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ABSTRACT

Charney in 1971 generalized results for two-dimensional (2D) turbulence to quasigeostrophic (QG) turbulence
and obtained two results that have important implications for the atmosphere. The first is an attempt to prove
that, similar to 2D turbulence, energy in QG turbulence goes only upscale in the net. The second is a demonstration
that 3D QG motion in terms of a 3D wavenumber in a stretched coordinate is isomorphic to 2D turbulence.
Charney’s proofs are shown here to be problematic.

1. Introduction

Charney’s (1971) note, ‘‘Geostrophic Turbulence,’’ is
generally credited as laying the foundation for the sub-
ject. Although three-dimensional (3D) in nature, large-
scale motion in the atmosphere and oceans satisfying
geostrophic scaling was shown to have more in common
with the 2D turbulence of Kraichnan (1967) than with
the 3D turbulence of Kolmogorov (1941a,b). As Char-
ney (1971) demonstrated, the existence of a scalar in-
variant, the ‘‘pseudo-potential vorticity,’’ in addition to
the energy invariant, provides a powerful constraint on
energy transfers in quasigeostrophic (QG) turbulence,
which is absent in 3D turbulence.

Charney’s work was probably motivated by the ob-
servation available at the time (e.g., Wiin-Nielsen 1967),
which showed an apparent k23 power-law behavior in
the energy spectrum for horizontal wavenumbers k in
the synoptic scales (zonal wavenumbers 7–18), and its
similarity to the k23 spectrum predicted by Kraichnan
(1967) for 2D turbulence for wavenumbers higher than
the excitation wavenumber. Charney’s note contains two
main results:
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R It attempts to prove that energy cascades upscale in
the net in QG turbulence, similar to 2D turbulence.

R There is a demonstration of isomorphism between QG
and 2D turbulence, and consequently the observed k23

spectrum over the synoptic scales was explained using
Kraichnan’s (1967) theory on isotropic and homo-
geneous 2D turbulence.

Both of these results contain major flaws, mathe-
matical in nature in result 1 and quantitative in result
2. Although parts of the problem we will discuss may
be known to some—for example, Merilees and Warn
(1975) pointed out that the result of Fjørtoft (1953) on
the direction of energy cascade in 2D turbulence, on
which Charney relied, was in error—the implications
for large-scale atmospheric turbulence probably have
not been fully appreciated. Unproven ‘‘folklore’’ in 2D
turbulence concerning the direction of energy cascades
[see comments by Eyink (1996)] are often carried over
to QG turbulence in the atmosphere without further
proof. In this note, we point out some of the problem
areas.

2. Mathematical aspects of Charney’s proof

Large-scale atmospheric flows satisfying QG scaling
conserve what Charney (1971) called ‘‘pseudo-potential
vorticity’’ (which we will call ‘‘potential vorticity’’),

2f r02q 5 ¹ c 1 c 1 by,H z21 2r N
z
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where c is the streamfunction, (z) is the mean density,r
f and b are Coriolis parameters, and N is the Bruut–
Väisälä frequency. Its conservation equation takes the
form

]
q 1 J[c, q] 5 0. (1)

]t

It is seen that (1) is analogous to the 2D vorticity
equation

]
2 2¹ c 1 J[c, ¹ c] 5 0, (2)H H]t

and so one may expect that QG flows have behaviors
analogous to 2D flows.

Charney (1971) obtained an energy equation by mul-
tiplying Eq. (1) by 2 c and integrating over x, y, andr
z (The range of z is semi-infinite, from 0 to `; the x
domain is periodic; the solution vanishes at two points
in y):

2d d 1 f 0 2E [ = c · = c 1 c r dx dy dzEEE H H z2[ ]dt dt 2 N
2f ]0 `5 rc c | dx dy 5 0. (3)EE z 02N ]t

In arriving at energy conservation, Eq. (3), Charney
used the vertical boundary conditions

rcc → 0 as z → ` and c 5 0 at z 5 0. (4)z z

The upper-boundary condition in (4) equivalent to the
assumption that the energy density vanishes at infinity.
Without it there could be energy leakage to infinity and
so there would not be energy conservation.1

Charney defined a 3D elliptic operator L by

2f r02L(c) [ ¹ c 1 c ,H z21 2r N
z

and obtained the equation for the conservation of po-
tential enstrophy by multiplying Eq. (1) by L(c) andr
integrating over all x, y, and z [although the z integration
is not necessary (see Salmon 1998)]:

d d
2F [ [L(c)] r dx dy dz 5 0. (5)EEEdt dt

Using the two derived conservation laws, (3) and (5),
Charney then proceeded to derive the result that energy
flows upscale. His (excerpted) argument follows:

‘‘Now L is a self-adjoint elliptic operator with a com-

1 The lower-boundary condition in (4) is unrealistic, because large-
scale transient waves (‘‘turbulence’’) are largely driven by temper-
ature gradient near the surface. It is, however, necessary for Charney’s
energy conservation. One way to circumvent this problem is to use
a trick first suggested by Bretherton (1966), to extend the lower
boundary ‘‘underground,’’ to z 5 2z0, where the isothermal lower-
boundary condition is applied.

plete orthonormal set of eigenfunctions cm and eigen-
values lm(m 5 1, 2, . . . ). . . .

‘‘By virtue of the completeness property, we may set
`

c 5 a c ,O m m
1

where

L(c ) 5 2l c .m m m (6)

‘‘Substituting . . . we obtain

` ` 
22E 5 l a [ b 5 constantO Om m m 1 1

. (7)
` `

2 2 2F 5 l a [ l b 5 constantO Om m m m 1 1

‘‘It then follows that
` `1 2F

b , l b , , (8)O Om m ml lM MM M

i.e., that bm approaches zero with increasing M, and`SM

an energy cascade is impossible. All the other theorems
pertaining to energy exchange among spectral compo-
nents in two-dimensional flow may now be shown to
apply to three dimensional quasigeostrophic flow as well
. . . .’’

There are several problems with Charney’s proof. We
will discuss the first in this section. It turns out that
there is only one eigenfunction satisfying (6) and the
boundary conditions (4). That eigenfunction is cz [ 0;
that is, it is a strictly 2D flow. Consequently, Charney
did not prove anything more than what had already been
shown for 2D flows by Fjørtoft (1953).

We can demonstrate this by explicitly solving Eq. (6)
via separation of variables. Write

i(k x1k y)x yc (x, y, z) 5 f (z)em m

and substitute into Eq. (6) to yield (with k2 [ 12kx

)2ky

d r(z) d
2 2f f 1 r(z)(l 2 k )f 5 0. (9)0 m m m21 2dz N dz

For N 2 constant (assumed later by Charney) and (z)r
5 (0)e2z/H, Eq. (9) can be solved explicitly asr

2a z a z z/2Hm mf (z) 5 [A e 1 B e ]e ,m m m

where
2N 1

2 2a [ (k 2 l ) 1 .m m2 2f 4H0

Applying the boundary conditions (4) yields

f (z) 5 A , a constant, and thus c [ 0.m m z

This barotropic solution is the only eigenfunction of
Charney’s problem.

Equation (9) is indeed self-adjoint, as Charney
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claimed. It is of the Sturm–Liouville form, but it is not
a regular Sturm–Liouville system because the domain
is semi-infinite, and one of the coefficients vanishes at
one of the end points (viz. z 5 `) (see, e.g., Birkhoff
and Rota 1969). The upper boundary, z 5 `, is a sin-
gular point of Eq. (9). The reason that Charney’s system
has only one eigenvalue is because his boundary con-
dition (4) at the singular point overspecifies the problem.
There should have also been a continuous spectrum

2f 02k 1 , l , `m2 24H N

corresponding to the eigenfunctions

 1
ik 1z1 22H 

z /2H ik z 2ik zz z f (z) 5 C e e 1 e .m m

1
ik 2 z1 22H 

where
2N 1

2 2k [ (l 2 k ) 2 .z m2 2f 4H0

These eigenfunctions satisfy the less restrictive upper
condition

1/2r (z)f (z) bounded as z → `.m

This set was eliminated by Charney’s boundary con-
dition (4).

The mathematical situation is analogous to the Le-
gendre functions, governed by the following singular
Sturm–Liouville system:

d d
2(1 2 x ) f 1 lf 5 0. 21 , x , 1,[ ]dx dx

subject to the proper boundary condition

f(x) bounded as x → 61.

The eigenvalues are l 5 m(m 1 1), m 5 0, 1, 2, . . .
and the complete set of orthonormal eigenfunctions are
Pm(x), where

3 1
2P (x) 5 1, P (x) 5 x, P (x) 5 x 2 ,0 1 2 2 2

5 3
3P (x) 5 x 2 x, etc.3 2 2

If, instead, the more restrictive boundary condition

d
f(x) 5 0 at x 5 61

dx

is used, all but one of the eigenfunctions are eliminated.
The only eigenfunction that remains is the ‘‘barotropic’’
solution

P (x) 5 1.0

Given this problem, is there any way to rectify Char-
ney’s solution? A complete set of eigenfunctions could
in theory be constructed by adding the continuous ei-
genvalues and eigenfunctions to the barotropic mode.
However, these radiating solutions do not satisfy energy
conservation. Without energy conservation [Eq. (3)]
Charney’s proof also fails. There does not appear to be
a way to remedy the problem for the semi-infinite do-
main.

In oceanic applications, the vertical domain is bound-
ed and a rigid-lid upper boundary condition can be im-
posed. For the atmosphere, such a lid can possibly be
justified for motion trapped in the troposphere, for which
case the height of the lid, D, is taken to be the height
of the tropopause. (It is not physically justified in the
atmospheric case to take the limit D → `, because the
upper stratosphere and mesosphere are very dissipative
due to the presence of breaking planetary and gravity
waves.) With this rigid upper boundary, the vertical ei-
genfunctions are (Flierl 1978; Hua and Haidvogel 1986)

mp
f (z) 5 cos z , m 5 0, 1, 2, 3, . . . .m 1 2D

These eigenfunctions form a complete set. Equation (8)
then is correct, but we note that it is still not a proof of
upscale energy cascade. Equation (8) is nothing more
than a statement about an a priori condition for con-
vergence of the infinite series representation of c and
hence of E and F. It must hold for any time, including
the initial time. It does not imply that energy will tend
to flow from high to low wavenumbers. The same crit-
icism applies to Fjørtoft’s proof for 2D turbulence,
which Charney’s proof mirrored.

3. Discussion

There is a common misconception that the relation-
ship between enstrophy, G, and energy, E, that is, G(k)
5 k2E(k) for 2D and a similar relationship for QG tur-
bulence, decides the direction of energy cascade and
that the direction is upscale in the net. This line of
argument originated with Fjørtoft on 2D turbulence with
his ‘‘triad interaction’’ proof (separate from his ‘‘con-
vergence’’ proof discussed in section 2). The triad in-
teraction proof from 2D turbulence can plausibly be
carried over to QG turbulence if one replaces enstrophy
by potential enstrophy, as Charney seems to have done.
However, Charney stated: ‘‘Fjørtoft found that a transfer
of energy from one wavenumber to a higher one must
be accompanied by still more energy toward a lower
wavenumber,’’ but it is precisely this finding by Fjørtoft
that was in error. The corrected statement was given by
Merilees and Warn (1975) and it reads: ‘‘energy and
enstrophy in a 2D non-divergent flow cascade both to
lower and higher wavenumbers,’’ but ‘‘the majority of
interactions are such that more energy flows to and from
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smaller wavenumbers while more enstrophy flows to
and from larger wavenumbers’’ (emphases added).

To use Fjørtoft’s own (mistyped) example, if we have
three different scales lp . lr . ls in the ratios lr/ls 5 2;
lp/lr 5 2, then we can find the ratio of energy change
in the longest and shortest scales to be DEp/DEs 5 4.
However, both DE’s could be positive or both negative;
in the latter case, the longest scale loses more energy
downscale to the intermediate scale than the shortest
scale loses upscale to the intermediate scale, yielding a
net downscale energy flow. Thus such triad-based rea-
soning for either 2D or QG turbulence can not determine
the sign (direction) of net energy transfer. The fact that
Charney’s (and Fjørtoft’s) proofs cannot indicate the
cascade direction is because no causality was introduced
in the arguments, which rely only on the conservation
of energy and enstrophy. This ‘‘reversibility’’ problem
is moot for real fluids or when viscosity is introduced.2

The physical problem Charney (1971) was interested in,
that is, the equilibrium energy spectrum of the atmo-
sphere, is a forced dissipative system. There the direc-
tion of energy transfer can depend on the spectral lo-
cation of forcing and dissipation.

Charney also noted a similarity between Eqs. (1) and
(2). Equation (2), for 2D motion, conserves vorticity,

c, whose Fourier spectral component is2¹H

2 2 22(k 1 k )ĉ(k , k ) [ 2k ĉ(k).x y x y (10)

Equation (1) for QG motion, conserves, along horizontal
trajectories, the potential vorticity, c 1 ( f0

2 / )[( /2¹ r rH

N 2)cz]z, whose spectral component in 3D is3

2f f0 02 2 2 22 k 1 k 1 k ĉ k , k , k [ 2k̂ ĉ(k̂). (11)x y z x y z21 2 1 2N N

Charney used this isomorphism to say that Kraichnan’s
argument for the k23 spectrum in 2D turbulence could
be carried over to explain the same in QG. However,
crucial to this is the assumption of isotropy; in the QG
case it means that and /N 2 must be compa-2 2 2 2k , k , k fx y z 0

rable in magnitude. Charney had shown previously
(Charney 1947; Charney and Drazin 1961) that synoptic
waves forced by baroclinic instability are mostly trapped
in the troposphere. Letting the density scale height H
be the maximum vertical scale for these waves (Held
1978), and letting kx 5 2p/Lx and ky 5 2p/Ly, we need,
with N/ f 0 ; 100,

N
L , L , H [ L ; 700 kmx y Rf0

for isotropy, where LR is the Rossby radius of defor-
mation. Therefore, isotropy is realizable in a 3D at-

2 For the case of unforced, purely inviscid flows, causality can be
introduced by adding an ad hoc probabilistic hypothesis [see Rhines
(1975), Batchelor (1953), Salmon (1998) for 2D turbulence].

3 Charney (1971) ignored the b effect and the vertical variation of
density (z).r

mosphere only for horizontal scales of motion much less
than 700 km. However, the k23 part of the observed
spectrum occurs for horizontal scales longer than 1000
km (see Charney’s Fig. 1; Nastrom and Gage 1985;
Wiin-Nielsen 1967).

Incidentally, the scales of motion with zonal wav-
enumbers 7–13 are the ‘‘energy injection’’ scales and
therefore do not satisfy the conditions for an ‘‘inertial
subrange’’ of Kraichnan. See Welch and Tung (1998)
for an alternative explanation of their slope.
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