be directly applied to the upper and lower half domains:

@, ={0<y<H, —o<x<ow} (3.3)
and
) ={—H<y<0, —co<x<o0}, (3.4)

respectively. Specifically, it can be proved that a wave of elevation (¢ <<0) exists
in the upper domain %), and a wave of depression (¢ >0) exists in the lower
domain _, thus implying the existence of a nontrivial mode-2 solitary wave for
a symmetric stratification.

The more general case of a nonsymmetric density stratification has not been
considered for mode-2 waves. [Note that the symmetry condition (3.1) is not used
in Section 2 for mode-1 waves.]

4. Some properties of finite amplitude solitary waves

The dependence of the eigenfunction ¢ on the eigenvalue will now be considered.
Differentiating (2.1) with respect to A yields an inhomogeneous equation for the
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quantity ¢, =0d¢ /0dA:

[=v2=My(e. 9)]ox = A(6,)  in D, (4.1)
6y =0 on 99,

The function
d
& Eﬁf(%y): F(y+¢)+ F'(y+¢)¢ (4.2)

turns out to be an important variable in determining many properties of ¢, and
hence of ¢(A). The specific shape of the undisturbed density profile F( y) plays
an important role in determining Jo- Such a sensitivity to the shape of the density
profile also appears in the two solutions obtained by Benney and Ko [6], though
the equation they consider is different.

We also consider in this section the weakly nonlinear limit of our solutions and
show how this limit is approached from the finite amplitude solutions. The
dependence of the solutions on the sign of F/( y) is also exhibited.

4.1. The weakly nonlinear limit
As ¢ — ¢ A - X9, (2.1) reduces to the following linear system to lowest order in
¢ (|¢Q)<1);

- 2¢(0) = A(O)f¢(0, y)¢(0) in @L/Z’
(4.3)
¢ =0 on 99D, ,,

L — oo, where f,(0, y)= F'(y).
To the next order in wave amplitude, one has, by subtracting (4.3) from (2.1),

[= 92 =240, )] (6= 49) = XO4£,,(0, )™ + (A~ X9)£,(0, y)9®,

(4.4)

where 3f,,(0, y)= F"(y). Multiplying (4.4) by ¢ and integrating over the
domain then gives the following solvability condition:

[f, 340, 7)6% ax
_ L/2

A=\
( 7 ! = — +0(a?) (4.5)
[ 408 ax
taf" P dy
—H,
= - +0(a*) (4.6)

J7 PO () @y
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when the linear solution to (4.3),
¢® = aqcoskxyp(y), O<a<l, k=a/L, L o0,

is substituted into (4.5). Yy( y) satisfies the vertical structure equation (2.5).
The denominator in (4.6) is always positive because of condition (2.6). The sign
of the numerator is now examined. The sign of v, is given in the following:

Y, <0in — H, < y < Hj for mode-1 waves of elevation,
Y, > 0in — H, < y < H, for mode-1 waves of depression, and

Y <0in0 < y < Handy, >0in — H < y < 0 for mode-2 waves.
When the density stratification is symmetric about y =0, L.e.,
F(y)= F(=y),
F”(y)is antisymmetric (Fig. 1): |

F'(y)=—-F"(—»).

Consider first the case where the stratification is strongest at the center of the
pycnocline at y =0, and decreases away from it, i.e.,

» <0 for y=0,
F(y){>0 for <0, (4.7)

an example of which is given by F(y)=tanh(y). We then have

H >0 for mode-2 waves, (4.8)
r 3
[ PO

- =0 for mode-1 waves. (4.9)

The dependence of A on amplitude for the mode-2 wave is depicted in Fig. 2. It
is seen that the phase speed of the weakly nonlinear wave is larger than its linear
value since

¢/t = N0/ > 1. (4.10)

For the mode-1 wave, (4.9) implies that A —X® does not depend on the wave
amplitude linearly. It turns out that the dependence is quadratic, similar to that
for Stokes’s surface wave and the periodic waves treated in the Appendix. Figure
3 depicts such dependence for the case of F”’(y)>0 (solid line) and the case of
F’( y)<0 (dashed line).
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Figure 2. Solution branch in the amplitude versus A plane for a mode-2 wave.
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Figure 3. Solution branch in the amplitude versus A plane for a mode-1 wave in a symmetric
stratification.
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The dependence of A —A” on wave amplitude can become linear even for
mode-1 waves if the stratification is not symmetric. For the case depicted in Fig.
4, where the pycnocline is located near the water surface, the slope of — ¢ versus
A is positive (see Fig. 6). The slope becomes negative (see Fig. 7) when the
pycnocline is located near the bottom surface, as in Fig. 5. Weakly nonlinear
theory [22] for long waves predicts only waves that travel faster than the linear
speed, and thus in Figs. 6 and 7 only the solid curves are known. The existence
proofs given in the previous sections apply only for A < A*. For weakly nonlinear
wmm&A*:A@,mchn&wcgawdueihmdmu(mWSdummswnhA-me<0
(the solid lines in Figs. 6 and 7) have been established. This observation is
consistent with the result from the weakly nonlinear theory that waves of
elevation (depression) cannot exist if the pycnocline is situated near the surface
(bottom). Solutions represented by the dashed curves in the figures therefore do
not exist. :

7
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Figure 4. Stratification profile for a pycnociine located near the surface.
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Figure 5. Stratification profile for a pycnocline located near the bottom.

4.2. Limit points and recirculation regions

We now return to a consideration of finite amplitude waves described by Eq.
(2.1).

Consider as an example a mode-2 wave in the presence of symmetric stratifi-
cation such as the one depicted in Fig. 1. As the wave amplitude is increased, A
decreases from its linear value (see Fig. 2). Therefore, larger amplitude mode-2
waves travel faster than small amplitude waves. The phase speed is not expected
to increase indefinitely however, and there is the possibility that a limit point
exists beyond which the phase speed ceases to increase as amplitude increases (see
Fig. 8).

A limit point in the ¢-A plane is defined as that point at which the slope of
= Gomax | versus A is infinite; i.e.,

| §y |= o0 at the limit point. (4-11)
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Figure 6. Small amplitude solution branch for a mode-1 wave in a pycnocline located near the surface.
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Figure 7. Small amplitude solution branch for a mode-1 wave in a pycnocline located near the

bottom.
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Figure 8. Amplitude versus A solution branch for a mode-2 wave. Flow has closed streamlines for
amplitudes larger than 4. Point b is the limit point.

Examining (4.1), the equation for ¢,, suggests that ¢, is infinite only at the

- singular (“zero”) points of the operator

G¢> =-v?- }\f¢(¢, y)- (412)

The operator — v 2 in (4.12) is positive; in the domain D, which is of interest for
the symmetric mode-2 wave, its least eigenvalue is (7/H ). For stratifications
that are stable inside the domain (i.e., F'(y)>0), f,(¢, y) as given by (4.2) is
positive for small amplitudes. Let us examine the operator (4.12) first along the
A-axis in Fig. 2. The smallest eigenvalue of G, is equal to (7/H )2. As one moves
to the right, the operator G, decreases (in the sense that its eigenvalue is becoming

@
smaller than (7/H)?), until, at A = X?, G, becomes zero since A¥ solves

G,® = 0.

This is one of the singular points of G,. It is, however, a bifurcation point because
the right-hand side of (4.2) is zero also. There is more than one solution branch
meeting at the bifurcation point, though for our problem only one branch has any
physical significance (a second branch gives a mode-2 wave of depression, and the
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third 1s the trivial solution ¢ =0). Continuing along the branch of interest,
indicated on Fig. 2, we have already shown in Sec. 4.1 that the slope is negative
(i.e., —¢, <0 in %D, ), so that as one moves away from A? along this branch A
decreases. The operator G¢ becomes positive, at least initially, for the weakly
nonlinear waves, for which f, is positive. Limit points cannot exist in the weakly
nonlinear regime; they have to be a finite amplitude phenomenon. At large
amplitude A f,(¢, ) may become an increasing function of amplitude, and there
is a possibility that at (¢, A)=(¢;, A;), G, becomes a singular operator; i.e., the
operator

= — v —= Alj;ﬁ(q)h y)

has a zero eigenvalue.

Usually, the amplitude for which a limit point occurs is so large that a
recirculation region has already developed within the flow domain. A recirculation
region for mode-2 waves is defined as region where

sign{¥} # sign{y} somewhere in ). (4.13)

In (4.13) ¥ = y + ¢ is the total stream function. The situation is represented by
Figs. 8 and 9.

The steady state problem is complicated considerably with the appearance of
closed streamlines in the flow domain. Because the streamlines in the recirculation
region are not connected to the upstream flow, the assumption made in deriving
Eq. (1.8) from (1.5) is violated. Furthermore, as pointed out by Batchelor [1],
viscosity, which 1s neglected in obtaining the present solutions, should piay an
important role in the dynamics of a steady state recirculating flow. As mentioned
in Sec. 1, we shall consider solutions in this study at a time long enough for a
“guasi-steady” waveform to be established, but not long enough for viscous
effects to be felt. The solution to (2.1) is such a solution, as it satisfies the
Navier-Stokes equations (1.2)—(1.4) for k =0=» and the boundary conditions.

Y

Figure 9. Schematic diagram of a recirculating mode-2 wave.
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One can easily infer one more feature of the solutions from Eq. (4.2). Since
¢, =0 cannot be a solution of (4.1) for nonzero f(¢, y), one can state the
following theorem:

THEOREM. A necessary condition for the existence of more than one solution with
different phase speeds but with the same amplitude is that points of zero stratification
exist in the density profile, i.e., F'(y)=0 at some y.

It also follows that closed-loop solution branches in the ¢-A plane cannot exist
unless F'( y) has zero points.

For the case where the stratification is strongest at the center of the pycnocline
at y —0 and decreases away from it (see Fig. 1), one has for mode-2 waves

F(y+¢)>Fly+e) if |¢o>6] (419
provided that
sign{¥} = sign{y} in )

(i.e., no regions of recirculations exist [cf. (4.13)]).

Using a proof by Cohen and Laetsch [12] we now show that the mode-2 waves
satisfying (4.14) are unique. Let ¢, and ¢, be two solutions of (2.1) for the same A
and |¢,|>]|¢,|; i.e., — ¢, >—¢, for y >0 and ¢, > ¢, for y <0. Then

*¢1V2¢2 +¢'2V2¢'] = AI:(I:']f((i:’zs,]';)7qblf(thy)]

yields
0=A[ [0t F(r+ )~ Fy+6)] dx ~(4.15)

However, by (4.14) the right-hand side of (4.15) is less than zero, a contradiction;
therefore, ¢, cannot be different from ¢,, and so nonrecirculating mode-2 solutions
on a pycnocline are unique.

Since the governing equation and boundary conditions are symmetric with
respect to x (i.e., invariant under the transformation x — — x), a wave solution
with fore-aft symmetry exists. The above result shows that such -a symmetric
waveform is the only solution for mode-2 wave on a pycnocline if its amplitude is
not so large as to allow the appearance of recirculating regions. It is possible that
for larger wave amplitudes an asymmetric waveform can appear in addition to the
symmetric one.

5. Numerical results

In the previous sections we establish existence and discussed some properties of
finite amplitude waves as solutions to Long’s equation (1.16). In order to
demonstrate the existence of these large amplitude waves and to determine their
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properties and behavior, we have also computed solutions to Eq. (1.16) numeri-
cally. As is typical of nonlinear eigenvalue problems, and in contrast to most
linear eigenvalue problems, there will in general exist a continuous range of
eigenvalues A for which nonlinear eigenfunctions can be found, with A being a
(single or multiple valued) function of the solution amplitude. We have adopted a
numerical scheme that is based on Newton’s method with the capability to
“continue” a solution along a solution branch once a neighboring solution is
known. Thus, starting with, say, the known linear solution, or an approximate
guess, scores of nonlinear solutions can be generated having increasingly larger
amplitude, and a whole solution branch can be traced out. A finite difference
discretization is used and the resulting system of nonlinear algebraic equations is
linearized by Newton’s method. A pseudo-arc-length continuation technique, due
to Keller [19], 1s also employed to continue a solution branch past a limit point
which was found for a shallow water case. The method is accurate and efficient
provided the initial guess is close to the exact solution for a given value of A. It
should be mentioned also that when there is more than one solution for a given
value of A, the solution that the scheme converges to is often the one that is
closest to the initial guess both in shape and in amplitude. All the initial guesses
used in the present calculation possess fore-aft symmetry. The details of the
numerical procedure will appear elsewhere [9]. In this section we shall present and
discuss the properties of these computed finite amplitude waves. We have chosen
the mode-2 wave for detailed computation here, mainly because the experimental
measurements available are for that mode.

In all the calculations presented in this section, the density stratification profile
used is given by

F'(y)=sech’y for —H<y<H,

and H is taken to be 4, 10, 20, 30, and 40 in units of half pycnocline thickness. In
the present numerical calculation, the horizontal domain is truncated to a large
but finite extent. If the solution obtained for such a “box™ is to represent a
solitary wave, then it should not be altered if the domain is enlarged. This we
shall check numerically for each solution calculated. For most of our computa-
tions, a domain of width 27 =40 was found to be iarge enough to contain the
solitary wave. In Figure 10 we show a series of contour plots of the total
streamfunction ¥ for a mode-2 wave with increasing amplitude (or decreasing
eigenvalue A) for H =4, the shallow case. Note the appearance of closed stream-
lines in the wave core when the wave amplitude exceeds a certain value.
Horizontal cross-sections cut along a line passing through the y-location of the
wave maximum are displayed in Figure 11. The uppermost line is a portion of the
extremely large amplitude wave found at A =1.1615379, past the limit point. This
wave probably is not “solitary,” as it fills most of even the largest computational
domain we have used. The next curve from the top is the wave shape right at the
limit point (A =0.979114117). The flat top and sharp ends of this wave are rather
intriguing. For a given wave amplitude, the flat top disappears when the top
boundary is moved further away (i.e., for increasing H). The third profile from
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Figure 10. Contour plots of the total stream function ¥: (a) A =2.70, (b) A =2.60, (¢) A =2.50, (d)
A =225 (e) A=2.00. (DA =150, (g} A =120, (hy A=1.10, and (i) A =0.98.
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Figure 10. (Continued)

the top is for A =1.1 (below the limit point) and the other profiles, in order of
decreasing amplitude, are for A=1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.25,
2.4,2.6,and 2.7.

Figure 12 is the same as Fig. 11 except that the wave amplitudes are all
normalized by their respective maxima. In Fig. 12a are plotted the lower 14
curves on Fig. 11. With their amplitudes normalized, it is clearly seen that as the A
decreases the relative width of the wave also decreases. The rate of decrease slows
as the limit point is approached, and the last (the inner) few curves are almost
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Figure 11. Horizontal cross-sections for solutions with different amplitudes.

indistinguishable from one another. Increasing the amplitude further (i.e., going
to the upper branch of the solution curve) gives waves whose widths again
increase. This is shown in Fig. 12b, which is for the top six curves in Fig. 11.

Figure 13 depicts vertical cross-sections along x =0 for the waves depicted in
Fig. 11. It is seen that the wave maximum moves closer to the boundaries as the
amplitude is increased. This fact may account for the flat top shape of the largest
waves shown in Fig. 11.

Figure 14 is a plot of the maximum amplitude (— @) max Versus A for various H.
The curves for H =20 and 30, though also computed, are not presented here as
they crowd near the curve for H =40. Each value along a curve is a nonlinear
solution such as those depicted in Fig. 10. To construct the curve, say for H=4,
several dozen of the solutions in Fig. 10 were used. The limit point for H=4is
located at A =0.979114117, with (— ¢). =2.6470. Near this point a slight
variation in A would produce a large variation in the amplitude. We have
obtained several solutions beyond the limit point. They are not plotted on this
curve for the reasons mentioned previously. It should also be mentioned that
recirculating flows develop for waves whose amplitudes are larger than (— ¢) .,
~0.9. ‘

Figure 15 is a plot of the wave amplitude (— )y, Versus the wavelength
represented by /; ,,, the wave's half-width. The half-width is the horizontal width
measured between the two locations where the wave amplitude is one-half its
maximum value. Other width definitions (e.g., /) 4,/ seslige?) have also been
examined but look very similar (Fig. 15). It is clearly seen that as the waves
amplitude increases, its width first decreases as ~1/ (amplitude)'/?, as predicted
by weakly nonlinear theories, but the width contraction stops as a recirculation
region is developed in the wave. It is perhaps important to note that the limit
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Figure 12. Normalized horizontal cross-sections.
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point in the amplitude versus /, /2 Plot occurs at a lower amplitude ((— ¢),,., =~1.2
for H =4) than the limit point i the amplitude versus A plane, which occurs at a
much larger amplitude ((— ¢),,., =1.647 for H=4). Thus, it probably can be
inferred that the two limit points are caused by different mechanisms. It is
probably safe to suggest that the limit point in the (— $)max VeIsus /, ,, plane is a
result of the recirculating flow, while the limit point in the (—¢),, versus A
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Figure 13. Vertical cross-sections for different amplitudes.

plane is probably due to the presence of the rigid boundary near the wave
maximum.

In Fig. 14 results for other values of fluid depth are also presented. As can be
expected, the curves for H > 10 are not too different from each other, suggesting
that the deep-water limit is almost approached for practical purposes. Contour
plots for H=40, the deep water case, are shown in Fig. 16. Davis and Acrivos
[13] presented experimental measurements of (= @)max versus A for deep water,
H =40. The density profile in their experiment can be well represented by
F(y)=tanh y, a profile used in our calculations. In Fig. 17 their data are
compared with our calculated result for =40, Good agreement is obtained.?
Note also that the experimental results for various values of 0 =Ap/py differ
little from each other and also from our Boussinesq results, even for o as large as

>The straight line, labeled “weakly nonlinear analysis,” is taken from Davis and Acrivos, who
obtained it for a fluid of infinite depth for which the limiting eigenvalue X% for small amplitude is
2.0. For H=40 X% is slightly larger than 2.0. This may be the reason why the straight line is not
tangent to our calculated curve, as the weakly nonlinear curve should be.
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Figure 14. Amplitude versus A solution branches.

16%. This may suggest that the Boussinesq approximation used in the present
study is a good assumption. '

6. Discussion

We have shown in this paper, both theoretically and numerically, that finite
amplitude internal waves of permanent form can exist. Some of the results can be
anticipated from weakly nonlinear theories, while the results for large amplitude
waves are rather unexpected but have been qualitatively verified by experiments.
Weakly nonlinear theories predict that long waves, whose dispersion is weak, can
maintain their permanent form with weak nonlinearities. Shorter waves of small
amplitude disperse while long waves of larger amplitude break. The possibility
that shorter waves of larger amplitude can form solitary waves is thus indicated
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by these theories. We show here that this is indeed the case. A larger amplitude
internal wave must have a smaller wavelength in order to maintain a permanent
form. Larger amplitude waves also travel faster than smaller amplitude waves.
These general trends are expected from weakly nonlinear theories, though we also
found that the rate of contraction in wavelength and the rate of increase in phase
speed gradually decrease with increasing amplitude. When the wave’s amplitude is
of the order of the pycnocline thickness, the wave ceases to contract and, for still
larger amplitudes, starts to increase its wavelength. The shortest wavelength
achieved is about 2-3 times the pycnocline thickness. Examining the solution
reveals that a recirculation region has already developed in the wave. For the
symmetric mode-2 wave we have considered, the flow inside the closed streamline
is similar in appearance to the flow field associated with a vortex pair. There is a
pair of fluid regions rotating with equal and opposite vorticity enclosed by the
closed streamline. The size of the recirculation region increases with increasing
amplitude, and the wavelength increase appears to be a natural consequence of
such enlargement in size. The recirculating flows may also be expected to act to
stabilize the propagation of large amplitude waves. Although we have not
completed a stability analysis for these waves, large solitonlike internal waves
with recirculation regions are easily produced in the laboratory and appear to be
stable, while surface waves with comparable magnitudes are known to break.
Existing weakly nonlinear descriptions of internal waves are traditionally
divided into shallow water and deep water theories, with the Korteweg-deVries
equation governing the former case and the Benjamin-Ono equation for the latter.
Recently, Kubota et al. [22] considered the more general case of fluid of finite
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Figure 16. Contour plots of the total stream function for =40 (a) A=1.0, (b) A=0.5, and (¢)
A=~0.16.

depth, which includes shallow and deep fluids as subcases. For finite amplitude
steady waves we have treated fluid depths A ranging from 4 to 40 pycnocline
thicknesses, with the case H =4 typifying a shallow depth medium and # =40 a
deep fluid. That the deep fluid limit (H — o) is indeed reached for practical
purposes at /f =40 can be discerned from Fig. 14, where it is seen that results
become asymptotically close to the H =40 case when H > 10.
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7. Concluding remarks

Internal gravity waves of “permanent form” in a stratified medium are studied.
The weakly nonlinear theory for long waves is extended into the finite amplitude
regime. Fluid depths ranging from shallow to deep have been incorporated, and
in the case of deep water where experimental data are available the calculated and
observed results compare very favorably.
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Our results seem to indicate that the existing weakly nonlinear theories,
derived based on an asymptotic expansion in wave amplitude assuming that the
wave displacements are small compared with the scale of variation in the
undisturbed density profile, (i.e., a /h < 1), remain surprisingly good up to a /h ~
0.5. For larger amplitudes the agreements deteriorate. At a /h~1 recirculation
regions appear in the flow domain and some of the predictions of the weakly
nonlinear theories become not even qualitatively correct. For example, the
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contraction in the half-widths with increasing amplitudes predicted by the weakly
nonlinear theories ceases to be correct for a /h =1 as recirculation regions seem
to bring about an expansion in wave widths for increasing amplitudes. The fully
nonlinear description presented here is expected to be important in sharp
pycnocline regions.

Calculations for various stratification and current profiles and for mode-1
waves are in progress and will be reported in the near future.

Appendix. The existence of “periodic” wave solutions

In this section, the following nonlinear eigenvalue problem with periodic boundary
conditions is considered:
v =A(¢,y) in 9 ={-H,<y<H,—L<x<L),

¢(—L,y)=9o(L,y), (A.1)

¢(x,— H,) = ¢(x,H) =0,
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where f(¢, y)=F'(y+ ¢)¢. Let w(x, y) be a harmonic function satisfying the
boundary conditions.

o(~L,y) = 6(=L,p) = o(L,y),  w(x—Hy) =0= a(x. H,).

(A.2)
Define
V=¢—w (A.3)
and
g(v,x) = flw+o,y). (A.4)

Then (A.1) reduces to the following standard nonlinear system with homogeneous
boundary conditions:

—v?’ =Ag(v,x) in 9,
(A.5)
v=0 on 99,.

The existence proof for such a system is complicated but standard® (see eigi
Courant and Hilbert, Vol. II). We shall only briefly sketch the essential steps.

We assume that the function g(v,x) has continuous first derivatives in y in
¢, + 9%, and for all v, and further assume that g(v,x) is bounded, i.c.,

| g(v.,x)|< M(x,y)<o0 in ©,. (A.6)

For example, in the numerical calculations presented in the text F'(h)=sech® y is
used, so

f(¢,y) = sectk?(y +¢)9,

which is bounded for all (real) y and all (real) ¢. Thus (A.6) is satisfied.
Let

]
K —lub(—ﬁg(v,x)), (A7)
so that by the mean value theorem

K = —[g(vz,x)—g(vl,X)]/(Dz—v,),

*With important modifications to deal with an eigenvalue problem.
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or
g(uz,x)—g(ul,x)+K(UZ*U,)EO (A-S)

if v, =0,
Let £ be the operator defined by

P=—-v2+Ak, A>0. (A.9a)
It is a positive operator® if k =0. For k <0, £ is a positive operator 'on]y for
A< p (A.9b)
where p is the largest eigenvalue of

[*Vz-ﬂm]‘PZO in 9,,

(A.9¢)
¥ =0 on 99%,.
Equations (A.9c) can be solved easily, to yield for x <0
2 2
a/L) +(nw/2H
u= bny B (nm/ o ) , n=1,2,3;.. (A.9d)

— K

where n denotes vertical mode number. In the following we seek solutions with
eigenvalues in the range

O<X<A* (A.9)
where

- [p if k<0,
o if k=0

Define a sequence of functions 0" by

Lot h] = ?\[g(u‘“,x)%— Ku(")] in 9, (A.10)
o™ =0 on 99D, (A.11)

with
0@ = V(x, y) (A.12)

“That is, if ¢ is twice continuously differentiable and satisfies £[¢]>0, %0 in @, and ¢ =0 on 3%,
then ¢ >0 in D, .
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In (A.12), ¥(x, y) is the solution of

—vi =AM(x,y) in 9,

(A.13)
V=0 on 99,.

THEOREM 1. For 0<\ <A*, the iterates v'™ are uniformly bounded by V in the
following manner:

— V=" D<My,

Proof: First we have
E[o] = A[g(V,x)+ V] < A[M +«V],

so R[oV]<L[V], E[v"]# £[V]. Therefore o' < ¥ by the maximum principle for
positive elliptic operators. Also, since

v 2 = ?\[—g(V,x)+ x(u“)—V)]
< —Ag(o",x) < AM = — vV,

then by the minimum principle for elliptic operators, v’ = — V. Having demon-
strated that

V= =y, (A.14)
we next show by induction that
— V=" N< oM=<y, n=1,2,3,.... (A.15)
If (A.15) holds for some n, then
LoD —p] = P\[— (v Y x)+ g(v',x) — k(0" — v("))]
=0,

so v\t =M=V,
To show that o"" " V<V, consider

— v 2t = )\[g(ﬂ(n)’x)_*_x(ﬁ(n)__‘D(n+l))]
< Ag(o"Vx) < AM = — vV, (A.16)

Thus v"* V<V, and (A.15) is proved. [
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Equation (A.15) implies that the functions |o")| are uniformly bounded in D,
for all n. Omitting the technical details, which can be found in Courant and
Hilbert, Vol. II, it can be shown that this fact is sufficient to guarantee the
convergence of the sequence {v("}. We state without proof the following result:

THEOREM 2. The sequence {v'"} defined by (A.11) and (A.12) is uniformiy
convergent in. D, .

With this result it is easy to show that the sequence converges to a solution of
(A.5).

THEOREM 3. Let (x, \)=lim,, ., t""(x, A) for X in the range 0<<X <A*; then
0 is a solution to (A.5).

Proof: Equation (A.10) can be solved to yield

St = Afj:@ G(x,g)[g(viﬂ>(g),g)+xu‘"’(&)] dg, (A.17)

where G is the Green’s function for the operator £ satisfying G =0 on 9D, . Since
the limit n — oc exists and the integrand in (A.17) is bounded, effecting the limit
on both sides of (A.17) gives

0 =A[ [, 6t O)[s(o(8).6) + w0()] € (A.18)

It is easily verified that & given by (A.18) is a solution of (A.5). Furthermore, it is
bounded:

—¥(x,A) < d6(x,A) = ¥V(x,A). O (A.19)

Having shown that a solution to (A.5) exists, a question still remains: Is this
solution different from the trivial one?

In Eq. (A.5) for v, ¢(— L, y) enters as an external function determining the
harmonic function w through (A.2), and  in turn enters into Eq. (A.5) through
(A.4). Relation (A.3) of v to ¢(x, y) is not needed and can be discarded. The
system (A.5), (A.4), and (A.2) is self-determined as a function of the externally
specified function ¢{— L, y). From the known properties of the Laplace operator,
the harmonic function w exists and is different from zero if ¢(— L, y)##0. For a
nontrivial « (A.5) does not permit =0 as a solution.® Therefore the solution ¢

SUnless A =0. However, we have from (A.1) that
oy 2 = 2
?\ff@LF(; +¢) ¢l dx ff@,' v 2dx >0
if @{— L., y)70. And, since the siratification F'( y) is assumed to be “mostly” posilive, we also have
f F(y+¢)tdx >0,
‘;DL

It then follows that A ={} and cannot be identicaily zero.
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that we have proved to exist is a nontrivial solution. [If, on the other hand,
¢(— L, y) is specified as zero, then the maximum principle for the Laplace
operator implies that w=0. Consequently, v =0 can be a solution to (A.5).
However, it is not known whether ¢ is trivial, since the solutions to (A.5) may be
nonunique.] Thus, specifying ¢(— L, y) to be nonzero guarantees the existence of
a solution v = 6 Z0(.

Because we do not have a priori knowledge of the sign of a periodic solution (v
can, in fact, change sign in %, ), we do not get as much information on the
dependence of v on the eigenvalue A as we can for the solitary wave case
discussed in Sec. 4. Nevertheless, we do know that the dependence of A — A©
(where A s the linear eigenvalue) on wave amplitude is quadratic for small
amplitudes, similar to the case of nonlinear Stokes waves. :

For small amplitudes, one can expand

¢ = ady + a’p, + a’p, + 0(a?), (A.20)
A= XN+ aXD + a2N? + 0(a?), (A.21)

where |a|<1 is a measure of wave amplitude. The lowest order solution satisfies
the linear equations

V %o + XOF ()¢ = 0,
do(— L, y) = ¢o(L, »), (A.22)
$o(x, — Hy) = 0= ¢y(x, H,).
The periodic solution can be written
do(x, y) = coskx yy(y) (A.23)
where
k=m/L >0, (A.24)

and ,( y) satisfies
dZ
F% +[NOF ()= K]y, =0,
(A.25)
Yo =0 at y=H, and — H,.

For the tanh y profile it can be shown that, for the mode-2 wave,

sinh y
=———— A0 = (k+1)(k+2),
=k (k+1)(k+2)

if H>»1 and H,>1.



42 Tung, Chan, and Kubota

To the ncxtl order, we have
V2%, + NOF (y)é, = —NOF"(3)ef — XVF (),
¢(=L,y) = ¢(L. ),
o\(x,— H,) = ¢,(x, H)).
The solvability condition is

A /X0 = —fj;D F”(y)¢%dx/f_quF’(Y)¢zudx =0

since

fﬂ cosPkxdx =0,

so ¢, is given by
¢1(x;)’) = 1i’l()")"h cos2kx ¢‘2(}’)v

where /, and 1, satisfy
d? 0 0 2
S NOF ) = —DOF ()6,

Y, =0 at y = H, and — H,

and

d’ "
E‘Pz +[A{0)F'()’)_4k2]‘!’2 = “%)\(Z)F (J/)‘PDZ,

Y, =0 at y = H, and — H,.

To third order in amplitude, one has

V%, + NOF/(y)é, = —XO[3F"(p)8) +2F"(y) o1 ] = X2F ()0,

¢,(—L,y) = &,(L, y), o,(x, — Hy) = ¢,(x, Hy).

(A.26)

(A27)

(A.28)

(A.29)

(A.30)

(A31)
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The solvability condition for (A.31) is

S [ 7 0)a 4207 (5) a0, ] dx

A/ \O =
[ F()egax
e 2

7 RF O+ Fr(3)@o +42)8]

[" FOWay
H

=S, (A.32)
Thus
A = XO[14a%s, +0(a?)], (A.33)
where S, can be explicitly calculated given F'( y).
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