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ABSTRACT

The process of baroclinic equilibration in the atmosphere is investigated using a high-resolution two-layer
quasigeostrophic model in a b-plane channel. One simple channel geometry is investigated for which only two
zonal waves are initially unstable, with the shorter being linearly more unstable but nonlinearly less effective.
It is discovered that the mechanism of nonlinear baroclinic adjustment, formerly proposed by Cehelsky and
Tung, including a nonlinear wavenumber selection process, can explain the equilibration at all levels of forcing
for this case. At small forcings the most unstable wave dominates the heat flux, consistent with the quasi-linear
equilibration of Stone’s simple baroclinic adjustment. At high forcings the longer, less unstable wave dominates,
and the equilibration involves both quasi-linear dynamics by this dominant wave and nonlinear transfer from
the shorter to the longer wave. For intermediate forcings there is a transition between the low and high regimes;
no single wave dominates.

At every forcing except in the intermediate regime there is critical equilibration by the dominant wave. For
intermediate forcings, the model equilibrates at a value between the critical shear of the two waves.

The wavenumber selection process involves a threshold of heat transport for each wave. Above this, the
amplitude of the wave would be so large as to cause itself to break and saturate. The shorter wave’s threshold
occurs at moderate forcings, at which point it relinquishes dominance to the longer wave. A method for calculating
these thresholds is proposed, which involves only robust features of the equilibrium.

1. Introduction

Meridional heat transport in the atmosphere has not
yet been accurately simulated in large numerical models
(Manabe and Stouffer 1988; Washington and Meehl
1989; Stone and Risbey 1990; Manabe et al. 1991; Cu-
basch et al. 1993; Maier-Reimer et al. 1993; Manabe
and Stouffer 1993). It is known that atmospheric me-
ridional heat transport must be ‘‘flexible,’’ that is, highly
sensitive to forcing, for, although the radiatively forced
meridional temperature gradient varies substantially
with the seasons, the observed temperature gradient in
midtroposphere remains relatively constant in the course
of a year (Stone 1978). Changes in the forcing are re-
flected as changes in the amount of heat fluxed pole-
ward, while the resultant temperature gradient appears
relatively insensitive to the forcing.
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One explanation of this effect was proposed by Stone
(1978) and elaborated upon by Cehelsky and Tung
(1991): the baroclinic adjustment mechanism. When-
ever the meridional temperature gradient exceeds a cer-
tain ‘‘critical’’ value, baroclinic eddies are enhanced and
their effect is to reduce the temperature gradient. This
negative feedback between baroclinic eddy heat flux and
the meridional temperature gradient thus maintains the
gradient at this threshold value. Stone found that a sim-
ple approximation for the threshold is the critical tem-
perature gradient from a linear stability analysis of a
two-layer model of the atmosphere.

Several authors presented results that did not accord
with Stone’s theory, however. In their investigations of
geostrophic turbulence, Salmon (1980) and Vallis
(1988) used fully nonlinear models with many unstable
waves and ran them to statistical equilibrium. They
found that the ensemble average vertical shear was ap-
preciably higher at equilibrium than the minimum crit-
ical shear from a linear stability analysis of the original
zonal mean flow, a condition which they term ‘‘super-
critical equilibration.’’ Furthermore, implicit in Stone’s
mechanism is the assumption that the linearly most un-
stable wave captured by his two-level model performs
the heat transport. Results from weakly nonlinear cal-
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culations (Hart 1981; Pedlosky 1981), fully nonlinear
numerical simulations (Gall et al. 1979; Haidvogel and
Held 1980; Klein and Pedlosky 1986; Cehelsky and
Tung 1991; Whitaker and Barcilon 1995), and obser-
vations (Gall 1976; Randel and Held 1991) have shown,
however, that at high enough forcing a shift from the
system’s most unstable wave to a longer, less unstable
wave occurs, so that this longer wave dominates at equi-
librium.

Cehelsky and Tung (1991) proposed the theory of
‘‘nonlinear baroclinic adjustment’’ to address both of
these issues. They suggested that the meridional tem-
perature gradient is maintained at the critical gradient,
not necessarily of the most unstable wave but of the
dominant heat transporting wave, and they showed this
to be true at various forcings from model output. Thus
‘‘critical’’ in the lexicon of nonlinear baroclinic ad-
justment is defined with respect to whichever wave dom-
inates the heat transport. A flow might seem ‘‘super-
critical,’’ that is, relative to the most unstable wave, but
relative to the dominant heat transporting wave it should
be just at critical. In addition, Cehelsky and Tung dem-
onstrated that, as thermal forcing is increased, the dom-
inant heat transporting wave shifts to a larger and larger
scale so that at high forcings it is the longest wave
allowed by the model geometry that dominates.

Still at issue is what determines which wavenumber
will dominate the heat flux and, in particular, which
wave dominates for low and moderate forcings. Cehel-
sky and Tung (1991) did not investigate how the most
unstable wave becomes ‘‘saturated’’ and how the shift
in dominance occurs. This wavenumber selection mech-
anism must be nonlinear in that linear and quasi-linear
theories are insufficient in explaining its behavior
(Salmon 1980; Mak 1985; Vallis 1988; Cehelsky and
Tung 1991). There have been several methods suggested
to justify which zonal mode dominates at various levels
of forcing. Cai (1992) proposed using a quasi-linear
model, comparing analytic calculations of equilibrium
with different waves perturbed. For each forcing sep-
arately he selected that wave which, when perturbed,
yielded the lowest equilibrated vertical shear, and he
stated that this wave would be dominant in a fully non-
linear simulation at equilibrium. Cai showed that his
quasi-linear prediction is correct, but only for low forc-
ings. In fact, at his highest drivings the quasi-linear
equilibria are starting to diverge from their nonlinear
counterparts. Equilibration of baroclinic flows becomes
more complicated as the forcing is increased and the
dominance shifts to a wave longer than the most un-
stable (Cehelsky and Tung 1991). Weakly nonlinear cal-
culations (Hart 1981; Pedlosky 1981) can partially ex-
plain this shift, but they usually deal only with low
forcings and cases with restricted wave–wave interac-
tions. In addition, such studies do not offer predictions
of which wave will dominate.

Whitaker and Barcilon (1995) showed which wave
dominates at equilibrium for a large range of parameter

values. They pointed out two distinct wave bands: long
Rossby waves, which gain energy primarily through an
upscale nonlinear energy cascade, and shorter baroclinic
waves, which gain energy mostly through quasi-linear
extraction from the mean flow. It is a wave at the tran-
sition between these two bands that is the most energetic
at equilibrium. They demonstrated that for much of pa-
rameter space this wave is longer than the most unstable
wave and that the most unstable is drained of energy
by large nonlinear transfer to longer waves. Their dis-
cussion was primarily diagnostic, however. They did not
offer a mechanistic explanation of wavenumber selec-
tion: how the nonlinear transfer out of the most unstable
wave is initiated and why such nonlinearities draw en-
ergy from the most unstable wave but not the longer
waves. As of yet, no method has been suggested that
can explain how the wavenumber selection mechanism
works in general and hence predict which wave will
dominate at equilibrium for any level of forcing.

In this work we investigate baroclinic equilibration
using a high-resolution two-layer quasigeostrophic
model in a b-plane channel. Although a two-layer model
cannot simulate the real atmosphere properly, there is
a correspondence between linear stability analysis of a
two-layer model and tropospheric observations: the crit-
ical gradient in the former corresponds to the cutoff in
the atmosphere between shallow waves, ineffective at
transporting heat, and long deep waves that can effi-
ciently flux heat poleward (Held 1978). Furthermore,
the short (hence shallow) waves that are unresolved in
our model do not, by this same argument, contribute
significantly to the poleward heat transport, and thus
their absence is not important. We use such a simplified
model to investigate the qualitative features of merid-
ional heat transport. One specific channel geometry (i.e.,
aspect ratio) is selected such that only two zonal modes
are initially linearly unstable. This is the simplest case
that allows for nonlinear interaction of unstable modes.
With only two modes to consider, we can analyze the
mechanisms of wave energy transfer and wave satura-
tion clearly.

In our model we hold static stability constant in time.
However, an important process in equilibrating baro-
clinic flows, in addition to the reduction of the horizontal
temperature gradient, is the adjustment of the vertical
temperature profile via vertical eddy heat flux (Gutowski
et al. 1989; Zhou and Stone 1993). Here we neglect this
effect in order to focus on the interaction of horizontal
heat transport and the horizontal temperature profile,
consistent with the quasigeostrophic formulation adopt-
ed. In the future our results should be tested with a
model that allows for variation of the static stability.

In section 2 the mathematical model and its numerical
solution is described. Section 3 presents a conceptual
model of the full nonlinear baroclinic adjustment mech-
anism for a wide range of forcings and one simple chan-
nel geometry. It is then corroborated with output from
the numerical model. Wavenumber selection is dis-
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cussed in section 4. A mechanism is proposed for the
selection of which wave(s) will dominate at equilibrium,
and the process of wave breaking is described. Sections
5 and 6 document additional features of the model re-
sults, and finally a summary and conclusions are in-
cluded in section 7.

2. The numerical model

a. Mathematical formulation

The two-layer model used here is based on the bar-
oclinic quasigeostrophic equations on a b plane, in-
cluding Newtonian cooling to a radiative equilibrium
temperature profile and Ekman damping:

] ]v
2 2¹ C 5 2J(C, ¹ C 1 f ) 1 f (2.1)0]t ]p

†
] ]C ]C s ]C ]C

5 2J C, 2 v 2 h9 2 .d1 2 1 2[ ]]t ]p ]p f ]p ]p0

(2.2)

This formulation was originated by Lorenz (1960) (see
also Lorenz 1963; Holton 1979; Cehelsky and Tung
1991). Here x is the longitudinal position, y the latitu-
dinal position on a b plane centered at latitude f 0, p
the pressure (the vertical coordinate), and t the time; C
is the geostrophic streamfunction, defined in terms of
the geopotential via C 5 F/ f 0; v 5 dp/dt is the vertical
velocity; J(g1, g2) 5 (]g1/]x)(]g2/]y) 2 (]g1/]y)(]g2/
]x) the Jacobian; f 5 f 0 1 b0y the Coriolis parameter;
s 5 2(]u0/]p)/(ru0) a measure of static stability (where
u0 is a base state potential temperature, assumed not to
change); and a coefficient of Newtonian cooling. Ah9d
† indicates radiative equilibrium forcing.

The model is restricted to a midlatitude channel cen-
tered at f 0 5 508N, with a width of 458. The two layers
of fluid exist on top of an Ekman layer, which deter-
mines the lower boundary condition of the model (see
section 2b). The vorticity equation (2.1) is applied with-
in each layer and the thermodynamic energy equation
(2.2) at their interface. This model is the simplest pos-
sible that allows for the physics of dry baroclinic heat
transport.

The equations are nondimensionalized as follows
(carets indicate nondimensional variables): x̂ 5 x/Lx, ŷ
5 y/Ly, 5 dp/Dp, t̂ 5 tf 0, 5 C/( f 0), and 52ˆd̂p C L v̂y

v/( f 0Dp). Here Lx and Ly are representative horizontal
length scales and Dp is the pressure difference between
model levels 1 and 3. Magnitudes of scaling quantities
are given in section 2c. Note that we use only a Coriolis
timescale f 0 and no advective timescale. This yields
small nondimensional velocities, for example, O(0.1) in
the upper troposphere, but dimensionally these veloci-
ties agree with observed magnitudes and there is no
inconsistency in the method.

After dropping the carets, the nondimensional layered
equations are

] ]C12 2¹ C 5 2dJ(C , ¹ C ) 2 db 1 v 2 vd 1 1 d 1 2 0]t ]x

(2.3)

] ]C32 2¹ C 5 2dJ(C , ¹ C ) 2 db 1 v 2 vd 3 3 d 3 4 2]t ]x

(2.4)

] 1
(C 2 C ) 5 2 dJ(C 1 C , C 2 C ) 2 2s v3 1 1 3 3 1 0 2]t 2

†22h0[C 2 C 2 (C 2 C ) ],3 1 3 1

(2.5)

where subscripts 1 and 3 indicate the upper and lower
layers, 2 the interface, and 0 and 4 the top and bottom
of the model, respectively. Several nondimensional pa-
rameters have been introduced: b [ Lyb0/ f 0, s0 [
(Dp)2s/(2 ), h0 [ , and d [ Ly/Lx; d is a2 2L f h9/(2 f )y 0 d 0

horizontal aspect ratio.1 Here 5 d2(]2/]x2) 1 (]2/2¹d

]y2) is the nondimensionalized Laplacian operator. For
more details of the model, see Welch (1996) and Cehel-
sky (1987).

b. Boundary conditions

Boundary conditions in x are periodic, and in y we
assume rigid walls, which is equivalent to no zonal mo-
mentum convergence at the walls (Phillips 1954). In p
we assume a rigid lid at the top, v0 5 0, and at the
bottom v4 equals the vertical velocity coming out of
the underlying Ekman layer. This velocity has two parts:
that due to Ekman pumping and that due to topograph-
ical uplift (Tung 1983). The Ekman pumping velocity
is proportional to the geostrophic vorticity of the bulk
fluid: v4 ; 2zg (Holton 1979). Applying this to the
lower layer yields v4 5 22n C4, which we approx-2¹d

imate by v4 ø 22n C3 where n is a coefficient of2¹d

Ekman damping. (The ‘‘2’’ is added in analogy with the
thermal damping term.) This last approximation is tested
and discussed in section 6. In this study we will omit
topography to isolate the behavior of the self-excited
baroclinic waves.

c. Scaling magnitudes and parameter values

In the horizontal, the channel extends from 27.58 to
72.58N, and thus we set the dimensional width at pLy

1 We will allow the nondimensional x̂ to vary over [0, 2p], while
ŷ varies only over [0,p]. This is motivated by the boundary condi-
tions, which require no flow at the channel walls, and our choice of
siny as the gravest basis function in the meridional direction. [See
sections 2b and 2e and Welch (1996).] Thus the dimensional length
of the channel is given by 2pLx and the dimensional width by pLy;
that is, d is twice the ratio of channel width to length.
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FIG. 1. Marginal stability curve (Im{mcm} 5 0; thick solid line)
for the initial state. Thin vertical lines are at m 5 1 and m 5 2 for
the geometry d 5 1.3. Thin horizontal lines give the critical tem-
perature gradients for m 5 1 (upper line; DTcr,m1 5 19 K) and m 5
2 (lower line; DTcr,m2 5 14 K).

5 5000 km. We choose d 5 1.3, which yields a di-
mensional width of 2pLx 5 7700 km. Further discussion
of these parameter values occurs in section 2e.

In the vertical, the model attempts to capture the bulk
of the troposphere; hence the upper lid is placed at 200
mb (the approximate height of the midlatitude tropo-
pause), the bottom at 1000 mb, and the depth of each
layer is given by Dp 5 400 mb (as in Stone 1978).
Other parameter values are similar to those of Cehelsky
and Tung (1991): f 0 5 1 3 1024 s21, s0 5 0.1, b 5
0.2, and n 5 0.008 634 8 (a 6.7-day Ekman damping
time). Finally h0 5 0.001 036 175, a 56-day Newtonian
cooling time. This rather slow value was chosen to il-
lustrate best the model equilibration; a sensitivity study
of the model to h0 is included in section 6.

d. Radiative forcing and the Hadley solution

The model is forced by the radiative equilibrium zon-
al-mean temperature at the interface between the two
layers. A simple calculation of radiative equilibrium ap-
pears in Lindzen (1990; see his Fig. 2.2), which shows
that the forced temperature profile can be approximated
by a simple cosine. We set (y) 5 0.5DT † cosy and†Tdiml

vary the magnitude of the forcing by altering DT †, a
dimensional measure of the temperature difference
across the channel. In our present climate, DT † ø 80 K
[see Fig. 2.2 of Lindzen (1990)].

This radiative equilibrium temperature profile is
translated into a forced streamfunction using the hy-
drostatic equation, T ; 2]C/]p:

RDp 1
† †C (y) 5 DT cosy (2.6)1,diml f p 20 2

†C (y) 5 0. (2.7)3,diml

Ultimately the lower layer should be driven by mo-
mentum forcing from the Tropics (Tung and Rosenthal
1985, 1986), but here for simplicity we omit this feature
by using rigid channel walls. Our model choices have
ramifications on the resultant velocity profiles, which
will be addressed in section 6.

Corresponding to this forcing there is a wave-free
solution of (2.3)–(2.5), the so-called Hadley solution.
This solution is used as an initial state in the nonlinear
simulations.

e. Nonlinear solution method

To solve (2.3)–(2.5), a spectral tau method is used.
The streamfunctions are expanded in eigenfunctions of
the horizontal Laplace operator, with M and N modes
retained in the zonal and meridional directions, respec-
tively. (We call this an M 3 N model.) Using ortho-
gonality, we obtain coupled ordinary differential equa-
tions for the coefficients. These equations are solved
numerically using a Runge–Kutta method, with fast

Fourier transforms used for the nonlinear terms. For
details of the solution method, see Welch (1996).

A -type subgrid damping term is added to the vor-4¹d

ticity equation in each layer. This simulates the effect
of the small scales, here truncated away, to which the
enstrophy would otherwise cascade. The coefficient of
subgrid damping, ns, is set as a function of the truncation
level M 3 N so that only the eddy of smallest scale (the
highest two wavenumbers retained in either direction)
feels the effect of this numerical friction over that of
real Ekman damping. To determine the smallest trun-
cation that yields an accurate solution, the model was
run at 10 3 10, 15 3 15, 21 3 21, 31 3 31, and 42
3 42 resolutions and the resulting equilibria compared.
The resolution 21 3 21 was found to be the coarsest
that had converged to the results of a model twice its
size. Subsequently all simulations were run at 21 3 21
unless otherwise indicated.

The value of d determines which wavelengths are
permitted in the channel, that is, which will fit an in-
tegral number of times, as well as which of those wave-
lengths can be unstable. Figure 1 shows the marginal
stability curve for perturbations to the initial Hadley
state using N 5 21. [Details of the linear stability anal-
ysis can be found in Welch (1996).] The value of d
determines how many waves are inside the unstable
portion of the curve. For d 5 1.3 the plot shows that
at most two zonal waves can be linearly unstable for
any DT †, with the shorter wave (larger effective wave-
number md) being the more unstable. This is the sim-
plest possible nonlinear case, and thus we will use it to
explore the baroclinic adjustment and wavenumber se-
lection mechanisms. As mentioned in section 2c, d 5
1.3 yields a channel of length 7700 km, which is ap-
proximately one-third of the circumference of the real
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FIG. 2. Equilibrium temperature gradients (crosses) for a range of
forcing for d 5 1.3. Also shown is the Hadley solution (dashed line).
Critical gradients from a linear stability analysis of the equilibrated
flow at each forcing are given as circles (for m1) and squares (m2).

earth at 508N. This choice is made to illuminate the
nonlinear mechanism; a case with parameters yielding
a realistic channel is addressed in a later work (Welch
and Tung 1998).

Note that we retain many waves in both directions to
yield a converged solution, but we choose parameter
values such that only the first two of the many zonal
waves can be unstable. Having only two zonal waves
unstable does not mean that zonal waves 3–21 are not
needed in the simulation. The small zonal scales, even
though they are stable and have negligible amplitude
and heat transport at equilibrium, do have a role in
establishing that equilibrium: they are needed to rep-
resent properly the downscale enstrophy cascade that
occurs in the real atmosphere. By retaining enough
modes, and setting the magnitude of the subgrid damp-
ing coefficient ns appropriately, a small pathway is pro-
vided from the large scales, which gain energy from the
forcing, to the small scales, which act as a slight damp-
ing force on larger modes. The alternative is truncating
after wavenumber 2. However, such a severely truncated
model can yield false equilibria and weather regimes,
as pointed out by Cehelsky and Tung (1987). We must
use a fine enough resolution to allow for a pathway of
enstrophy to small scales, and we set the parameter val-
ues to yield only two modes unstable for a clear view
of the dynamics.

3. The baroclinic adjustment mechanism

a. Basic features

In the nonlinear problem we are most interested in
the equilibrium state to which the system evolves. Start-
ing from the zonal mean state described in section 2d
and perturbing each x and y mode with random but small
amplitude, the system goes through a transient state and
then settles into a dynamic equilibrium by approxi-
mately t 5 60 days (not shown). To measure this equi-
librium, values are averaged over the last 30 days (259
time steps) of a 231-day run (2000 time steps).

In particular, we are concerned with the zonal mean
temperature at equilibrium. The model starts with the
cosy profile of the imposed forcing. This shape exists
more or less at equilibrium as well, but at a reduced
magnitude (not shown). Thus a concise measure of the
temperature profile, equilibrated or forced, is the dif-
ference or ‘‘gradient’’ across the channel, defined by

DT [ T 2|y50 2 T 2|y5p. (3.1)

We can approximate DT with twice the magnitude of
the temperature when projected onto cosy (Cehelsky and
Tung 1991). This projection is easily available from our
expansion of the streamfunctions mentioned in section
2e. This cosy approximation to DT eq is plotted with
crosses in Fig. 2 for a wide range of forced gradients,
DT †. We see that the equilibrated temperature gradient
rises slightly as the forcing is raised, but that it asymp-

totes to a value that remains roughly constant even as
the imposed temperature gradient varies by over 100%.
This agrees with the observational results of Stone
(1978) mentioned in the introduction. It must be that
other components of the system are highly sensitive to
the forcing, while the equilibrated temperature gradient
is not.

We are also interested in the heat transport by each
zonal mode at equilibrium. Consider the nondimen-
sional thermodynamic energy equation (2.5), zonally
averaged:

]T ]2 †5 2d (y9T9) 1 2s v 1 2h0(T 2 T ), (3.2)2 2 0 2 2]t ]y

where the hydrostatic equation T ; 2]C/]p has been
used to express quantities in terms of the temperature
at the interface of the two model layers (level 2). At
equilibrium we have

d ] s0†T [ T ø T 2 (y9T9) 1 v (3.3)eq 2,eq 2 2 22s ]y h00

s0†ø T 1 v *, (3.4)2h0

where * indicates the transformed Eulerian mean resid-
ual circulation (TEM; Andrews et al. 1987):

d ]
v * [ v 2 (y9T9) . (3.5)2 2 2 22h0 ]y

Evaluating (3.4) at the channel walls and subtracting,
to yield ‘‘differential’’ values as in (3.1), yields

s0†DT 5 DT 1 Dv *, (3.6)eq 2h0



1290 VOLUME 55J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 3. Measures of ‘‘flexibility’’ for d 5 1.3: cross-channel gradient
of residual mean vertical velocity, DT† 2 DTeq, at exact equilibrium
(solid line); cross-channel gradient of residual mean vertical velocity,
2s0/h0D , time-averaged in model equilibrium (asterisks); cross-chan-v*2
nel gradient of Eulerian vertical velocity, 2s0/h0 Dv2, time-averaged in
model equilibrium (diamonds).

FIG. 4. Differential heat flux convergences, d/2h0D]/]y( ), aty9T92 2

equilibrium vs forcing for d 5 1.3. Solid line is for m1; dashed for
m2; dot-dashed for m3.

which shows that it must be D that is the flexiblev*2
component of the system if DT eq is robust as DT †

changes. Figure 3 demonstrates this by plotting DT † 2
DT eq versus forcing, showing the value 2s0/h0Dv*2
would have at exact equilibrium, that is, if the time
derivative in (3.2) were exactly zero. This differential
residual mean vertical velocity rises approximately lin-
early with forcing. The actual model output, time-av-
eraged and projected onto the cosy component, is also
shown in Fig. 3 as asterisks. These values fall approx-
imately on the exact equilibrium line, corroborating that
the residual mean vertical velocity is the flexible com-
ponent of the system.

Is this flexibility due to the actual vertical motion or
to differential heat flux convergence, that is, the first or
the second term of (3.5)? To answer this question we
have also plotted in Fig. 3 the cosy projection of 2s0/
h0Dv 2. As these values are very small, it is seen that
the Eulerian mean circulation has little effect on the
cross-channel temperature gradient in this model: v 2 is
important near the channel boundaries, but overall the
TEM vertical velocity is dominated by the eddy heat
flux convergence.2 Thus it is wave heat transport that
is the single flexible component of the model. This also
agrees with observations, which show eddy heat flux as

2 The heat flux convergence and the vertical velocity can have very
complicated meridional profiles at equilibrium. However, because
T 2(y) retains roughly a cosy shape, (3.3) shows that only the cosy
projection of the heat flux and the vertical velocity have any sub-
stantial effect on the temperature; their other projections must cancel
each other. This demonstrates the usefulness of the transformed Eu-
lerian mean.

very sensitive to the forced temperature gradient (Stone
and Miller 1980).

Now let us investigate the heat transport for individ-
ual waves. Figure 4 shows the differential heat flux
convergence versus forcing for m 5 1, 2, and 3 sepa-
rately, again measured by twice the cosy component. At
low driving m 5 2 transports most of the heat, whereas
for medium and large drivings m 5 1 dominates; m 5
3 (and shorter waves) have a negligible contribution to
the heat flux at all forcings. Here the model agrees with
analytic and numerical studies and observations (see the
introduction) in the selection of a wave longer than the
least unstable wave as dominant.

The major results above have previously been doc-
umented by Cehelsky and Tung (1991). However, that
work did not address how the dominant wave is selected
and what will be the equilibrated temperature gradient,
except at high drivings. These points will be explained
here via a conceptual model for this case of d 5 1.3.

b. A conceptual model

Figure 5 schematically displays what is expected for
our nonlinear system of two unstable waves. For very
low forcings, no waves will be unstable (as predicted
by Fig. 1) and there will be no eddy heat transport. The
equilibrated temperature gradient will simply adjust to
the imposed gradient. This is the so-called Hadley re-
gime, which we name Regime A, and it exists for DT †

, DT cr,m2. Here DT cr,m2 is the critical gradient for wave-
number 2 from a linear stability analysis of the zonal
mean flow.

At slightly higher forcings, the Hadley state will be
unstable to perturbations of zonal wavenumber 2, and
hence the Hadley solution will not be selected by the
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FIG. 5. Conceptual model of baroclinic adjustment for a geometry with two waves linearly
unstable. Equilibrium temperature gradient indicated by crosses and, in Regime T, by circles;
Hadley solution given by dashed line; solid horizontal lines indicate DT cr for m1 (upper) and
m2 (lower); solid vertical lines are regime boundaries.

model atmosphere. Wavenumber 2 will grow and trans-
port heat poleward, reducing the temperature gradient
from its imposed value. For DT † , DT cr,m1, it is easy
to reason what will occur: wavenumber 2 will grow and
extract energy from the mean flow, thereby transporting
heat and reducing the zonal mean temperature gradient,
until the mean flow has been adjusted such that m2 is
no longer unstable. Thus we expect DT eq ø DT cr,m2 in
this Regime B as long as wavenumber 1 is not unstable.
This is the simple baroclinic adjustment process envi-
sioned by Stone (1978).

The same argument can be made even for forcings
slightly higher than DT cr,m1. Because m2 will be more
unstable than m1, it will still be expected to extract more
energy from the mean flow and hence regulate the tem-
perature gradient more than the longer wave. As DT
decreases, m1 will be stabilized first, allowing m2 to
again reduce the temperature gradient down to its crit-
ical value. This is also encompassed by Stone’s theory
of (linear) baroclinic adjustment. Regime B, therefore,
extends from DT † 5 DT cr,m2 up to and beyond DT cr,m1.
This regime is defined throughout by wavenumber 2
dominating the heat transport and by equilibration of
the temperature gradient at the value of DT cr,m2.

Should Regime B be expected to extend up to arbi-
trarily large forcings? As shown in Fig. 3, the total heat
transport (equivalently, the differential residual mean
vertical velocity) increases linearly with forcing in order
to maintain a robust equilibrated temperature gradient.
Thus for Regime B to extend indefinitely, the heat trans-
port by m2 (alone) would have to increase linearly with
the forcing. However, as heat flux convergence rises, so
do the wave streamfunction amplitude, the wave poten-

tial vorticity (PV), and the meridional gradient of wave
PV. Following the reasoning of Garcia (1991), we expect
a mode to break when its wavy PV gradient is larger
than the zonal mean PV gradient. Thus arbitrarily high
heat transport by wavenumber 2 is unlikely. Further-
more, since PV increases with wavenumber more quick-
ly than heat transport does, m1 could transport the same
amount of heat as m2 while creating a smaller wavy PV
gradient. Thus it seems possible that wavenumber 1
would be able to transport heat in forcing regimes where
wavenumber 2 could not. (See section 4a for further
discussion.)

Given the above argument, it must be that wavenum-
ber 2 encounters some threshold value of heat transport.
Should the total heat required by the system (in order
to achieve a robust temperature gradient) exceed this
value, the shorter wave will be unable to transport the
total heat, and other zonal modes must come into play.
Thus Fig. 5 shows that Regime B will exist only for
DT cr,m2 , DT † , DT sat’d,m2, where ‘‘sat’d’’ signifies the
threshold level where wavenumber 2 reaches saturation.
Note that the upper limit of Regime B is determined,
not by the critical temperature gradient for wavenumber
1 but by the heat flux threshold for wavenumber 2. That
is, the boundary between Regime B and Regime T, de-
fined below, marks the shift from a (quasi) linear to a
nonlinear regime.

As the forcing is raised above DT sat9d,m2 and the total
heat requirement continues to increase, other zonal
waves must play a more important role. Wavenumber
1 is expected to be the additional heat transporter be-
cause it has a smaller wavenumber than m2 and thus
should be less likely to break, as argued above. The next
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FIG. 6. Schematics diagrams of energy flow for nonlinear equilibria at different forcings:
Regime A (panel A); d 5 1.3, DT † 5 25 K (panel B); DT † 5 50 K (panel T); and DT † 5 90
K (panel C). Solid arrows indicate heavy energy transfer, while dashed arrows indicate weaker
transfer. Numbers next to arrows are rate of change of energy, in 1 3 1025 nondimensional
units. The net energy flow into any mode in a panel may not be exactly zero, because there is
a small nonlinear transfer to shorter waves and to the mean flow that is not shown, and because
the total growth rate may not be precisely zero in our time average. In addition, there is some
difficulty in assigning nonlinear transfer between two specific modes, but since m1 and m2 are
so much larger than all other modes in our cases of interest, this arbitrariness is small.

regimes are characterized by the fact that it is m1 that
provides the flexible component to the system, trans-
porting whatever additional heat is necessary beyond
m2’s (constant) saturated contribution.

Figure 5 shows that DT eq shifts to a new, higher value
for DT † . DT sat9d,m2. This is because, as the new flexible
heat transporter, wavenumber 1 will determine the equil-
ibrated temperature gradient: m1 will decrease DT until
m1 is no longer unstable so that DT eq ø DT cr,m1 at these
higher forcings. Note that this is critical equilibration,
for the final state is critical relative to the mode dom-
inating the heat transport.

The crosses of Fig. 5 show an abrupt jump in the
equilibrium temperature gradient at the upper boundary
of Regime B. This is not really to be expected, as P1

(the heat transport by zonal wave 1) will not truly dom-
inate and determine the equilibrated temperature gra-
dient until it grows larger than P2. We expect some sort
of transition region after Regime B in which DT eq grad-
ually rises from DT cr,m2 to DT cr,m1 as the forcing is in-
creased and the total heat required to equilibrate the
system increases. This transition regime (Regime T) is
indicated in Fig. 5 with circles instead of crosses, and
within it m1 plays the flexible role in the heat transport,
but P1 , P2. Beyond this is Regime C, defined by DT eq

5 DT cr,m1, which occurs only for the highest drivings
when P1 . P2.

The above conceptual model can be summarized by
a series of energy diagrams, one for each regime, as
shown in Fig. 6. In each panel, the movement of energy
from the zonal mean flow to the waves, between the
waves, and to damping (Ekman, subgrid, and thermal)
is indicated by arrows. Solid arrows represent the pri-
mary energy flux and dashed arrows the lesser flux. (The
numbers can be neglected for now; they will be dis-
cussed in section 5.) Regime A is simple: as no modes
are unstable, there is no extraction of energy from the
mean flow and hence no energy in any wave. In Regime
B, m2 extracts energy quasi-linearly from the mean flow
(i.e., transports heat) and loses its energy to viscous and
thermal damping. The longer wave can also extract en-
ergy from the mean flow, and there can be a small non-
linear transfer between m1 and m2, but the dominant
process is m2’s quasi-linear energy extraction and linear
dissipative loss.

Regime C is the opposite of Regime B: the dominant
process is m1’s quasi-linear energy extraction and linear
dissipation; m2 can also extract and lose energy, but to
a smaller degree. In Regime C there is an additional
possibility of fairly large nonlinear transfer of energy
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from m2 to m1, a manifestation of the saturation of
wavenumber 2. This nonlinear transfer will be discussed
in sections 4b and 5.

Regime T has an intermediate energy diagram: m2
still extracts more energy quasi-linearly from the mean
flow than does m1, but it has reached its saturation level
and hence transfers a large amount of its energy non-
linearly to m1. This longer wave experiences larger dis-
sipation than m2, and thus the predominant energy path-
way is energy gain by m2 and energy loss by m1, clearly
a nonlinear pathway as it involves both waves. Note
that this is the only regime in which the major energy
pathway involves both waves.

For all forcings in this conceptual model, m2 will
always be the most unstable wave at equilibrium, in-
dicated by the fact that DT cr,m2 , DT cr,m1 at all forcings
in Fig. 5. One might expect it to dominate the energy
extraction from the mean flow in all regimes. That is,
one might expect the energy diagram for the transition
regime to hold true for arbitrarily large forcings as well,
in place of Regime C’s scheme. This is not found in
model runs, however (see below). Wavenumber 1 ‘‘takes
over’’ from the shorter mode, rendering the equilibrium
state at high forcing more quasi-linear as opposed to the
clearly nonlinear equilibrium of Regime T. This is one
of the surprises of the nonlinear baroclinic adjustment
mechanism and will be elaborated in section 5.

Note that the baroclinic adjustment mechanism has
been defined here for all levels of forcing. We now
corroborate this conceptual mechanism with output from
the two-layer model.

c. Model output

Returning to Figs. 2 and 4, we can identify each of
the regimes of the conceptual model with the numerical
output. Regime A is easily seen to occur for 0 , DT †

# 13 K; at these low forcings, there is no heat flux by
any mode and the equilibrated temperature gradient
agrees with the Hadley solution. Note that the upper
cutoff of Regime A in the nonlinear simulation (13 K)
agrees with the critical gradient for the most unstable
wave as determined from linear stability analysis (14 K
from Fig. 1).

Regime B can be identified from Fig. 4 as the region
outside the Hadley regime in which there is no appre-
ciable heat flux by wave 1. This occurs for 13 # DT †

# 40 K. Figure 2 shows that in this forcing range the
temperature gradient equilibrates approximately at the
critical gradient for mode 2. Note that this range extends
well above the forcing at which m1 becomes unstable,
that is, 19 K from linear stability analysis (Fig. 1). Also,
m2 is clearly the flexible component of the system in
Regime B, for its heat transport grows approximately
linearly with forcing in this range in Fig. 4.

Regime C, in which P1 . P2, is discernible from
Fig. 4 as DT † $ 70 K. This is corroborated by Fig. 2,
which shows that in this range DT eq ø DT cr,m1.

Regime T is the range between B and C: 40 # DT †

# 70 K. We notice that in this range the equilibrated
temperature gradient grows from approximately DT cr,m2

to DT cr,m1 as the forcing is raised, corresponding to the
circles of Fig. 5.

From the dividing line between Regimes B and T, we
can see that m2’s heat transport threshold is DT sat9d,m2 ø
40 K. For all higher forcings, m2 is saturated and thus
its heat transport remains roughly constant, as Fig. 4
more or less shows. Correspondingly, as the forcing
increases from DT † 5 40 K, the wavenumber 1 heat
transport grows approximately linearly with forcing, as
it has assumed the flexible role in the system.

Our conceptual model of Fig. 5 has been shown to
work for forcings from DT † 5 5 to 150 K. This is a
wide range, given that our current climate has a solar
driving of DT † ø 80 K.

We reiterate that the temperature gradients in Regimes
B and C exhibit critical equilibration, where we define
critical relative to the dominant heat transporting mode
in the modified flow. Relative to the most unstable
mode, however, Regime C equilibria appear to be su-
percritical throughout! (See Fig. 2.) This explains the
discrepancy between our critical equilibration and the
‘‘supercritical equilibration’’ of geostrophic turbulence
studies (Salmon 1980; Vallis 1988); it is simply a se-
mantic difference. Salmon, in fact, included a calcula-
tion in his work that demonstrates critical equilibration.
First he determined the wave at equilibrium that has the
maximum extraction of energy from the mean flow, that
is, the maximum F(k) (his notation) or northward heat
transport. Simultaneously, he calculated at what wave-
number the equilibrated zonal-mean flow would be crit-
ical [see Table III in Salmon (1980)]. For both cases
that he investigated, the wavenumber at which the equil-
ibrated flow is critical turns out to be the same as the
wavenumber of maximum heat transport. This is the
very essence of the baroclinic adjustment mechanism.

In another corroboration of critical equilibration, Cai
(1992) found that his analytic quasi-linear model (see
the introduction) showed neutralization of the mean flow
by two different methods: reduction of the mean bar-
oclinicity and meridional modification of the mean flow
that ‘‘reduces the instability so that the equilibrated zon-
al flow is neutral even though the mean value of it is
supercritical’’ (Cai 1992, 1600). Here we analyze the
stability of the full equilibrated flow, including its de-
tailed meridional profile; we do not simply use the initial
cosy shape with the cross-channel gradient adjusted to
DT eq. If Cai’s analysis had been performed as ours here,
his model’s equilibration would have been termed crit-
ical. In addition, Cai points out the importance of cal-
culating stability relative to the dominant heat trans-
porting mode: ‘‘the adjusted zonal flow is indeed neutral
with respect to the wave . . . itself’’ (Cai 1992, 1600).

Heretofore we have termed the equilibrium ‘‘robust,’’
but we have substantiated this claim only by showing
that the equilibrated temperature gradient does not
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change much with forcing. In fact, there are several
quantities that are insensitive to the level of forcing: the
zonal mean potential vorticity, the zonal mean meridi-
onal gradient of PV, and the zonal mean potential en-
strophy, each separately in each layer of the fluid. To
demonstrate this, begin with the definition of (nondi-
mensional) PV in each layer:

p j 2 2
2Q [ 1 1 b y 2 1 ¹ C 1 (C 2 C ),j d j 1 31 22 2s0

j 5 1, 3, (3.7)

where the ‘‘1’’ is a nondimensionalized f 0. The equil-
ibrated zonal average can be approximated:

p
Q ø 1 1 b y 2 1 g T (y), j 5 1, 3,j j 2,dim9l1 22

(3.8)

where the relative vorticity has been neglected because
model output shows it to be small at equilibrium.3 The
gj are nondimensionalizing constants that can be deter-
mined from (2.6)–(2.7); note that g1 , 0. As discussed
earlier, the temperature profile retains a cosy shape and
has a robust magnitude at equilibrium. Thus (3.8) shows
that Q in each level will be similarly insensitive to the
forcing. This immediately implies as well that the zonal
mean enstrophy, , j 5 1, 3, will be robust.2Q j

The zonal-mean meridional PV gradient in each layer
is, from (3.8),

]Q ]Tj 2ø b 1 g , j 5 1, 3 . (3.9)j1 2]y ]y
dim9l

Again, because the temperature profile at equilibrium is
robust, so must be its meridional gradient and the PV
gradient in each layer. In particular, if we assume that
the temperature distribution at equilibrium can be ap-
proximated by T 2,eq,dim91 ø 0.5(DT eq)dim91 cosy, we can
estimate the average zonal mean PV gradient over the
channel:

^Q j,y& ø b 1 DT eq,ĝj (3.10)

where

2 1 1 DpR
ĝ [ 20.5 g 5 (2 2 j) , j 5 1, 3.j j 2 2p p 2s p L f0 2 y 0

(3.11)

Here angle brackets indicate a meridional average. This
approximation for the zonal mean PV gradient can be
used in the next section to determine wave saturation
levels.

3 Note that y here is nondimensional even though T 2 is dimensional.

4. The wavenumber selection process

In our conceptual model we reasoned for the existence
of a threshold of heat transport for wavenumber 2. We
now develop a method to quantify the argument. Fol-
lowing this in section 4b, we describe the impact of
such a threshold on the evolution of the system toward
equilibrium.

a. Derivation of a heat transport threshold

The magnitude of the wavy PV gradient for a specific
mode can be determined from the size of its heat flux
convergence. First, let us calculate the magnitude of the
heat transport as a function of streamfunction ampli-
tudes. The zonal mean heat flux convergence by zonal
mode m is given by

] ]
P 5 2d (y9T9) 5 d (C9 C9) . (4.1)m 2 2 1,x 3]y ]y

The average magnitude of this heat flux can be ap-
proximated as

1 1
2^|P |& ø dm |C9||C9| sinf ø dm |C9| sinf . (4.2)m 1 3 m 1 m2 2

Here f m 5 ^ 2 &, the average verticalargC9 argC91,m 3,m

phase tilt of the wavenumber m component of the
streamfunction.

Similarly, we can approximate the magnitude of the
wave PV gradient from the upper streamfunction am-
plitude. The meridional gradient of the upper-layer wavy
PV is, from (3.7),

] 1 ]
2 2Q9 5 ¹ C9 2 (C9 2 C9) ø ¹ C9,1,y d 1 1 3 d 1[ ]]y 2s ]y0

j 5 1, 3 , (4.3)

where the approximation has been confirmed with mod-
el output. This gives

^| |m& ø d2m2| |.Q9 C91,y 1 (4.4)

Combining (4.2) and (4.4) yields

3 32d m
^|Q9 | & ø Ï^|P |& . (4.5)1,y m m!|sinf |m

Therefore the magnitude of the wavy PV gradient
corresponding to a certain heat flux can be inferred for
a given zonal mode. Notice from (4.5) that shorter waves
(larger m) correspond to higher wavy PV gradients, all
other things being equal (e.g., the phase tilt, which we
have found only to enhance the above effect). Specifi-
cally, m2 transporting a certain amount of heat will yield
a larger wavy PV gradient, by at least a factor of
(23)1/2 ø 3, than the same amount of heat transport by
m1. We will use this fact below.

Garcia (1991) proposed that a large wavy PV gradient
will lead to breaking if it exceeds the zonal mean PV
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gradient. This is simply a generalization of the Charney–
Stern theorem (Charney and Stern 1962), where the
background flow now is the zonal mean flow plus a
long-scale wave (m 5 1 or 2 in our case). Perturbations
of much smaller scales will see this background flow
as zonally constant. Through a separation of scales,
therefore, we can argue that if the total PV gradient Qy

5 Q y 1 has negative as well as positive regions,Q9y,m

then the flow is unstable to secondary perturbations.
This is possible if the wavy PV gradient exceeds the zonal
mean gradient in magnitude: | | . Q y for some y.Q9y,m

As discussed in section 3c, the zonal-mean PV gra-
dient in either layer is a robust feature of equilibrium;
it remains roughly constant as the forcing is raised. In
contrast, the heat flux required to achieve baroclinic
adjustment rises linearly with the forcing; Fig. 3 shows
that it is approximately the difference between the im-
posed temperature gradient and the known (robust)
equilibrated temperature gradient. Therefore, for m2 to
transport all the heat required at equilibrium, we see
from (4.5) that its corresponding PV gradient must rise
with the driving. Thus, we expect the wavy PV gradient
corresponding to wavenumber 2 to exceed the constant
zonal mean value Q y at some forcing. At this threshold,
the shorter wave will break and saturate. Furthermore,
(4.5) shows that the PV gradient for m1 will rise more
slowly with heat transport than the PV gradient for m2.
Thus wavenumber 1 will have a higher saturation level
than wavenumber 2’s threshold; wavenumber 2 will
break before wavenumber 1 does. We have tested the
above theory on the current case of d 5 1.3, and it
yields approximately the same saturation level for m2
as is observed in the nonlinear simulations.

Note that this method is based only on robust features
of the equilibrium, primarily the equilibrated tempera-
ture gradient. Once the dominant wave is determined,
we can estimate the equilibrated temperature gradient
as the critical gradient of the modified flow relative to
this dominant wave. It turns out, however, that the crit-
ical gradients of the equilibrated flow are similar to
those of the initial (Hadley) state. Figure 1 gives the
critical temperature gradient for m1 in the Hadley flow
as approximately 19 K; in Fig. 2 at equilibrium the value
is 21 K on average in Regime C. From the same figures,
m2’s critical gradient in the Hadley state is approxi-
mately 14 K, with an equilibrated value of 12 K on
average in Regime B. Thus, using only the initial (Had-
ley) flow, and robust measures of the equilibrium, one
should be able to determine a priori which wave will
dominate the heat transport at equilibrium and what will
be the approximate temperature gradient for a wide
range of forcings.

b. Wave breaking

In a system at high driving, exactly how does m1
grow to dominate over m2 as a function of time? The
selection of a longer, less unstable wave in a multiwave

system has been documented at equilibrium by other
authors (see the introduction). However, the evolution
of such a system to equilibrium is rarely described.

We consider the case d 5 1.3 and DT † 5 50 K, which
falls into Regime T. This forcing has been selected be-
cause it is large enough for wave saturation to occur,
yet small enough that the process evolves slowly so as
to be discernible. Because it is in the transition regime,
this case has the additional interest of being slightly
more complicated than others, a point that we will dis-
cuss later in this section. Results from other forcings
within Regime T are qualitatively similar to that con-
sidered here. Evolution to equilibrium in Regime C
shows the same major features as in the case here and
will not be shown.

The evolution depends on the particular initial con-
ditions chosen, but simulations from various initial con-
ditions of our two-layer model demonstrate that re-
gardless of the initial state, the equilibrium state is sim-
ilar for the same forcing. Thus our model is robust in
another sense: it does not display the hysteresis ob-
served by other authors, for example, Chou (1995), and
any initial state can be chosen. We start from the (per-
turbed) Hadley state, which is unstable to both wave-
number 1 and 2 disturbances.

Beginning with the zonal mean state, the evolution
to equilibrium can be divided into three phases. In the
first phase, t 5 0–7 days, zonal wavenumber 2 grows
most quickly because it is the most unstable wave. This
is shown for t 5 0 in Fig. 1, but it also holds true at
later times (not shown). The nature of the instability at
t 5 0 can be derived from (2.6)–(2.7). Differentiating
with respect to y yields U ; siny, and hence b 2 U yy

; b 1 siny, which is positive throughout the channel.
By the Charney–Stern theorem (Charney and Stern
1962), this flow is barotropically stable. Thus the initial
growth is due to baroclinic instability only but is mod-
ified by barotropic shear.

Wavenumber 1 also grows during this phase I, be-
cause the Hadley state at DT † 5 50 K is highly unstable
to perturbations of that wavelength. However, m1 grows
at a lesser rate than m2 because the flow is less unstable
to the former (Fig. 1). Both waves grow by extracting
energy from the mean flow. Nonlinearities play a minor
role at this early stage.

Phase I appears to be the simple baroclinic adjustment
mechanism: the most unstable wave grows in amplitude,
transporting heat and decreasing the overall temperature
gradient, thereby reducing its own instability (not
shown). Unlike the theory proposed by Stone (1978),
however, wavenumber 2 cannot reduce the temperature
gradient to its critical level. Instead, m2 reaches its
threshold of heat transport and nonlinear dynamics take
over in phase II of the evolution.

To describe the behavior in phase II, we will use
contour maps over time of potential vorticity at level 1,
that is, Q1 from (3.7). These are shown in Fig. 7 for the
first part of phase II. Here Q1 is an approximation to
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FIG. 7. Contour maps over time of potential vorticity in the upper layer vs x and y for phase II of the case d 5 1.3, DT † 5 50 K. Thick
solid line is the nondimensionalized f 0-contour; thin solid and broken lines indicate Q1 . f 0 and Q1 , f 0, respectively. (Contour interval
is not constant.)

isentropic potential vorticity in the upper troposphere.
At t 5 7.5 days, zonal wavenumber 2 is evident in Fig.
7a (by counting the number of ridges or troughs in the
dark PV contours) due to its dominant quasi-linear
growth during phase I. At this early time, with only
moderate wave amplitudes and curvatures, the meridi-

onal gradients of total potential vorticity are still dom-
inated by b [see (3.7)] and hence mostly positive. As
time progresses, the wave attempts to grow further be-
cause it is still unstable. However, the opposite potential
vorticities in the northern and southern parts of the chan-
nel in Fig. 7a work against each other, twisting up the
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FIG. 7. (Continued).

contours and (by conservation of potential vorticity4)
creating long thin tongues of PV as seen in Fig. 7b and
later in Fig. 7h. This causes regions of negative total

4 We note that potential vorticity in our case is not materially con-
served in that there is friction and forcing in the dynamics. However,
the twisting up and stretching of PV contours obviously still occurs
in Fig. 7 and thus the argument is relevant here.

meridional potential vorticity gradient, Qy, as expected
from our discussion in the previous section. When a
long tongue is stretched out, as in Figs. 7b or 7h, small-
scale instabilities arise on the sides of the tongue (Figs.
7b,i) and begin to pinch off the tongue (Figs. 7c,j),
breaking it into blobs (Figs. 7d,k). These blobs, in turn,
cause new regions of negative PV gradient and thus are
broken up to even smaller sizes (Figs. 7e–f,l). This con-
tinues on and on until the blobs become of small enough
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FIG. 8. As in Fig. 7 but for t 5 58 days in phase III.

scale that viscous effects are significant, at which point
they are dissipated completely.

Note that we can now confirm the separation of scales
argument used here and in section 4a. The scales of the
largest blobs, as in Fig. 7l, are of wavenumber m ø 7,
which is much smaller than the m 5 2 wave on which
they act.

The dynamics documented here follow the pattern of
planetary ‘‘wave breaking’’ in the stratosphere as shown
by McIntyre and Palmer (1983, 1984). When wave am-
plitudes are large enough, a rapid and irreversible de-
formation of material contours occurs. By the stretching,
secondary instability, and dissipation mechanisms dis-
cussed above, waves break and deposit their PV into
the region surrounding the sharpest contour gradients.
This region, known as the surf zone, experiences sig-
nificant mixing due to the wave breaking, and thus it
becomes somewhat homogenized with only weak gra-
dients of potential vorticity. In our case, zonal wave-
number 2 grows to a certain amplitude and then breaks,
yielding regions of more uniform Q1 on either side of
the sharp potential vorticity gradient. This is evident in
contour maps in phase III, after wave 2 has broken; an
example is shown in Fig. 8 for t 5 58 days.

In causing a redistribution of potential vorticity, wave
breaking is an efficient way for transient eddies to affect
the time-mean flow. The process is inherently nonlinear
(as the requirement of contour deformation above im-
plies), and thus in phase II there is a large nonlinear
transfer of energy out of m2. Quasi-linear growth of m2
continues in this phase, as wavenumber 2 is still unsta-
ble, but the growth cannot overcome the nonlinear drain.
In this way, the shorter wave is said to be ‘‘nonlinearly
saturated.’’ This agrees with Whitaker and Barcilon’s
(1995) demonstration that large nonlinear transfer out
of the most unstable wave is what prevents it from dom-
inating at equilibrium.

While wavenumber 2 is saturating, wavenumber 1
continues to extract energy from the mean flow, for it
is still linearly unstable. Unlike wavenumber 2, it does
not break and saturate, but rather receives most of the

energy transferred nonlinearly out of m2. Thus during
this phase wavenumber 1 grows through both wave–
mean flow interaction and nonlinear transfer, while
wavenumber 2 grows quasi-linearly but decays nonlin-
early.

The end of phase II is at t ø 24 days; by then wave-
number 1 has emerged as the most energetic wave due
to the saturation of wavenumber 2. This can already be
seen at t 5 13.9 days in Fig. 7l: compare this panel,
where the overall shape is that of wavenumber 1, with
Fig. 7a, where wavenumber 2 is clearly dominant. This
becomes more obvious as t → 24 days (not shown), for
then the breaking of wavenumber 2 is almost completely
overshadowed by the large amplitude of wavenumber
1. It is very clear at t 5 58 days in Fig. 8. Note that
the breaking of m2 continues to and throughout equi-
librium, but it is dominated by the larger quasi-linear
dynamics of m1.

For t . 24 days, the magnitudes and energetics of
the different zonal modes have been established and an
equilibrium must only be maintained. This is phase III.
At forcing levels in Regime B and C this maintenance
is clear: the dominant wave simply equilibrates the tem-
perature gradient at its critical value. In the transition
regime, however, the competition between modes is on-
going, and hence the equilibrium is more complicated.
Each wave attempts to reduce the temperature gradient
down to its DT cr, but both have limitations on their
ability to ‘‘control’’ the dynamics: wavenumber 2’s heat
transport is capped at its threshold value, and wave-
number 1 is transporting less heat than m2. Thus neither
wave clearly dominates and the temperature gradient
equilibrates at a value intermediate to the two critical
gradients (Fig. 2). Panel T of Fig. 6 shows the energetics
in phase III for this forcing of DT † 5 50 K, now with
actual numbers. (Section 5 explains how these were cal-
culated.) Wavenumber 1 is sustained in part by quasi-
linear energy extraction from the mean flow and in part
by nonlinear transfer from wavenumber 2. Wave m2, on
the other hand, is maintained by a balance between qua-
si-linear growth and nonlinear saturation.

There is an interesting paradox in the transition re-
gime: while wavenumber 2 dominates the heat transport
at equilibrium (Fig. 4), wavenumber 1 has the most
energy (Fig. 8). This is not inconsistent, for the two
measures are qualitatively different: heat transport is a
rate of change of energy and is distinct from energy
itself. This ‘‘dual dominance’’ is more evidence of the
complicated nature of Regime T and why it equilibrates
at a noncritical temperature gradient.

5. Nonlinearities

In this section we point out exactly how nonlinearities
are part of the baroclinic adjustment mechanism. Cehel-
sky and Tung (1991) showed that for high forcing, while
the selection of the dominant wavenumber is an inher-
ently nonlinear phenomenon, the maintenance of the
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equilibrium is essentially quasi-linear. Here we extend
these ideas to all the regimes of Fig. 5.

The schematic energy diagrams of Fig. 6 will be used,
now confirmed with actual data. Following Whitaker
and Barcilon (1995), we calculated the nondimensional
perturbation energy E9 at equilibrium, where ‘‘pertur-
bation’’ signifies deviation from the time and zonal
mean:

2 2 21 ]C9 ]C9 ]C91 1 32 2E9 5 d 1 1 d1 2 1 2 1 2[2 ]x ]y ]x

2
]C9 13 21 1 (C9 2 C9) . (5.1)1 31 2 ]]y 2s0

This energy was horizontally averaged and separated by
zonal wavenumber. Also calculated were the rate of each
wave’s energy growth or decay, derived by forming
(2.3)–(2.5) into an energy equation. The energy gained
and lost by each wave was split into parts: that due to
extraction from the mean flow (i.e., wave–mean flow
interaction), that due to nonlinear transfer from or to
other wavenumbers (wave–wave interaction), and that
due to dissipation, Newtonian forcing, and subgrid
damping (linear processes). Numbers next to the arrows
in Fig. 6 represent the time-averaged values of these
(nondimensional) energy growth rates at equilibrium for
three cases: DT † 5 25 K (panel B), DT † 5 50 K (panel
T), and DT † 5 90 K (panel C).

For DT † 5 25 K (Regime B) the numbers confirm
that the dynamics for low forcings (but outside the Had-
ley regime) are the simple baroclinic adjustment envi-
sioned by Stone (1978). Nonlinearities are unimportant.

For the transition regime, we argued in the previous
section that for DT † 5 50 K nonlinearities are necessary
in maintaining equilibrium. This is corroborated by the
numbers for panel T (Fig. 6) and is true at all such
intermediate forcings.

We expect nonlinearities to be similarly important for
Regime C. This is apparent from Fig. 2, which shows
the critical temperature gradients for wavenumbers 1
and 2. Because DT cr,m2 , DT cr,m1 throughout this regime,
m2 is more unstable than m1 even at equilibrium! (We
will return to this point later in this section.) Obviously
nonlinear processes must be involved in maintaining the
equilibria, otherwise m2 as the more unstable wave
would certainly dominate.

Panel C (Fig. 6) shows results for DT† 5 90 K in
Regime C. The energetics are as described in the con-
ceptual model: wavenumber 1 has the largest extraction
from the mean flow (equivalently, the largest heat trans-
port) and nonlinear transfer from the shorter to the longer
mode occurs at equilibrium. The wave-mean extraction
by the shorter wave does not continue to rise with forcing
in Regime C. Runs at higher forcings (not shown) have
approximately the same mean flow extraction by m2 as
for DT† 5 90 K. This confirms that m2 has reached its
(constant) heat transport threshold in Regime C.

The relative importance of the nonlinear transfer
within Regimes T and C is of interest here. Comparing
Panels T and C, we see that as the forcing is increased,
the quasi-linear extraction by the dominant mode grows
significantly; however, the nonlinear transfer increases
much less. Further tests at DT † . 90 K (not shown)
yield the same effect: for a slight increase in forcing
there is a corresponding increase in quasi-linear extrac-
tion of energy from the mean flow, while the nonlin-
earities remain roughly unchanged. Therefore, the sys-
tem becomes more and more quasi-linear as the forcing
is raised. We note that Cehelsky and Tung (1991) also
found their model to be nearly quasi-linear at high driv-
ings. This is also demonstrated in a different manner in
Fig. 4: as the forcing is raised, the heat transport by m2
becomes less and less significant compared with that by
m1.

We are also concerned with the role of nonlinear
transfer in evolving to equilibrium. In section 4b we
showed that the wave breaking process in Regime T is
crucial to the evolution and that the process is nonlinear
by definition. In Regime C, the wavenumber selection
process is qualitatively the same as in Regime T. In fact,
this can be seen right from the initial linear stability
curve of Fig. 1. Some nonlinear processes must come
into play in the selection of m1; otherwise the most
unstable mode m2 would simply dominate from the
start.

Our findings contrast with the work of Cai (1992).
We have found that nonlinear interactions are necessary
in maintaining the equilibrium for moderate forcings,
which contradicts his use of a quasi-linear model to
determine the equilibrium state. Our results do agree
with Cai that at low forcings equilibrium is maintained
effectively quasi-linearly. However, at high forcings, an-
other regime in which our model is approximately quasi-
linear, Cai’s method would select the wrong wave as
dominant. This was demonstrated by applying his meth-
od to the present model, that is, by comparing quasi-
linear runs with m1 perturbed to those with m2 per-
turbed. The equilibrated temperature gradient is lower
when m2 is perturbed than m1 at every forcing (not
shown); thus Cai’s theory would predict that m2 would
dominate always! This is obviously not the result found
here, nor that observed in the real atmosphere. Thus,
we only agree with Cai’s method and theory for weak
forcings, that is, Regime B.

It would be of interest to compare the behavior ob-
served here to theories of geostrophic turbulence, in
particular the Rhines (1975) wavenumber of cascade
arrest and Salmon’s (1980) ‘‘wave–wave equilibration’’
process (see also Vallis 1988). While there is a corre-
spondence, we delay detailed discussion to the more
relevant case when there are many waves unstable
(Welch and Tung 1998), so that the same part of pa-
rameter space is being investigated.

We now return to an interesting point mentioned ear-
lier in this section: even at equilibrium in Regime C,
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FIG. 9. As in Fig. 1 but for several values of the Newtonian cooling
parameter h0: 6-day e-folding time (dashed line), 11 days (dot-
dashed), 56 days (solid, the curve of Fig. 1), and 112 days (dotted).
Thin vertical lines are at m 5 1 and m 5 2 for the geometry d 51.3.

wavenumber 2 is linearly unstable. This is seen in Fig.
2, for DT eq . DT cr,m2 at every level of forcing in Regime
C. How can a wave be unstable at equilibrium? The
answer is that this wave is stabilized by a different pro-
cess than simple (quasi)linear dynamics. Wavenumber
2 does indeed interact quasi-linearly with the mean flow,
but it is stabilized via nonlinear saturation, by sending
excess energy to longer-scale waves. Thus wavenumber
2 can have a positive linear growth rate even at equi-
librium. Meanwhile, wavenumber 1 is stabilized quasi-
linearly: it interacts strongly with and modifies the mean
flow until the mean flow is neutral with respect to it. In
contrast to m2, m1 will have a zero linear growth rate
at equilibrium, as shown in Fig. 2.

Note that the equilibration mechanism found here is
not one of neutralization, as has been proposed by Lind-
zen (1993, 1994), which in our opinion is too severe a
condition. It is not necessary to neutralize the zonal
mean atmosphere to all waves for it to equilibrate; it
only needs to be neutral to the dominant wave. The
linearly most unstable wave is usually stabilized via
nonlinear transfer. Thus a linear theory of neutralization
is insufficient to explain the equilibration.

We also point out that our model includes both normal
modes and nonmodal waves. The results, however, can
be interpreted using modal instability only. The transient
growth mechanisms presented by Farrell and Ioannou
(1995) and DelSole and Farrell (1996) do not appear
necessary to explain this problem, in which we examine
the long-term evolution to equilibrium.

6. Details of the equilibrium

A few details of the equilibrium deserve some com-
ment. There is only a little barotropic shear introduced
into the zonal velocities in the process of equilibration
(not shown). The primary stabilization of the flow,
therefore, does not appear to be due to the barotropic
governor effect (James 1987) in which a large meridi-
onal shear develops and reduces the growth rate of bar-
oclinic waves. (Note that the linear stability analysis
performed previously includes any barotropic instability
that might exist and hence any barotropic governor ef-
fect.) Also, the zonal velocities in the lower layer are
very small and hence unlike the real atmosphere. These
small values are due to two effects: first, the fact that
the side walls are assumed to be rigid, which prevents
zonal momentum fluxes from propagating into or out
of the channel, thereby ensuring a channel-averaged
zonal velocity near zero at the surface (Tung and Ro-
senthal 1985); second, the formulation of the lower
boundary condition. For the latter we used C4 ø C3 in
assigning v4 (see section 2b). We tested this approxi-
mation by using C4 ø (3/2)C3 2 (1/2)C1 instead (de-
rived from the hydrostatic equation), but the model sim-
ulations remain qualitatively the same. While the equil-
ibrated lower-layer flows are indeed larger with this new
approximation, a shift to the longer wave still occurs as

the forcing is raised, there is little barotropic shear in-
troduced into the flow, and the equilibration is still crit-
ical relative to the dominant heat transporting wave.
Thus the unrealistically small lower-layer velocities in
the original formulation do not seem to be important.

We should point out that the mechanism described
here occurs at other values of d as well, for which more
than two waves are initially unstable. There is always
a shift from the short, most unstable wave to a longer
wave, which dominates the heat transport at equilibrium,
for all but the lowest forcings. In particular, this mech-
anism is demonstrated in a realistic simulation in Welch
and Tung (1998).

The model results do have some sensitivity to the
value chosen for the Newtonian cooling parameter h0.
In general, a model with a longer thermal damping time
is more unstable, as confirmed in Fig. 9 with marginal
stability curves for several values of h0. This allows the
flow to evolve further from the radiatively forced state
of (2.6)–(2.7), and for more heat transport by each wave
and hence a lower equilibrated temperature gradient (all
not shown). However, these features by themselves are
not particularly interesting. Note also that a longer ther-
mal damping time does not allow the flow to evolve
further from criticality. Regardless of the value of h0,
the flow at each forcing equilibrates near the critical
gradient for the dominant heat transporting wave in the
modified flow.

There is, in fact, a significant effect of varying h0: a
differential impact on waves of different scale. Specif-
ically, as h0 is lowered, m1 is increasingly unstable while
m2’s instability is less affected; thus the two waves have
closer and closer critical gradients as h0 is decreased
(see Fig. 9). One might expect that m1 would be more
involved in the heat transport for a lower value of h0,
that is, that m1 would begin to be the dominant wave



15 APRIL 1998 1301W E L C H A N D T U N G

at lower forcings. However, recall from section 3b that
the dividing line between Regimes B and T is not de-
termined by DT cr,m1 but rather by the heat transport
threshold of m2. This threshold, in fact, increases as h0
decreases, and hence m1 becomes involved in the heat
transport at higher forcings for lower values of h0.

The above is the main effect of varying h0. It is a
quantitative difference only, affecting the size of the
various forcing regimes but not their existence. Our con-
ceptual model of baroclinic adjustment is independent
of this thermal damping parameter. To demonstrate the
mechanism, therefore, we have chosen a value for h0
that is smaller than is realistic, but for which each regime
of Fig. 5 is discernible in output such as Figs. 2 and 4.

7. Summary

In this work we have performed a detailed study of
the mechanism of nonlinear baroclinic adjustment. We
have seen that baroclinically equilibrated flows are ro-
bust in several measures; the cross-channel temperature
gradient, the zonal mean PV and its meridional gradient,
and the potential enstrophy in each layer are all roughly
constant for a wide range of forcings. Moreover, the
mechanism of nonlinear baroclinic adjustment, includ-
ing a nonlinear wavenumber selection process, can ex-
plain equilibration over this wide forcing range.

In the wavenumber selection part of the mechanism,
the shorter, linearly most unstable wave has a threshold
of heat transport, above which it renders the fluid state
unstable to secondary perturbations. When the forcing
is low, the shorter wave never reaches this threshold
and thus it, as the most unstable wave, dominates the
heat transport at equilibrium. For higher forcings, the
shorter wave will reach its threshold and will not be
able to transport further heat. It will cease its growth
by breaking, passing its energy to the still unstable long-
er wave through nonlinear transfer. This process is
called saturation. The longer wave will transport the
extra heat required to achieve the robust equilibrium.
(There is also a threshold of heat transport for the longer
wave, but it is much higher than that for the shorter
wave.) If the forcing is high enough, the excess heat
transported by the longer wave will exceed that of the
shorter wave, which is capped at its threshold, and the
longer wave will dominate. A procedure is outlined that
will allow a predictive formula to be developed to cal-
culate when each wave will break.

The maintenance of the equilibrium is fairly simple
once the dominant heat transporting wave has been se-
lected, and in most cases it is surprisingly quasi-linear
considering the large supercriticality. The dominant
wave transports heat poleward, reducing the overall
temperature gradient and adjusting the mean flow mer-
idionally, until the flow reaches a state that is linearly
critical relative to the dominant wave. This is a process
of critical equilibration; the dominant wave stabilizes
itself, that is, quasi-linearly. For high forcings, this qua-

si-linear equilibration is done by the longer wave. The
shorter wave then is stabilized by a different process:
nonlinear transfer of energy to other modes.
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