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ABSTRACT

For quasi-geostrophic stationary long waves forced by topography, the nonlinear lower boundary condition
is derived in terms of the geopotential height and compared with the linearized version. The common practice
of replacing terms describing the flow over and around a mountain by upstream zonal flow over the mountain
and evaluating the resulting condition at sea level is found to be a good approximation for the cases considered
and does not need to be modified as sometimes suggested. Specifically, it is found that this approximation
does not affect, for most cases, the lower boundary condition expressed in terms of the geopotential height
provided that the stationary wave is not near resonance. At resonance, the eddy advection terms may become
important for large-amplitude waves when dissipation and surface diabatic heating are taken into account.

1. Introduction

In calculations for the response of stationary long
waves in the atmosphere to topographic forcing, a
commonly used lower boundary condition is the
specification of the vertical velocity w; induced by
flow over mountains. If A(x, y) is the height distri-
bution of the topography, then from kinematic con-
siderations, the above-mentioned boundary condi-
tion takes the form!'

wy=u(x,y, h)-Vyh at z=h, (1.1)

with u being the vector velocity field of the flow rel-
ative to the surface of the earth and V being the
horizontal gradient operator. The linearized version
of (1.1) is usually given in the form?

_ 0
w,-—u(y,O)axh at z=0, (1.2)
where #@(y, 0) is the mean zonal flow at the sea level,
and is assumed to be given.?

! Cartesian coordinates, with x eastward, y northward and z up-
ward, are used here in the Introduction only for simplicity of pre-
sentation. In the main text, spherical coordinates, with A being the
longitude, ¢ the latitude, and with log-pressure in the vertical, will
be used throughout.

2 A formal linearization about the zonal mean horizontal flow
(&, 9) should give

_a _a
w,-uaxh+vayh.
In calculations concerning large scale stationary waves in extra-
tropical latitudes, the mean meridional flow ¥ is usually assumed
to be much smaller than the mean zonal flow #, thus giving (1.2).
3 The evaluation of the linearized expression for wy at the sea-
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Three approximations are made in going from (1.1)
to (1.2):

a) The term v(3/dy)h, commonly referred to as due
to flow around the mountain, is dropped in the lin-
earized version. The total upstream zonal flow #, is
forced to flow over the mountain without veering, as
far as wy is concerned.

b) It is the flow at the sea-level that is used in (1.2)
to force a vertical velocity, instead of that at the top
of the elevation.

c) The boundary condition is specified at the sea-
level, instead of at the actual lower surface z = A.

It has often been noted that these approximations
may be inaccurate even when the linearization as-
sumption can be justified for the interior flow (see
Dickinson, 1980, for a brief review). In this article,
the effects of these approximations on the forced sta-
tionary long waves will be assessed separately.

It has often been argued that the effect of approx-
imation a) is to overestimate the vertical velocity forc-
ing for the stationary waves, especially in the presence
of high elevations, because it assumes that the zonal
flow is not impeded by the rise of the mountain. Saltz-
man and Irsch (1972) compared the vertical velocity
calculated using the observed total near-surface wind
with that calculated using the observed zonal wind
in (1.2), and found that (1.2) generally overestimated
the magnitude of the vertical forcing. Their suggested
remedy of including the eddy meridional wind v’ in
the expression for wy, i.e.,

level is commonly taken as part of the linearization process, al-
though this is not necessary for the purpose of linearization, unlike
the case of say, water waves on an interface.
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_ 9 , 0
Wy U ax h+v ay k,

cannot be easily incorporated in a linear theory. (In
fact, it is inconsistent with the procedure of linear-
ization, which drops all quadratic terms involving
perturbation quantities, # being treated as a small
perturbation quantity also.) We will show that such
a remedy is not necessary. The meridional advection
term, if included consistently in both the flow around
mountain and in the temperature advection, yields
little net effect on the geopotential height for most
practical cases (although wy is altered with the addi-
tional terms included). This result seems to be con-
sistent with the nonlinear calculations of Egger (1976)
and Ashe (1979), which show less discrepancy be-
tween the nonlinear and linear topographic solutions
than hypothesized by Saltzman and Irsch.

It would also appear that approximation b) may
introduce a substantial error (this time an underes-
timate of the forcing), because in (1.2) it is the surface
wind #(y, 0) that is used instead of the wind at the
actual surface @(y, 4), which is usually of a substan-
tially higher value during winter. It was sometimes
proposed that instead of (1.2), the following modified
(but still linear) version should be used (see, e.g.,
Lindzen et al., 1982):

W= @, Hach at z=0.  (13)

It will be shown here, however, that as far as the wave

response in geopotential height is concerned, the
lower boundary forcing is unaltered whether one uses
(1.3) or (1.2).

2. The lower boundary conditions for the conserva-
tive case

The general nonlinear boundary condition at the
lower surface is derived in the Appendix in terms of
the geopotential height ® in the log-pressure coor-
dinate [z* = H, In(pg/p)) for a hydrostatic atmo-
sphere. In this section, we shall study the case of
steady stationary long waves in the absence of dissi-
pation and surface diabatic heating. (The noncon-
servative case will be discussed in a later section.) The
boundary condition becomes (see A14):

H

1
_“P.V{W ®,. — E Q} = llp'Vh

at the lower boundary, 2.1)

where up is the “horizontal” velocity in pressure co-
ordinates. For quasi-geostrophic motions of either
class 1 or class 2 (Phillips, 1963), the “horizontal”
velocities can be expressed in terms of the geopoten-
tial height as

.

k* X V@, 2.2)

~
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where k* is the unit vector in the z*-direction, and
f is the Coriolis parameter which is equal to 2 sin®
for class 2 and a constant 2Q sin®, for the class 1
waves. For either case, Eq. (2.1) can be written as

- H
J[Q, {__02]—\75 P,. + h}] =0

at the lower boundary,

where J[4, B] = k*-VA X VB,

Eq. (2.3) implies that the quantity in brackets is
conserved on surfaces of constant ®, and that along
such a surface the temperature T = &,.H/R is lower
at a higher elevation.

Before proceding further, let us write down the lin-
earized form of (2.3) for comparison. Letting

® = B(P, z*) + P\, P, z*) 2.4

and ignoring the quadratic terms in the primed quan-
tities and in the product of 4 and a primed quantity,
Eq. (2.3) becomes

& @'} + h} =0

1 i{ H [ U
acos? oN lH2N2L™" U

(2.3)

at
(2.5)

where
U, z*y = — RELA ®
’ fa 0¥
is the mean zonal flow.
Integrating (2.5) along a longitude circle, one has

H Uy
-at
z* =0, (2.6)

with Go(¥) being the “constant” of integration. Tak-
ing the zonal mean of (2.6), the right-hand side is
found to be*

~ Go(®) = h(®).
Letting _ )
h(\, @) = h — h(¥), 2.7)

we arrive at the commonly used lower boundary con-
dition for linear waves:
H , U,s
—— | ®,.-

2 3 - * =
HaN? U<1>]+h 0 at z*=0. (2.8)

Eq. (2.8) is easy to apply because it involves a deriv-
ative in the z* direction only, evaluated at a coor-
dinate surface.

*In linear calculations, A(¥) is usually taken to be zero.
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3. Integration of the nonlinear condition

The nonlinear lower boundary condition (2.3) ap-
pears to be much more complicated. Apart from the
fact that it is nonlinear, it also involves derivatives
in all three dimensions, evaluated at a variable lower
surface. Nevertheless, it turns out that Eq. (2.3) can
be integrated once, similar to the linear case, but here
in a horizontal direction perpendicular to lines of
constant ®. Since the lower surface is a streamline
(surface) to the lowest order in Rossby number, such
an integration can be performed (with an error the
order of a Rossby number) while still staying on the
lower boundary as required by (2.3). This yields:

H
—=5 ®,« + h = G(P) at the lower surface. (3.1)

H’N?
To find G(®), Eq. (3.1) is evaluated at some point
A = Ao on the lower surface, usually taken to be far
upstream of the topography. Using the superscript 0
to denote quantities at such an “upstream” location,
Eq. (3.1) gives:

(3.2)

H
Oy=_" _g 0 ).
G(2Y) HN? .9+ h
Letting
1 4d
=——— 30 .
v faoe (3.3)

one can rewrite Eq. (3.2) as

H @
ST f (—fU,)d® + h©
o .

_ H a J‘ ® (U,.
Hy*N? U
If the quantity (U,./U) is a constant at the lower

surface upstream, the integration in (3.4) can be per-
formed easily to yield:

H U,
Oy = {2} Z=2). O 1 4@
G(dY) (HOZNZ)( U) 9+ pO (3.5)
Although the quantity (U,+/U) is in general not a
constant, it is not a bad approximation to assume it
is. This is because the approximation, which is equiv-
alent to assuming that U(¥, z*) is separable in its ¢
and z* variables, is not required for the whole at-
mosphere, but only at the lower surface upstream
(z* ~ 0). Also, the approximation on (U,./U) is used
only for the meridional extent of the topography un-
der consideration. We will comment on the general
case in a moment; here we shall proceed with (3.5).

Taking 4 to be zero or a constant, and substi-
tuting (3.5) into (3.1), one obtains, at the lower sur-
face,

H U-\( H
o B - ——]@
[~ (5) (@)

+h—~h%=0,

G(CD(O)) =

)(—fU)d‘P + h®. (3.9)

(3.6)
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where the subscript s is used to denote evaluation at
the upstream lower surface (sea level).

Though no assumption concerning the amplitude
of the wave has been made, Eq. (3.6) turns out to be
linear. It is also remarkable that it is in practically the
same form as the linearized version (2.8) after the
upstream part is subtracted out of it. We therefore
can conclude from this result that for the present case
the incorporation of the full nonlinear flow around
the mountain produces no significant difference com-
pared to the linearized case, as far as the geopotential
height of the stationary wave response to topographic
forcing is concerned.

With regard to approximation b), it is seen from
Eq. (3.6) that it is the upstream flow U evaluated at
sea level that enters into the boundary condition, and
not the mean flow evaluated at the top of the elevation
z=h,asin (1.3).

- Approximation ¢), which applies the lower bound-
ary condition at sea level instead of the actual surface
height, cannot be justified in general when the moun-
tain height is not small. It is, however, justifiable for
waves with long vertical wavelength L,. The error
introduced by evaluating the boundary condition at
z* = ( instead of z* = A* = O(h) is of the order of
|h/L,|. For forced stationary ultralong waves, L, is of
the order of 100 km (see Tung and Lindzen, 1979),
and so that ratio is generally small.

Thus, the approximate lower boundary condition
takes the following convenient form, assuming that
H/N? at the height of the topography is not too dif-
ferent from its value at sea-level,

H ’ UZ * 7 ! ) —

W[ z.—(,—(;:)@]‘i'h =0 at z*=0, (3.7

where the upstream part has been subtracted and
P=%—-d0 p=h—-HO

Note that (3.7) is identical in form to the linearized
version (2.8) provided that U in (2.8) is appropriately
interpreted as the upstream flow.

In general, the ‘“upstream™ quantity (U,s/U);, is

" unknown in a nonlinear calculation, and has to be

determined by a separate set of equations for the
“mean flow.” This is especially true for the case of
long waves on a sphere, for which there is no dis-
tinction between ‘“upstream” and “downstream”
flow fields. For the case where the disturbance is lo-
calized, the “upstream” quantity is then treated as
known and prescribed.

Let us now return to the case not considered so
far. It is the case where the quantity (U,./U);, has a
strong dependence on latitude. This case can be rel-
evant if the upstream flow has both a strong z*- and
a strong ¥-dependence, and if over the meridional
extent of the mountain of interest, the ¥-dependence
of U, and that of U differ considerably. For this case,
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the lower boundary condition (3.1) would be nonlin-
ear and there would presumably be a significant effect
produced by the flow around the mountain. This is
the situation when comparison with the linearized
formulae is not appropriate.

4. The nonlinear lower boundary condition in the
presence of Ekman pumping

When the no-slip boundary condition is used, an
Ekman boundary layer should be introduced. Taking
h to be the height at the top of the Ekman layer, and
h* to be the corresponding “height” in log-p coor-
dinate, we have from (A19) the following boundary
condition for the interior (i.e., outside the Ekman
boundary layer) flow:

J[<I>, {_ﬁ% 8, + h}] - —fDEVP-G v,@) . @1

assuming steady flows. Subscript P in any derivative
operator is used to denote that the operation is to be
performed at constant pressure. Eq. (4.1) can again
be integrated once along surfaces of constant & to
yield:

H

W@zt'{' h— G(®) = —-B, z*=h*
A ,

4.2)
where B is the integral of the Ekman damping term
along the surfaces of constant ®, and has the form

B= f; dE[:DEVp- (} vp<1>')] / A, @4.3)

with (®, £) forming the orthogonal von Mises
“streamline” coordinate (see, e.g., Kaplun 1967).
Evaluating the “constant™ of integration G(®) up-
stream as before, and using primes to denote devia-
tion from upstream conditions, we have

—I—IOZ_NE [QIZ' ? (Uzl/U)QI] = _hl — B
at
=R (4.9)

The importance of the Ekman term depends crucially
on whether or not the system is near resonance. It
has been shown in Tung and Lindzen (1979) that the
condition for resonance for the stationary waves is
that the left-hand side of (4.4) vanishes, i.e.,

P — (Un/U)® =0, 4.5)

If Ekman damping is absent, (4.4) then implies that
at resonance the steady state wave has an infinite
amplitude; this is true for nonlinear geostrophic
waves as it is for linear waves. Therefore it is obvious
that B, no matter how small it is, must be retained
near resonance. ' '

At “off-resonance,” i.e., when the left-hand side of
(4.4) is much larger in magnitude than the second
term on the right-hand side of that equation, the pri-
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mary balance is between the response on the left-hand
side and the topographic forcing on the right-hand
side. Thus approximately

~ (U/U) @] = —H' (4.6)

_Hoz e (D
and our previous assessments on various linearization
approximations still hold. Near resonance, (4.6)
breaks down. The balance of terms is now between
forcing and dissipation, i.e.,

h = —B. 4.7
Or, in differentiated form, (4.7) is
%J[q), h'] = _DEVP° (‘;.‘ VP(P’) B (48)

Using again U to denote the upstream flow, one can
rewrite (4.8) as

1
DlEVp' (?
at

%J[qv, w=-U——2

’

V !
Pq,) + a cos® I

z* = h*. 4.9)

Eq. (4.9) yields the amplitude of the response to the
topographic forcing U(d/dx)h’ by the upstream flow.
Assessing the effects of approximations a), b) and ¢)
mentioned in the Introduction, we note that by re-
placing U(z* = k*) by U(z* = 0) in the forcing term
[approximation b)], one in effect underestimates the
forcing term. However, the error is small for resonant
waves with long vertical wavelength. This can be seen
as follows:

1 i)
* = ph* — h' ~ * =
UE* = ) —— I = [U(z* = 0)
1 0
+ *| * = * —h!
Uslz* = 0] a cos? h

1
a cos¥

when (4.5) is used. Thus the error introduced is
h*®,./® = O(h'/L,), (4.10)

i.e., of the order of the ratio between the height of the
elevation and the vertical wavelength. This is small
for ultralong stationary waves. Since (4.9) is linear,
approximation c¢), which evaluates the lower bound-
ary condition at z* = 0 instead of z* = A*, is also
seen to make a small error of the same order as (4.10).

The effect of approximation a) of neglecting con-
tribution by flow around the mountain is more dif-
ficult to evaluate. Generally, since the sign of this
term, the second term on the left-hand side of (4.9),
is the same as the first term, the Ekman damping
term (both being negative), we expect that the effect
of approximation a) is to overestimate the response
to topographic forcing, with an error of the order of

=[U(z* = O) + B*U(z* = 0)P;./P']
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|u’p|/U. This is small for linear waves, but may be
order-one in nonlinear calculations.

S. Summary

We have found that for stationary topographically
forced waves the usual practice of replacing the
mountain uplift w; = ug-Vh at the height of the
mountain by #(z* = 0)(d/dx)h evaluated at sea level
does not alter significantly the lower boundary con-
dition in terms of geopotential height provided that:

1) The vertical wavelength of the wave is much
longer than the height of the mountain;

2) The vertical and horizontal shears of the up-
stream flow are not both strong; and

3) The wave is not near resonant.

At resonance, this approximation still holds if the
amplitude of the wave is not too large, as for example
in the case of moderately large Ekman damping. For
the case when the resonant amplitude is large, the
approximation still does not affect the vertical struc-
ture of the wave, which is determined by (4.5). How-
ever, the amplitude of the response tends to be over-
estimated by neglecting the flow over high mountains.
This situation can be remedied by re-evaluating the
amplitude using (4.9), which is linear and does not
involve normal derivatives in the boundary.

Therefore it seems that the usual linearized bound-
ary condition is adequate for most of the situations
and does not seem to require ad hoc modifications
of the type frequently suggested, as these modifica-
tions may introduce inconsistencies and hence greater
errors. We should qualify our results discussed so far
by remarking that we have not considered the ageo-
strophic effects of the flow, nor have we treated the
effect of transient eddies. Lastly, we remark that
though we have not discussed the effect of diabatic
heating here, this can be easily incorporated [in, say,
Eq. (4.9) by adding a term —xQ/H,*N? to its right-
hand side (see Eq. (A19)]. In general, when heating
is not small, meridional mean and eddy advection
terms may become important in the lower boundary
condition. Eq. (1.2), which is intended for topo-
graphic forcing only, needs to be modified.
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APPENDIX

The Full Lower Boundary Condition

Here we derive the general lower boundary con-
dition using the primitive equations in height or log-
pressure coordinates.
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Let the lower surface be describable in height co-
ordinates (longitude, latitude, height) = (A, ¢, z), by

z—h(\, ¥) =0. (A1)

The corresponding description of the same surface
in log pressure coordinates (A, ¢, z*), is

z* — ¥\, @) = 0, (A2)

where z* = H, In(1000 mb/p), Hy =~ 7.5 km, p is the
log-pressure coordinate (see Holton, 1975), and h*
is the “height” of the topography measured in log-
pressure coordinates and may be a function of time
because surface pressure is a dynamic variable.

1. Conservative case

~ Let n be the vector normal to the surface z — A
= 0. It is obtainable by applying the gradient operator
to both sides of (A1), yielding .

n=k—Vuh, (A3)
where k is the unit vector in the z-direction and V
is the horizontal gradient operator at constant height.
Similarly, the corresponding vector n* normal to
the surface z* — h* = 0 in log-pressure coordinates

is : ~
n* = k* — Vph*, (Ad)

where k* is the unit vector in the z*-direction and-
V, is the “horizontal” gradient operator at constant
pressure.

Let us first consider the inviscid case. The appro-
priate boundary condition is that the fluid velocity
normal to the surface should vanish, namely

u-n=0 at z=~h (AS5)
or

u-n*=0 at z*=i* (A6)

where u is the total fluid velocity vector; it is inde-
pendent of the coordinate system used. Using (A3)
and (A4), one can rewrite (A5) and (A6) as

z=~h,

z* = p*.

w=u-Vygh at (A7)

w* = u-Vph* at (A8)
The definitions for the vertical velocities w and w*
in height and log-pressure coordinates are

d

w=—z,

dt

Eq. (A7) is the usual tangency condition for the flow
of an inviscid fluid over a rigid surface. The corre-
sponding condition in log-pressure coordinates, Eq.
(AB), is not easily usable in its present form because
h* is unknown.

Instead, in pressure coordinates one usually first
expresses w* in terms of w and then uses (A7). Using
the identity (see Kasahara, 1974):

(A9)

w¥ = — z*

dt
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a " Taking the diabatic heating rate O to be zero for the
0= 3t tu-V)z present case, one can rewrite (A12) as
P
3 9 9z* (a v)[H 3, 1¢]= A
.V * — .V - +u U+ Vp
(az Tu )Hz " (az tu ),,Z 3z ° 3 Hy'N* g
we have, from (A9) at
d ) z¥ = p* ~ 0. (A14)
w* = (—+ u-V) z*¥ 4+ w—z*
ot H 0z
9 dz* 2. Nonconservative case
= l: ( +u- V) z+ w] - L L
ot P 9z In the presence of viscosity, the requirement of no-
Thus slip at the rigid surface introduces rapid variations of
H, | 1{d - the fields with the vertical. When account is taken of
w¥=—Iw——-t—-+u-V (A10) . -
H g \at » the effect of this “planetary boundary layer,” an Ek-

since for a hydrostatic atmosphere,

3 _Hidw H

9 3
2 sure) o () o
(ax“’ V)sz (az ),

the latter being a definition for the geopotential &.
Now (A7) is, in pressure coordinates

W=U'Vph. (All)

This is because

Vph VHh + a—h‘VpZ

5}1()\, Y)=0

Therefore we can now replace (A8) by

(ot o) o
w*=—1lu-Veh——{—+tuV
H P g \ar p

at
¥ = h*, (A12)

We have not completely eliminated A* in (A12), be-
cause the lower boundary still has to be specified at
z* = h*. However, as we shall show, the location of
the lower boundary can be approximated by z*
=~ 0 for waves with long vertical wavelengths, so that
h* does not appear any longer.

To express w* in terms of the geopotential height,
we use the following form of the thermodynamic
equation (see Holton, 1975):

9 «Q
— + . » NZ * =
( Py u V)PQZ + N*w H,’ (A13)

where

204 = R daT,
o

+"T) _R
" H,)’ *T ¢,

man pumping term is introduced in the vertical ve-
locity at the top of the boundary layer. This pumping
term has been given approximately by Charney and
Eliassen (1949) to be
wg = D, (A15)
where { is the geostrophic vorticity at the top of the
Ekman layer. The coefficient of eddy diffusion Dy has
been assumed to be a constant in this simple model.
The vertical velocity boundary condition (A7) should
now be modified to
w=w;+wg at z=h, (A165
where wpg is given by (A14) and wy is the part of the

vertical velocity caused by the topographical upllft
i.e.,

wy = u-Vh. (A17)
In all these expressions and in those to follow, 4 is
understood to stand for the height at the top of the
Ekman boundary layer, i.e., the height of the topog-
raphy plus the boundary layer thickness.

Incorporating the above Ekman pumping term and
the surface diabatic heating term neglected in Section
1 above, we find that (A14) is modified to

3 H 1
(6t tu V) [H02N2 ® q’] .

1 : kH
= u‘Vph + DEVP'(? V;Q) - ;1—071—\[—2 Q
at
z* = h* = 0. (A1B)

For geostrophic flows, the horizontal velocity is ex-
pressible, to the lowest order in Rossby number, as -

1

Wp = ? k* X V&.

Eq. (A18) becomes, in terms of & only,
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1 H
= }"J[Q 2N2 @z- + h}]
‘ 1 K
+ DEVP' ?qu’ - W Q

at )

z* = h* =~ 0, (A19)
where

J[A, B]=k*-VA X VB.
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