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ABSTRACT

Previous results based on low- and intermediate-order truncations of the two-layer model suggest the existence
of multiple equilibria and/or multiple weather regimes for the extratropical large-scaie flow. The importance of
the transient waves in the synoptic scales in organizing the large-scale flow and in the maintenance of weather
regimes was emphasized. Our result shows that multiple equilibria/weather regimes that are present in lower
order models examined disappear when a sufficient number of modes are kept in the spectral expansion of the
solution to the governing partial differential equations. Much of the chaotic behavior of the large-scale flow that
is present in intermediate order models is now found to be spurious. Physical reasons for the drastic modification

are offered.

We further note a peculiarity in the formulation of most existing two-layer models that also tends to exaggerate
the importance of baroclinic processes and increase the degree of unpredictability of the large-scale flow.

1. Introduction

It is known that the zonal flow of the atmosphere
in the extratropics is unstable baroclinically to synoptic-
scale perturbations, On the planetary scale, asymmetric
perturbations are dominated by quasi-stationary waves
forced mainly by flow over continental elevations and
by differential heating. The nonlinear interactions of
the synoptic and planetary scales of the flow in the
extratropics form the subject of study in the present
paper. In particular, we are interested in the effect of
the transient synoptic waves on the low-frequency
variability of the planetary-scale waves.

The life cycles of the unstable baroclinic disturbances
produce natural and perhaps unpredictable variability
in the synoptic scales. Through nonlinear interactions,
some variability in the large-scale flow is inevitably in-
duced. What is not clear at this point is the degree to
which the large-scale flow is affected. An understanding
of this issue is crucial in any study of the long-range
predictability of the large-scale flows in the atmosphere.

Implicit in the work of Charney and DeVore (1979)
and Charney and Straus (1980, hereafter referred to as
CS) is the hypothesis that the synoptic-scale “instabil-
ities” serve to initiate transitions in the atmospheric
large-scale flow from one persistent “equilibrium” state
to another. These large-scale persistent flow regimes
are largely determined and maintained by the nonlinear
interactions of the large-scale wave-mean flow system
itself. An almost opposite point of view is developed
in the work of Reinhold and Pierrchumbert (1982,
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hereafter referred to as RP; see also the corrigendum
to that paper, Reinhold and Pierrehumbert, 1985).
They suggest that the transient synoptic-scale waves
are of primary importance not only in initiating tran-
sitions from one persistent flow regime to another, but
are also responsible for organizing and maintaining the
large-scale regimes themselves, It is interesting to note
that the two different conclusions are inferred from the
same set of governing partial differential equations and
differ only in the degree of approximation (i.e., level
of truncation) used to obtain the respective solutions.
Similar to the conclusions drawn in Part I for the baro-
tropic models, we will show (in section 3) that the so-
lution of RP cannot be treated as a better approxi-
mation to the original partial differential equations than
that of CS even though the truncation used by RP is
less severe. We will show and explain why intermediate
truncation levels may in most instances yield mislead-
ing results behaving very differently from the true so-
lution. In particular, we will show that the converged
solution is found to have only one “weather regime”
for the large-scale flow where, previously, multiple re-
gimes were found in lower order models. Our result
cannot, however, be taken as a “proof™ that multiple
weather regimes do not exist.

2. The two-layer model .

The two-layer model used in this study is a general
extension of the low- and intermediate-order models
of CS and RP. Our formulation allows an arbitrary
number of terms to be kept in the spectral expansion
of the model equations (within the limits of compu-
tational space and time). Thus full nonlinearity can be
retained. The present model supports nonlinear inter-
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actions among the planetary-, synoptic- and small-scale
waves. In this section we review the development of
the two-layer model and introduce a more general no-
tation. The original formulation is due to Lorenz (1960,
1963).
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Consider a midlatitude, periodic S-plane channel
centered at latitude ¢,. The meridional boundaries of
the channel are at y = 0 and wL. The characteristic
depth of each layer is H. The governing quasi-geo-
strophic vorticity, thermodynamic energy and thermal
wind equations are

0 o2y 2 2 o 1 Joh\ 1 2
51V = I TN I V) oz =3¢ = | kT =) @1)
0o _ 2 2 ar_ fow o2, o | 2 1 Joh
atV r=—J(, V)~ J(1,V¥) 605}_7 2kIN 7+§ka«v (¢—T)+51(1[/—r,—H— 2.2)
22 9= — 1y, 200~ Z v+ 2h10% — 6) 2.3)
ot ’ H o @.
V20 = AV?7, (2.4
which have been finite differenced in the vertical direction. The following notation has been used:
© latitude 6.(x, y, 1) upper layer potential temperature
©o mid-channel reference latitude 6:(x, y, ) lower layer potential temperature
a radius of the earth 6(x, y,f) [=3(8, + 6,)], mean potential temperature
Q angular velocity of the earth *(x, y) radiative equilibrium mean potential tem-
t time perature
X zonal coordinate h(x, y) topographic height
y meridional coordinate (dy = ady) H characteristic depth of each layer
5o (=29 singy), Coriolis parameter at latitude o static stability parameter
@0 ka Ekman damping coefficient at the bottom
Bo [=(df/dy)¢o), meridional gradient of the surface
Coriolis parameter at latitude ¢ ka frictional coefficient at the interface
V2 [=(¢_92/6x2) + (6%/dy?)], horizontal Lapla- A} Newtonian cooling coefficient
o [— 2@ [(ﬁ)x - ( L )K]} where ¢, is the
ofdg 4df9 ) . - PWAIE 4
Jf, 2 [= 5){ a—g - SI a—g] , horizontal Jacobian y & L\Poo Poo
vy o oyoy specific heat at constant pressure, R is
¥i(x, y, t) upper layer geostrophic streamfunction the universal gas constant and x = R/
¥ax, v, 1) lower layer geostrophic streamfunction C,.
Y(x, v, 1) [=3(1 + ¥2)], mean streamfunction P, upper layer pressure
7(x, , 1)  [=3(¥1 — ¥»)), shear streamfunction P, lower layer pressure
w(x, y, ) vertical velocity at the interface Poo pressure at the bottom surface (1000 mb)

The variables are nondimensionalized as follows: y
"by L, x by L/n, t by ™!, ¥ and 7 by L%, 8 by AL*;,
w by Hﬁ)’ kds k'a', hdeJb: o by AL%a and 60 by (L.fb)_l
We now define the dimensionless constants 8 = La™!
cotpy, ag = o(ALy)™", 2k = kyfo™!, k' = kizfo~", and
2h” = h;fy"'. Note that in a dimensionless channel of
width 7 and zonal length 27, L is a length scale related
to the meridional channel width, L,, and zonal circle
- length, L,,by L, = wL and L, = 2xL/n. The parameter
n is the aspect ratio of the horizontal length scales.
Specifically, n = 2L,/L,. Choosing #n different from
one redefines the fundamental harmonic. For example,
n =1 gives a period of 2rL = L, whereas n = 0.5 scales
the fundamental period to 4w = L,.
The dependent variables are expanded in the ortho-
normal eigenfunctions, F;, of the Laplace operator.

These eigenfunctions satisfy the following conditions:

VZF,:a,-zF,-

oF;

Tiog at y=0
o 0 at y=0,w
Fif}'zaij,

where
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is the horizontal average of ( ), and ;is the Kronecker
delta function. The eigenfunctions chosen include the
families : '

Japy= V2 cos(P;y)
Jx,py = 2 cos(M;x) sin(P;y)
Sty =2 Sin(Hjx) sin(Pyy),

where P;=1,2, -« -, Yr; M;=1,2, ~+ -, Xr; Hj = 1,
2, + ++, Xr;and Yrand Xrare the y and x wavenum-
bers, respectively, at which the expansion is truncated.
The dimension of the resulting system of equations is
2Y7(2X7 + 1), and the total number of eigenfunctions
is Ijg, = Y7(2Xr + 1). The above form of the eigen-
functions is slightly different in appearance from that
used by Lorenz (1960, 1963), CS and RP. The argu-
ment of the ith harmonic in x is, in our case, “ix”. In
the aforesaid works the argument is “inx”. This dif-
ference is due solely to a different choice of scaling for
x. Our nondimensional x has absorbed the horizontal
aspect ratio, #.

The expansions of the dependent variables thus take
the form

Yr
VL0, 0= 2 YaryOfay(y)
P=1

Xr  Yr

+ 2 2 ko fxanpyx, p)

Mi=H;i=1P;=1

+ ¥, p O, py(x, V)]

Yr
100 0= 2 Tawy O el V)
P=1 _

Xr Yr
+ 2 2 [rxan.pOfxag.ryx Y)
Mi=H=1P=1

+ 7L Py (DS L,y V)]

Yr
00, y,0)= 2 B4y O)fucr)(¥)

Pp=1

Xr Yr
+ 2 2 Okag.ryOfkan,py(x%, ¥)
Mi=Hi=1P=1

+ 0.1, PO f L, 2o V)]

Yr
0%Cx, y) = 2 0%y fae(V)

P=1
\ Xr Yr

ot 2 2 [0%a.py Sronpy X, V)
Mi=H=1 P=1

+ 0% a1, P S, Py V)]

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 44, No. 21

Yr
wx,y, 0=~ 2 @iy Ofur)¥)

Pi=1
Xr Yr
= 2 2 loxopyOfka,pox, ¥)
Mi=H;=1 Pi=1

+ @, pp L,y V)]
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P=1
Xr Yr
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The Jacobian terms in the model equations are also
expanded,
J(F}:Fm) = Zciijb
i

where ¢, are interaction coefficients defined by
Cijm= FiJ(F}, Fp).

Depending on which family of eigenfunctions F; is
a member of, the ‘2’ sign above represents summation
over one index (if F; € { f4}) or summation over two
indices (if F; € { fx, f.}). It follows from the properties
of the Jacobian that ¢y, = —C;mj, and from the boundary
conditions on the channel walls that ¢jm = Cjmi = Cmyj.
General formulas for the interaction coefficients are
given in appendix A. For completeness we note that
the expansion of the 3-term uses the relation dF,,/dx
= 3 binF;, where by, = F,(dF,,/0x) (see appendix A).

The final nondimensional, spectrally decomposed
equations are

3 " N N
% Y= 3 ai > 2 2 cim{(a? — am W m + 6;0m)
; i m

N
+ h(W;~ )} + nBa; bl —k(Wi—0)  (2.5)
J
a n N N
(_9; Bi = '2_ ai_2 2 E Cijm{(aiz - amz)(gm\pj + Gj\bm) - hm(\bj
j m

N
= 0)} +nBa > Thify+ k(Wi—0)—2k'0;~ a;%w,
I (2.6)

N N’

EB,- =—-n Z E cﬁm¢j0m + 0'0(.0,'"‘ h”(0;" - 0,)

ot 2.7)

Jj m

Here the subscripts i, j and m refer to an ordering of
all eigenfunctions, F;, i = 1,2, « + -, I;,. Eliminating
w; by combining Egs. (2.6) and (2.7) results in a system
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of nonlinear ordinary differential equations for the
variables y;(¢) and 6;(¢).

Asin CS and RP, the thermal forcing is represented
by a single zonal component

6%(x, ») = 6%, V2 cos(y) = 6% V2 cos(»),

and the topographic forcing is represented by a single
wave component

h(x, ) = hya,1y2 cos(x) sin(y) = hg2 cos(x) sin(y).
Due to this choice of forcing, the large-scale waves (i.e.,
those of zonal wavenumber 1) are the only directly
forced waves. All other waves are indirectly forced via
instabilities and nonlinear interactions.

There is a fair amount of freedom in deciding what
values to0 assign to the model parameters (see Reinhold,
1981). In the present paper, we choose to adopt the set
from RP’s demonstration case to facilitate comparisons
with that work. The scaling constants in this set are ¢q
= 50°N, L = 1600 km (a channel width of 7L = 5000
km), go = 6400 km, H ~ 7.5km, fo =1 X 10757},
and 4 = 1.1886 X 107'%s °K/cm? The model param-
eters take on the values 8 = 0.2, 69 = 0.1, hxg = 0.2, k
=0.5,k'=0.01,h" =0.045,6% =0.1,andn=1.3. A
study of this model under different parameter regimes
will appear in Part III.

3. Low-order versus high-ordér models

In adopting low-order dynamical systems to model
the original governing partial differential equations, one
inevitably makes errors. However, it is often assumed
that the qualitative behavior of the full system is es-
sentially captured by the truncated system and that as
more and more modes are included, the accuracy of
the approximation will gradually improve. As we will
show, this is not necessarily the case for the two-layer
model under consideration. Whether or not a low-order
system can at least qualitatively approximate the be-
havior of the full system depends critically on whether
or not the various significant modes of nonlinear in-
teraction inherent in the full system are included.

For barotropic models, an important form of non-
linear interaction is between waves and the mean shear
(Davey, 1980, 1981; Rambaldi and Mo, 1984; Tung
and Rosenthal, 1985). If this interaction is “truncated
away,” as in the model of Charney et al. (1981), the
solution of the truncated system will bear no resem-
blance to the full (converged) system in some respects.
This has been shown in Part I by Tung and Rosenthal
(1985) with regard to the presence of multiple equi-
libria.

In baroclinic models, the presence of vigorous self-
excited baroclinic instability greatly complicates the
forms of significant interactions that need to be incor-
porated. In models with stationary forcing at the large
scales and self-excited free waves at the synoptic scales,
the various forms of nonlinear interactions are the fol-
lowing: forced wave-mean flow interaction, free wave—

PRISCILLA CEHELSKY AND KA KIT TUNG

3285

mean flow interaction, forced wave—free wave and free
wave—free wave interactions.

- Charney and Straus (1980) truncated their spectral
expansion at 1x- and 2y-modes, resulting in a system
with 12 degrees of freedom. The only nonlinear inter-
actions present at this level are between the waves and
the mean flow. By retaining an additional x-mode in
the synoptic scale, the 2x-, 2y-system (with 20 degrees
of freedom) of RP allowed for the excitation of highly
unstable, synoptic-scale waves. The interactions af-
forded by this additional scale were found to greatly
alter the variability of the forced waves by introducing
a significant chaotic component in the time-dependent
behavior of these large-scale waves. What is left out of
the model, at the level of truncation adopted by RP,
are interactions among the free waves, i.e., waves not
directly forced by topography. It may at first appear
that as long as one is mainly interested in the behavior
of the large-scale forced waves this deficiency involving
the self-excited waves themselves would only be of sec-
ondary importance. What has not been taken into ac-
count is the important role played by the wave-wave
interactions among the intermediate and small scales
in providing a path for vorticity cascade to the small
scales, where significant dissipative sinks are usually
present (see Salmon, 1978; Orszag and Kells, 1980;
Marcus, 1981; Curry et al.,, 1984). Without proper
channels for energy and vorticity cascades, a truncated
system, such as that of RP, reverberates with interac-
tions between the directly forced large scales and the
baroclinically excited synoptic scales. This produces
exaggerated time-dependent variability in the large-
scale waves and a very large excitation in waves at the
wavenumber cutoff. Such behavior is referred to as
“spurious chaos.” This will be demonstrated as we
reexamine the hierarchy of truncated two-layer models.

a. The model of Charney and Straus (1980)

In CS, as in all subsequent models we will discuss
here, topographic elevation takes the form of one single
zonal wavenumber harmonic at the planetary scale,
the largest scale in the model:

h(x, y) = hy cos(x) sin(y).
Only this single zonal wavenumber is also kept in their
truncated solution. In the meridional direction, the first
as well as the second harmonic is retained. This 1x-,
2y-system has six eigenfunctions; the resulting system
of real ordinary differential equations is 12-dimen-
sional. :

Charney and Straus noted that if all of the second.
y-mode amplitudes were initially zero, then they would
remain zero for all time. Thus a simpler, 6-dimensional
system satisfies the 12-dimensional system of equations.
This more severely truncated model of 1x- and 1y-
modes incorporates the rudiments of forced wave-
zonal flow interaction. Including a second y-mode al-
lowed CS to determine the effects of an additional
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meridional mode; in particular, it enabled them to as-
certain the relevance of a low-order model (Ix-, 1y-
modes) to one of slightly higher resolution (1x-, 2y-
modes).

Charney and Straus solved for equilibrium solutions
of the (1x, 1y) subsystem, that is, equilibria of the largest
scale. For sufficiently strong thermal forcing, 6%, they
found a multiplicity of equilibrium solutions. For one
set of parameter values with 0 < 6% < 0.131, only the
Hadley solution existed. This purely zonal circulation
has no flow in the bottom layer and hence does not
interact with the topography. All wave components are
zero. At 0% = 0.135, corresponding to a 72°K temper-
ature difference across the channel at radiative equi-
librium, two more equilibria appeared. Since these so-
lutions have nonzero wave components they were
called wavey equilibria. A limit point was encountered
at 0% =~ 0.18 beyond which a total of five steady-state
solutions were found. This forcing corresponds to a
95°K temperature difference across the channel. At
this strong driving there exist both high and low zonal
index solutions. The low zonal index equilibrium is
stable with respect to first y-mode perturbations. As
the name suggests, it resembles a low-index blocking
state with a relatively weak zonal flow and a strong
wave component. The other four equilibria are unstable
to perturbations of the first y-mode variables.

The behavior of the six equation system is sum-
marized in Fig. 1. Figures 1a—f are the bifurcation dia-
grams of the six variables as a function of the radiative
forcing, 6%. The value of 6% ranges from 0.0 to 0.12,
or 0 K-100 K. The solid lines denote stable points,
and the solid and unfilled circles denote unstable points
of the stationary and propagating types of instabilities,
respectively. To facilitate later comparisons, the pa-
rameter values used here were those of RP’s demon-
stration case. As seen in the diagrams, there is only
one equilibrium solution, the purely zonal Hadley so-
. lution, for 0 < 6% < 0.0679. The Hadley solution is
stable in this range of 6% and describes the only type
of behavior that the (1x, 1y) model is capable of. At
0% = 0.0679 (i.e., 58°K temperature difference) there
is a bifurcation point. The Hadley solution is unstable
for 0% > 0.0679. The time-dependent solution now
converges to one of the two new equilibria. One of
these steady state solutions has a westerly flow in the
lower layer (referred to as the branch 1 equilibrium by
CS). The other has lower layer easterlies (referred to as
the branch 2 solution by CS). A limit point is encoun-
tered at 6% = 0.0833, or 72 K. For &% > 0.0835 there
are five equilibria. (These two new solution branches
were called the branch 3 and branch 4 solutions by
CS.) Charney and Straus pointed out that for suffi-
ciently strong thermal driving, only the branch 1, low-
index, blocking solution is stable to perturbations of
the first y-mode variables. This behavior is depicted in
Fig. 2 for 6% = 0.1. Figure 2 shows the various trajec-
tories followed by the system when it is perturbed about
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each of the five equilibria. This is a phase space plot
of the mean streamfunction wave amplitudes, Y versus
WL, where \&K = \l/K(vl,l) and ll/L = ‘I‘/L(l,l)' [Hereafter the
wavenumbers will be dropped from the largest scale
(1x, 1y) components. The variables ¢4, ¥k, ¥1, 04, 0,
0 now correspond exactly to the notation of CS.] These
are the cosx- and sinx-components, respectively, of the
largest scale waves, which are directly forced by to-
pography. The stable point to which all trajectories lead
is the low-index blocking state of CS; RP called this
equilibrium the 45° trough solution. (RP labeled three
of the equilibria according to their relative phase with
respect to the topography: 45° trough, 90° ridge, 30°
ridge. The other two equilibria were called the Hadley
and the near Hadley solutions.)

It should be noted here that the response of this
model can change, depending on the initial conditions,
on the parameter values, and on the number of modes.
Indeed, in the full CS model of 1x-, 2y-modes, all of
the equilibria are unstable to the second y-mode. The
time-dependent response leads to either periodic or
aperiodic behavior. Nonetheless, CS suggested that a
transition to blocking could occur as a result of insta-
bility. ’

b. The model of Reinhold and Pierrehumbert (1982)

Reinhold and Pierrehumbert extended the CS model
to include a second mode in x. With 2x- and 2y-modes
the dimension of the system of equations is now 20.
The addition of a second x-mode introduces highly
baroclinically unstable waves into the model, which
give rise to several new types of nonlinear interactions.
Charney and Straus did not address the importance of
the smaller scale free waves except to postulate that
they aided in the transition process from one equilib-
rium point to another. The new mechanism that RP
introduced proved to be of major importance.

Once again, the six-equation system described above
is a subsystem of this higher order model. That is to
say, if the amplitudes of all second x- and y-mode
components are initially zero, they will remain zero.
Thus the large-scale equilibria of the 1x-, 1y-mode sys-
tem also satisfy the (2x, 2y) model of RP.' However,
these large-scale equilibria turn out to be highly unsta-
ble to perturbations of the synoptic-scale, free waves.
In Fig. 3 we see the effect of perturbing the 20-variable
system from the Hadley equilibrium and integrating
for a period of 414 days. As in Fig. 2, this is a phase
space plot of the amplitudes of the topographically
forced, large-scale wave components, Y, and ¢, . For
this run all amplitudes, except for ¥4, and 6, (the Hadley
solution), were perturbed. This initialization is not
crucial, though. A slight perturbationi from the 45°
trough, low-index blocking solution produces a similar
result (Fig. 4). The effect of the self-excited waves is
visibly drastic. Where there was orderly behavior in
the (1x, 1y) model, there is chaotic motion in the RP



S
o T T T
3 - S 4
o {T -
. . * '3' .« o°
1
©
';g B 2°°°°=°o oo
®
oL -
o
s | | H .
0. 0.03 0.06 0.09 0.12
8,
| I
3. °
[Te .
[« . —
o .
»
O
[Te
<
Sk
1
1 S I
0. 0.03 0.06 0.09 0.12
N
f T f
0
(=]
Sr
;O [ ™0 0 o
. s
A, 3,
o0y o 0
]
sk ]
| | | .
0. 0.03 0.06 0.09 0.12
N

Q.12

0.09

0,
0.06

03

0.

0.05

By
0

-0.05

0.05

9,
0

—-0.05

. e, , , 3
T i
| 1 |
0.03 0.06 0.09 0.12
N
T T T
-
G
/'\.\'\.Q:OQ..:.B o o-—q
1 3
20,
4 | i
0.03 0.08 0.09 0.12
N
{ T T
-
L ) v!'o‘o.o.
E\f |
° : 3' o ° .
-
| ! | -
0.03 0.06 0.09 0.12
8,

FIG. 1. Bifurcation diagrams of the 6 (1x, 1)) model variables as functions of 8% . The solid lines denote stable points. The solid
and unfilled circles denote unstable points of the stationary and propagating types of instabilities, respectively. 1, 2, 3, 4 refer to

the branch number.



3288
© T T T T
o _
o
8
P 1
oo
]
S ]
o —— <.
| Y
©
< ]
S
I L | - ] !
~0.06 -0.03 0. 0.03 0.06

¥y

FI1G. 2. Phase space trajectories of components ¥, and ¥, of the
1x-, 1y-system when perturbed about each of five equilibrium points.
The equilibria are marked with a square.

model. The relevance of the large-scale equilibria is
not obvious here. .

Reinhold and Pierrehumbert postulated the exis-
tence of weather regimes. Weather regimes are periods
of “quasi-stationary behavior in the large scales asso-
ciated with organized behavior of the synoptic scales.”
Figure 3 shows the two basic regime states: the ridge
regime in the second quadrant and the trough regime
in the fourth quadrant. Blocking was theorized to be
one type of behavior observed in the trough regime.
In the (2x, 2y) model, RP found that the synoptic scale
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F1G. 3. Phase space trajectory of components ¥, and y; of the
2x-, 2y-system when perturbed from the Hadley equilibrium (time
steps 0-4000).
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FIG. 4. As in Fig. 3 except that the system is perturbed from the
45° trough equilibrium point.

disturbances both acted as a forcing on and maintained
the large-scale flow.

¢. Problems with the old models

There are, however, certain problems inherent in
the models of CS and RP. The RP model is often
viewed as a correction to the CS model. A second mode
in x was included above that of the CS model, which
meant that the spectral resolution of the RP model was
slightly higher. Reinhold and Pierrehumbert modified
the CS multiple equilibria theory to incorporate new
effects due to this additional mode. The attractor that
RP found was a drastic change from the response of
the CS model. Reinhold and Pierrehumbert thereby
showed that the synoptic waves play a major role in
the model response. It is important to ask at this point
whether all mechanisms are accounted for in the model:
Are there still some interactions missing? To be sure,
this leads to questions of convergence. In Fig. 5 the
response of the smallest scale of the RP model is plot-
ted. The amplitude of the smallest scale is actually
larger than that of the largest scale. Table 1 gives the
bounds of the components plotted in Figs. 3 and 5.
With such a large excitation in the smallest scales it is
evident that the model is not yet converging. Further-
more, as pointed out by Curry et al. (1984), large ex-
citations near the wavenumber cutoff are indicative of
spurious chaos. This suggests that keeping more modes
may cause the random motion to largely disappear.

The model equations have a quadratic nonlinearity.
From a physical point of view this supports several
types of interactions. The interactions may involve the
zonal flow, large-scale waves directly forced by topog-
raphy, and free waves, i.e., those not directly forced by
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FIG. 5. Phase space trajectory of the smallest-scale components of
the 2x-, 2y-system, Yxp,2 Versus ¥z27. The system was perturbed
from the Hadley equilibrium and integrated for 4000 time steps:

topography. As stated earlier, the (1x, 1)) model sup-
ports two types of nonlinear interactions:

1) the self-interaction of two waves forced by to-
pography modifying the zonal flow, and

2) the interaction between the zonal flow and one
wave forced by topography modifying another wave of
the same scale.

The RP model, which includes a highly baroclinically
unstable wave, gives rise to several new interactions.
These were observed to introduce a significant chaotic
component into the low-frequency response of the
model. .

At the 3x-, 2y-truncation level there are triad inter-
actions between the 1x, 2x and 3x waves, and all waves
interact with the topography (Yoden, 1983b). The effect
of this new triad interaction is impressive, as seen in
Fig. 6. The response of the system is very chaotic. The
circularity of the ridge regime and the linearity of the
trough regime are no longer present. Instead, there is
a highly random behavior, contained mainly in the
fourth quadrant, that spreads into the other quadrants.
It is evident that the third x-mode in some sense has
a destabilizing influence on the large-scale components.

TABLE 1. Bounds of the largest and smallest scale mean stream-
function components of the 2x-, 2y-system. The system was perturbed
from the Hadley equilibrium and integrated for 4000 time steps.

RP model

—0.0316< Y, <0.0321
-0.0398< ¢, <0.0327
‘0.0458 < ‘PK(2,2) < 0.0462
—0.0461 <57 <0.0458
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FIG. 6. Phase space trajectory of components Y, and ¢, of the 3x-,
2y-system (random initialization, 4000 time steps).

To further understand the importance of the inter-
action betwen the 1x, 2x and 3x waves, these triads
were removed and the system was integrated in time
as before. Figure 7 shows the results of this experiment.
The similarity of this phase plot to that of RP’s (Fig.
4) is quite striking both qualitatively and quantitatively.
Once again the trough and ridge regimes are present.
The 2x-, 2y-components are shown in Fig. 8. Figure
8a shows the response of the full 3x-, 2y-system, while
Fig. 8b demonstrates the case in which the triad inter-
actions among the 1x, 2x and 3x waves were sup-
pressed. Comparing these plots with Fig. 5 (RP model)
again illustrates that the no-triad case is almost identical
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FIG. 7. Asin Fig. 6 except that the triad interactions were removed.
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FIG. 8. Phase space trajectory of components Yk, and Y12 of
the 3x-, 2y-system (random initialization, 4000 time steps). (a) The
full 3x-, 2y-system. (b) The 3x-, 2y-system without triad interactions.

to the (2x, 2p) model: there is virtually no resemblance
to the full 3x-, 2y-system.

The (3x, 2y) model gives an excellent demonstration
of the role that certain nonlinear interactions play in
providing a path for vorticity cascades to the smaller
scales. Table 2 lists the bounds of the (1x, 1y), the (2x,
2y) and the (3x, 2y) components of the mean stream-
function from the time integrations of the (3x, 2y)
model. The results of the full (3x, 2y) model show an
overall decrease in amplitudes in going from the largest
to the smallest scales. This is in contrast to what was
found for the (2x, 2y) model (see Table 1). If we now
turn our attention to the bounds in Table 2 for the no-
triad case, we see that this case differs sharply from the
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TABLE 2. Bounds of the (1x, 1y), (2x, 2y) and (3x, 2y) mean
streamfunction components of the (3x, 2y) model. (a) The full model.
(b) The model without triad interactions among the 1x, 2x and 3x
waves.

(a)

—0.0466 < Yx <0.0442
—0.0457< ¥, <0.0395
—00398 < \//]((2’2) < 0.0383
—0.039 i< Il/uz,z) = 0.0393
_00173 < ‘PKB,Z) < 0.0 1 55
—0.0139 < Y135 <0.0147

—0.0302
—0.0387

< Yx <0.0304

< ¥ <0032
~0.0470 <Y <0.0463
—0.0464 <y <0.0468
O(— 107" < g2 < O(10710)*
O(—10719) < 735 < O(10~)*

* The error tolerance for the time integration was 10719,

full (3x, 2y) model but bears an uncanny resemblance
to the values in Table 1 for the (2x, 2y) model. The
importance of these triads in the (3x, 2y) model is now
clear: they are responsible for transferring vorticity
downscale. Without them the smallest scales attain
negligible amplitudes at best. :

Given the dramatic change in going from 2x to 3x
modes, one is inclined to ask what effect other modes
would have on the large-scale response. Figure 9 shows
the time-integrated response of the (4x, 2y) model. The
change in the large-scale response due to the fourth x-
mode is slight, at best. Including another mode in x
does not appear to have further destabilized the flow.

Efforts thus far have concentrated on the effects of
increasing the number of x-modes. It is interesting to
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FIG. 9. Phase space trajectory of components Yk and ;. of the 4x-,
2y-system (random initialization, 4000 time steps).
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FiG. 10. Phase space trajectory of components Yk and y, of the
2x-, 3y-system (random initialization, 4000 time steps).

see the effect of a third y-mode. Figure 10 is the result
of integrating the (2x, 3y) model. Again there is a dra-
matic difference between this response and that of the
‘RP (2x, 2y) model (Fig. 3). Not only have the regimes
disappeared, but the activity of the chaotic attractor is
more or less centered at the origin. This is in contrast
to the response of the (2x, 2y), (3x, 2y) and (4x, 2y)
models, where the activity of the large-scale is contained
mainly within the second and fourth quadrants. The
third y-mode clearly plays a significant role in the
model response as compared to the 2y-models. This
difference is probably related to the fact that the (1x,
1y) model, which is a subsystem of the (1x, 2y) and
(2x, 2y) models, is not a subsystem of the (2x, 3y)
model. Indeed, this is true of systems with three or
more y-modes. This raises more questions as to the
relevance of the large-scale equilibria to higher order
models.

We have seen that changing the resolution in x and/
or y can lead to significantly differing responses. How
such intermediate levels of truncation compare with
the “converged” model is a very important consider-
ation. Figure 11 shows the effects of including higher
numbers of modes in both x and y. Each model was
initialized with a perturbation of every variable. Thus,
a higher order model, which necessarily had more vari-
ables, was initialized with a greater number of nonzero
variables than a model of lower resolution. When the
modes are increased from (3x, 3y) (Fig. 11a) to (4x,
4y) (Fig. 11b) the features of the phase space plots
change drastically. Whereas the (3x, 3y) model response
is somewhat rounded and centered near the origin, the
(4x, 4y) attractor is concentrated in a relatively well
defined region in the fourth quadrant. The latter be-
havior persists for the (5x, 5y), (6x, 6y), (7x, 7y) and
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(10x, 10y) models depicted in Figs. 1 1c~f, respectively.
(Note that Fig. 11f, i.e., the plot of the (10x, 10y) model,
is a scatter plot, with each dot corresponding to one
day.) This result along with the fact that smaller scales
have smaller amplitudes (see Table 3) suggests that the
model has gualitatively converged at 7x- and 7y-modes.
We would like to stress that “convergence” in the pres-
ent paper is not used in the strict mathematical sense.
Rather, the term describes the point at which there is
no gross qualitative change in the behavior of the
model. Even though the attractor is stable, it is to be
expected that two trajectories with slightly different
initial conditions will differ significantly after some
time. Thus, we do not expect the converged (10x, 10y)
and the (7x, 7y) models to agree quantitatively. This
growth of errors simulates the unpredictable character
of the observed atmosphere.

Several runs were made where an artificial damping
term was included to see if the effect of the small scales
on the large scales can be simulated as a damping on
the intermediate scales. Figure 12 shows the results of
this experiment for the (2x, 2y) (Fig. 12a), (3x, 3y) (Fig.
12b), (4x, 4y) (Fig. 12c) and (5x, 5y) (Fig. 12d) models.
The artificial damping was of the form v,V%), with
damping time 1/, taken to be 80 days. The V° operator
acts to severely damp the smaller scales while having
little effect on the largest scale. The effective damping
time for the largest scale is 20 days. Compared with
the 1-day Ekman damping time used in this parameter
set, the effect of this new term on the large scales is
minimal. (A discussion concerning the parameter val-
ues adopted in this study will be taken up in the con-
clusion. A study using realistic parameters will appear
in Part III.) What is most striking in Fig. 12 is that
already at (4x, 4y) modes the response has settled down
to an attractor in the fourth quadrant.

It is interesting to observe that convergence in the
two-layer model appears to depend on a “proper bal-
ance” between two roles of the smaller scales. One role
for proper energy and enstrophy cascades between the
larger scales where the forcing is applied and the small
scales where dissipative effects are strongest (i.e., in
models with scale-selective dissipation. Note that even
in models without scale-dependent dissipation, a higher
resolution implies the presence of more scales at which
energy and/or enstrophy is dissipated.) In models
without such mechanisms, baroclinic effects tend to be
overemphasized.

A less severe form of artificial damping, namely, a
subgrid friction, was incorporated into the converged
model to test against the occurrence of ultraviolet ca-
tastrophes. For this case a V® damping was imposed
on waves of total wavenumber greater than or equal
to V72 [e.g., (5x, 7y), (6x, 6y), (7x, 7y¥)] and on the
smallest purely zonal components, ¥,47) and 6 47). The
results of this experiment, shown in Fig. 13, reaffirm
the conclusions previously drawn from the model
without subgrid friction.
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TABLE 3. Bounds of the smallest scale mean streamfunction com-
ponents of the 7x-, 7y-system. The system was initialized at a random
point and integrated for 4000 time steps.

(7x, 7y) Model

—4.89 X 107 < g1y <4.86 X 1074
~4.96 X107 <17, <4.25X 1074

d. Discussion

We have seen that, when both the destabilizing and
dissipative effects of the synoptic scales on the large
scales are incorporated, as in the converged case at the
7x-, Ty-level, the trajectory of the largest scale wave
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becomes less chaotic as compared with that obtained
in lower-order models. Furthermore, the phenomenon -
of “multiple weather regimes” disappears. In its place
there is only a single “weather regime,” an attractor in
the phase space of the large-scale waves. This attractor
of the converged system is actually located near, i.e.,
it is similar in amplitude and phase to, the single stable,
45° trough low-index blocking state found in the six-
component system of CS. It is remarkable how strik-
ingly similar the persistent solution of the converged
system, which incorporates the interaction among so
many self-excited waves, is to the stable equilibrium
of the truncated system, which excludes all scales except
for the directly forced large-scale waves.

No other attractors (persistent weather regimes) ap-
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FIG. 13. Phase space trajectories of components ¥ and ;. of the
7x~, Ty-system with subgrid friction (time steps 0-2000).

pear to exist. This is confirmed by performing several
integrations of the converged system with various initial
conditions. Examples are shown in Fig. 14. In all cases,
the trajectories converged to the same smgle attractor
in less than 20 days.

'. 4. Single versus multiple weather regimes

Only a single weather regime is found in our full
system in the same parameter range where RP found
two. This is the same parameter range where 5 equi-
libria were found in the 1x-, 1y-system. Of the five
equilibria, only one was found to be stable with respect
to (1x, 1y) perturbations, and it is that stable equilib-
rium (45° trough, low index) which closely resembles
the single weather regime in our converged solution.
Charney and Straus, however, did not attach particular
significance to the stability of the low-index solution,,
as it, along with the other four equilibria, was found
to be unstable to (1x, 2y) perturbations, Instead, CS
chose to treat both the low-index and the high-index
equilibria as “meta-stable,” with the instabilities play-
ing the role of initiating the transition from one to the
other equilibrium state.

The existence of only a single weather regime in our
(fully nonlinear) solution presents a problem with re-
gard to accounting for the observed variability of the
atmosphere. Statistically, our solution is always in a
low-index blocked state, with no persistent high index
regimes. Either the present model is deficient in rep-
resenting causes of variability in the atmosphere or
there are other parameter ranges where multiple
weather regimes can be found. The second possibility
will be examined in this section (and in Part III), while
the first will be pursued in sections 5 and 6.
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" Given the close resemblance between our solution
and the stable equilibria of the 1x-, 1y-system, we find
it helpful to organize our presentation using the bifur-
cation diagrams of the 1x-, 1y-system shown in Figure
1. In Fig. 15 results from the converged (7x, 7y) model
were superimposed on the bifurcation diagrams of the
(1x, 1y) model. This figure summarizes the responses
of the two model resolutions as a function of thermal
driving. For the converged model the markings are as
follows: the “@” denote stable Hadley solutions, the
“$” marks a Hadley-like solution, i.e., wave amplitudes
are negligible, and the vertical bars mark the bounds
of a 30-day running time mean of the respective at-
tractors. The markings for the (1x, 1y) model are as in
Fig. 1..

At relatively - low thermal driving, ie., 0 < 0%
< 0.0679, the I1x-, 1y-system has only a smgle equilib-
rium point, the Hadley solution, which is stable to first
x-, first y-mode perturbations. This is also the case for
the fully nonlinear model but in a smaller range of
thermal driving, 0 < 6% < 0.04. This difference in be-
havior is due to the presence of the 2x wave. For this
parameter set (more precisely, for n = 1.3) the only
baroclinically unstable waves are the 1x and 2x waves.
The 1x waves become unstable at 6% = 0.0679, while
the 2x waves require a much smaller shear for growth,
namely 6% = 0.038. For thermal driving in the range
(0.04, 0.07) the 1x waves are baroclinically stable. It is
because of the interaction of the unstable 2x waves
with the large-scale (i.e., 1x scale) waves that the 1x
waves attain small amplitudes in this range of driving
(Fig. 15¢c-f). In either model, no multiple weather re-
gimes were found for low values of thermal driving.

The (1x, 1y) model has a bifurcation point at 6%
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FIG. 14. Phase space trajectories of components ¥, and ¢; of the
Tx-, Ty-system initialized in different regions of phase space (time
steps 0-1000).
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= 0.0679, beyond which the Hadley solution is unsta-
ble. For 8% greater than this value, the 1x waves (in
both models) are baroclinically unstable. In the range
of moderate thermal driving, i.e., 0.0679 < 6% < 0.0835,
there are two stable wavy equilibria in the 1x-, 1y-sys-
tem, the branch 1 and branch 2 solutions. Notice that
both these branches are stable. Depending on the initial
conditions, the model will converge to one or the other
solution. These two points also have special stability
properties in the full system. However, only one, the
solution with a westerly flow in the lower layer (branch
1), develops into an attractor (and hence a weather
regime). Again, only a single weather regime is found.
That is, given any initial condition, the trajectory of
the large-scale wave is eventually attracted to this single
confined region in phase space. If the integration is
initiated sufficiently close to the branch 2 equilibrium
of the 1x-, 1y-system, the solution may linger at that
point for about two months before being drawn toward
the attractor with the lower level westerly. The signif-
icance of this (easterly) equilibrium is diminished by
the fact that in the full system a solution initiated at
any other point will not tend to it in later times. This
situation is shown in Fig. 16.

In the parameter range of high thermal driving, 6%
> 0.0835, there is only one single stable equilibrium
of the 1x-, 1y-system and one single weather regime in
the full system. In conclusion, we find only a single
weather regime for all values of thermal driving.

The bifurcation diagram of 64 versus 6% (Fig. 15b)
sheds much light on the importance of the branch 1
solution of the (1x, 1y) model. Recall that it is this
solution which bears close resemblance to that of the
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FIG. 16. Phase space trajectory of components yx and ¥, of the
7x-, Ty-system for 6% = 0.08. The model was perturbed from the
branch 2 equilibrium of the 1x-, 1y-system and integrated for 2000
time steps. The squares mark periods of 30 days.
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fully nonlinear model. The key feature of the branch
1 curve is its near linearity and, in particular, its almost
constant value. That is to say, the zonal shear does not
deviate significantly from its value at the bifurcation
point 8% = 0.0679. Recall that it is at this critical point
that the Hadley solution first becomes unstable in the
(1x, 1y) model. This is suggestive of an equilibration
mechanism. Namely, there is a critical shear, 8,, be-
yond which the Hadley solution is unstable. The system
then supports a solution that maintains the shear near
this critical level. This equilibration is-accomplished
through a growth in the wavy components of the flow
field. An increase in thermal forcing is offset by an
increase in eddy heat flux. The shear is thereby main-
tained at a nearly constant value. The dynamics gov-
erning the fully nonlinear model are more complex.
This process will be studied in detail in a forthcoming
paper. Here we offer a brief sketch. While it is true that
the 2x waves become unstable at a much smaller shear
than do the lx waves, the model solution does not
differ significantly from the Hadley solution in the
range of driving where the 1x waves are stable. By this
we mean that the largest scale components of the fully
nonlinear model exhibit a response that is very close
to the Hadley solution, in some averaged sense. It is
not until 8% > 0.0679 that the solution begins to deviate
significantly from the Hadley equilibrium. In this range
of driving the 1x waves are unstable. The 2x waves
become saturated, and the dynamics are governed by
the largest scale, (1x, 1y) waves. That is to say, increases
in 8% are mainly offset by increases in the largest scale
waves. The most unstable (2x) waves do not grow fur-
ther in amplitude. Thus the fully nonlinear model be-
haves much like the branch 1 solution of the (1x, 1y)
model, equilibrating about a critical value of zonal
shear. The main difference is the existence of a
“branch” of weather regimes instead of equilibrium
points. It is now not difficult to understand why the
branch 1 solution is the only solution that is stable for
all 0% > 0.0679 and why the only weather regime found
in the fully nonlinear model is so similar to the branch
1 solution.

The RP model is interesting because it was thought
to qualitatively model the atmosphere along with its
observed, seemingly unpredictable weather patterns.
An implication of the RP study is that the atmosphere
can switch weather regimes purely as a result of internal
nonlinear interactions without any change in “exter-
nal” forcing. This feature is absence in our full system,
implying that the time mean behavior of the large scales
cannot change significantly in the absence of changes
in external factors. How changes in “external” forcing
can affect the single weather regime will be discussed
in section 6. Next, in section 5 we shall discuss the
energetics of the two-layer model used so far. This will
point to a deficiency in its formulation that results in
the exclusion of an important “external” cause of low-
frequency variability of the large scales.
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5. Baroclinic versus barotropic energy conversion

The models discussed thus far share a common fea-
ture. They are formulated for a midlatitude channel
with rigid lateral boundaries. This produces a pecu-
liarity in the momentum budget and, indirectly, in the
energy budget of the model solution. As pointed out
by Rambaldi (1982), Killén (1983) and Tung and Ro-
senthal (1985, 1986), what is missing in the formulation
for the two-layer models is a momentum source for
the flow in the midlatitude region. In the real atmo-
sphere, the low-level flow north of 30°N has a net west-
erly momentum. From a diagnostic point of view, this
net westerly momentum budget is accounted for
mainly by the lateral flux of westerly momentum from
the tropics. (The lateral transport is accomplished in
part by the equatorward flux of easterly momentum
carried by the stationary waves, and to a lesser degree
by the northward advection of mean zonal momentum
by the Hadley circulation and the northward flux of
westerly momentum by the equatorial waves.)

In the absence of a momentum source for the two-
layer model, CS found the energetics of their system
to be drastically different from the energetics of the
barotropic model considered by Charney and DeVore
(1979) (hereafter referred to as CD), which did have a
momentum forcing in the form of ¢*. (Ironically, ¢*
was regarded by CD to be of “thermal” origin.) One
would expect the generation of stationary waves by
zonal flow over topography to be achieved via a transfer
of zonal kinetic to eddy kinetic energy, as was the case
in CD. Instead, for lower values of the driving.0%, CS
found such exchanges to be negligible. Furthermore,
for higher thermal driving, the small orographic ex-
change always draws energy from the wave (see CS Fig.
8). Charney and Straus thus concluded that “orographic
interactions play only an indirect role in the formation
of wavy equilibria: they are a catalyst; they permit the
equilibria to exist, but they do not directly support the
stationary waves. The latter obtain their energy from
the baroclinic conversion of zonal to eddy available
potential energy.” One inference from this result is that
the stationary waves, and hence quasi-stationary be-
havior in the large scales, are maintained by baroclinic
processes. This point is further advanced by RP, who
argued that periods of quasi-stationary behavior in the
large scales are integrally associated with an organized
behavior of the synoptic scales.

The above-mentioned peculiar manner of energy
transfer is a direct result of the absence of a momentum
source (¥*) in the formulation adopted for the two-
layer model. The absence of this source gives rise to
the “Hadley circulation,” a zonally symmetric, ther-
mally driven, zonal flow in the upper layer, with no
Sflow in the lower layer. The Hadley circulation is the
only equilibrium solution in the absence of baroclinic
. instabilities. This purely zonal flow is the solution de-
spite the presence of asymmetric topography in the
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lower layer. Forcing flow over the topography, e.g., in
the form of Y*, alleviates some of the problems of the
CS model. In particular, the basic state, which now
necessarily contains lower layer flow and a topograph-
ically forced wave, is more realistic.

In their thermally driven two-layer models, Roads
(1980a,b) and Yao (1980) force flow over the bottom
surface by writing the surface vertical velocity in terms
of the upper- and lower-layer mean streamfunctions.
This removes the awkward situation of no flow in the
lower layer by forcing flow over the topography. (Recall
that in the CS and RP models the flow over the bottom
surface is just the lower layer flow. If it is zero, then
topography has little effect on the model response.) In
the models of Roads (1980b) and Yao (1980) the purely
zonal Hadley circulation is no longer a solution. Flow
over topography necessarily gives rise to a zonally
asymmetric state. Yao (1980) found that in certain pa-
rameter regimes the maintenance of the stationary
waves was due mainly to the conversion of zonal to
(stationary) eddy kinetic energy, while in others it was
due mainly to the conversion of zonal to (stationary)
eddy available potential energy. In either case the con-
version of zonal kinetic to (stationary) eddy kinetic
energy is positive. Although Yao’s model is missing an
important physical mechanism, y*, he was able to ob-

" tain realistic energetics due to the bottom surface con-

dition he imposed.

Several studies of “‘topographic” instability in the
two-layer model of CS have challenged the claim that
this instability is due to topography. In the model with-
out topography, the instabilities are baroclinic. The re-
sults of a linear stability analysis show that all eigen-
values are complex, hence the name “propagating in-
stabilities.” In the presence of topography CS found
the eigenvalues of the unstable waves to be purely real.
These they named “stationary instabilities” or “oro-
graphic form-drag instabilities.” Buzzi et al. (1984;
hereafter referred to as BTS) analyzed a y-independent
form of the CS model, concluding that two different
types of topographic instability existed: one of an es-
sentially baroclinic nature and the other of a mixed
barotropic-baroclinic nature. The former is found in
models with zonally symmetric basic states such as the
CS model. The latter is present only in models with
zonally asymmetric basic states, examples being the
barotropic model of Charney and DeVore (1979) or a
two-layer model with zonal momentum forcing (y*).

Yoden and Mukougawa (1983) and Mukougawa

(1987) studied the energetics of ““topographic instabil- -
ities” in the two-layer model. Their findings supported
those of BTS. The energetics show that in the absence
of a basic state with lower-layer flow, the topographic
effect is such as to act as a sink for, not a source of,
eddy kinetic energy. Thus this instability is actually
baroclinic, not topographic, as its energy source is the
available potential energy of the zonal flow. On the
other hand, in the presence of an asymmetric basic
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FI1G. 17. The dependence of the stability of the Hadley equilibrium
of the Ix-, 1y-system on topographic height.

state, the perturbation derives its energy mainly through
the barotropic conversion of zonal kinetic to eddy ki-
netic energy. For this case the baroclinic energy con-
version is negligible, and the instability is topographic.

In the absence of ¢*, the Hadley circulation is the
only equilibrium of the (1x, 1y) system for values of
thermal driving 8% , below the critical value for the onset
of baroclinic instability. By drawing energy from the
thermally driven Hadley solution, baroclinic instability
induces flow in the lower layer, which then interacts
with topography, giving rise to (a more properly
termed) topographically modified baroclinic instability
and wavy equilibria. Figure 17 shows the stability of
the Hadley equilibrium as a function of topographic
height. Topography actually stabilizes the flow by rais-
ing the value of the critical thermal driving, % .ica,
beyond which the flow becomes unstable. It is also
noteworthy that for low topography, the first instabil-
ities to appear as 6% is increased beyond its critical value
are propagating instabilities (i.e., traditional baroclinic).
For higher 6%, all instabilities are stationary (i.e., to-
pographically modified baroclinic instabilities), while
for still higher 6%, all instabilities are once again prop-
agating. For moderate and large values of topographic
height, the first instabilities to appear are stationary,
followed by the propagating type.

It is now not difficult to understand why in this type
of thermally driven two-layer model the main process
of energy conversion responsible for maintaining the
wavy equilibria is baroclinic. The source of energy is
the zonal available potential energy, which the topog-
raphy cannot influence until the lower-layer flow is
initiated through baroclinic instability. This situation
changes when a momentum source is introduced into
the model. Topographic disturbances directly forced
by the lower level flow are then capable of converting
zonal kinetic energy to eddy kinetic energy. This further
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diminishes the role played by the transient synoptic
disturbances.

6. Weather regimes in the presence of momentum
driving

The lateral flux of westerly momentum from the
tropics is treated, in the present model, as a purely
zonal barotropic forcing,

¥* =y V2 cos(y).

This forcing thus appears only in the equation for 4,
ad
3, ¥4 = ki + other terms.

Here £ is a frictional coefficient taken to be the same
as the Ekman friction parameter.

In Fig. 18 the behavior of the stable equilibrium
point of the (1x, 1)) model is depicted for y% ranging
from 0.0 (no driving) to 0.10 (16 m's™! driving). As
before, this is a phase plot of the directly forced large-
scale wave components, Y, versus ¢, . Note that both
the phase and the amplitude change as ¢* is increased.
The phase ranges from leading the trough of the to-
pographic profile by 45° to lagging the trough by 45°.
The amplitude of the response steadily increases with
V% . Figures 19a-d show a similar response of the 7x-,
Ty-system attractor to the barotropic forcing. These
are plots of the Yk versus ¥, phase space trajectories
for time steps 0 to 2000 (207 days). All runs were in-
itialized at the same point. There are several noteworthy
features. First of all, there is only one stable attractor.
It took each run less than 35 days to reach their re-
spective attractors. This is evidenced by the ‘T marks,
which denote periods of 10 days. The fact that the
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F1G. 18. Behavior of the stable equilibrium point of the 1x-, 1y-
system as Y is varied. From right to left: y% = 0.0, 0.02, 0.05, 0.10.
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10 days.

model quickly settles into the attractor underscores the
importance of the single weather regime. Secondly, we
see the same pattern of phase shift and increasing am-
plitude as with the (I, 1) model. These last features
can be better grasped in Fig. 20. Figure 20 is a con-
glomeration of Figs. 19a-d, where 30-day running time
means of time steps 500-2000 were calculated. As in
Fig. 18, ¥ increases from right to left. It is remarkable
how consistently similar the stable equilibria of the (1x,
1y) model are to the attractors of the (7x, 7y) model.
It is apparent here that weather regimes in this model
can be changed in response to changes in external forc-
ing. This mechanism appears to be more viable than
the organization of synoptic scales in bringing about a

change. Not only the momentum driving, ¥, but also
the thermal driving, 6%, can alter the weather regime.
Figures 21a and 21b are plots of ¢ versus ¥ for 6%
=0.02 (17 K), ¢% = 0.05 (8 m s™!) and 6% = 0.05 (27
K), ¥% = 0.05 (8 m s7!), respectively, for the (7x, 7y)
model. Recall that without momentum driving (V%
= (), only the purely zonal Hadley solution would exist
at these values of #%. The presence of % forces flow
over topography. This induces a wave, no matter how
low 6% is. In particular, at relatively low values of ra-
diative forcing (e.g., 20 K- 30 K temperature difference
across the channel) there is a wavy response manifested
here by ¥x # 0, ¥, # 0. At this lower thermal driving,
the high frequency components are less active. The
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effect of drastically reducing the baroclinicity (from
0% = 0.1 to 8% = 0.05, and 0.02) is clear. The high-
frequency components have a lot less energy. This
translates to less variability in the low-frequency re-
sponse.

7. Conclusion

It is not the intent of the present work to prove that
multiple equilibria or multiple weather regimes do not
exist. Rather, we studied the effects of full nonlinearity
on the time-dependent response of the two-layer model
for a given set of parameters. Under these circum-
stances only one weather regime was found.

By incorporating the destabilizing effect of the syn-

optic-scale waves but not the dissipative effect of the
same waves, intermediate truncation levels tend to yield
solutions drastically different from the fully nonlinear
solutions. It was demonstrated that lower order models
may exhibit “spurious chaos.” These models do not
have the proper channels through which energy can
cascade upscale and vorticity can cascade downscale.
The result is a highly chaotic solution that has little to
do with the fully nonlinear, converged solution. Much
of the chaos disappears when a sufficient number of
modes are kept in the spectral expansion of the model
variables. The conclusion, based on intermediate trun-
cations, that the transient synoptic-scale waves are of
primary importance not only in affecting weather at
the synoptic scales, but also in inducing significant
variability in the large scales, is not supported by the
solution of the original governing partial differential
equations. Although some high-frequency variability
is inevitably induced by the synoptic scales through
wave-wave interaction, the degree to which the low-
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FIG. 20. 30-day running time mean of Figs. 17a-d from right to
left: 0% = 0.0, 0.02, 0.05, 0.10. (Time steps 500-2000.)
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FIG. 21. As in Fig. 20 except that ¢} is fixed at 0.05 and 6% is
varied. (a) 6% = 0.02, (b) 6% = 0.05.

frequency variability of the large scales is governed by
the high frequency variability of the synoptic scales is
put into question by the present study.

It is remarkable how similar the large-scale wave
components of our solution are to those of the 1x-, 1y-
system, which excludes all effects of the small-scale,
transient waves. The large-scale response of the fully
nonlinear model follows the branch 1 solution curve
of the (1x, 1y) model as a function of thermal forcing.
This was linked to an equilibration mechanism and to
the dominance of the largest-scale waves for large values
of the forcing.

We further noted a peculiarity in the formulation of
most existing two-layer models that tends to exaggerate
the role of baroclinic processes. This problem is alle-.
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viated by incorporating a barotropic, momentum forc-
ing, Y%, into the model. Without this forcing the ener-
getics of the model are somewhat awkward: the con-
version of zonal kinetic energy to eddy kinetic energy
is negative and the energy source for the stationary
waves is solely the available potential energy of the
flow.

The parameter values chosen for this study were
those of RP’s demonstration case. This was done in
order to facilitate comparisons with the work of RP.
However, with these parameters, the model atmosphere
is probably unrealistically damped [viz., kK = 0.05 (1
day Ekman damping time), k' = 0.01 (10 day damping
time at the interface), #” = 0.045 (2.2 day Newtonian
cooling time).] Therefore, based on this study, we re-
frain from drawing conclusions regarding the earth’s
atmosphere. Reinhold and Pierrehumbert chose this
set of parameters in order to obtain an earthlike re-
sponse. Longer damping times resulted in absurd east-
erly flows in the lower layer of their model. In a fully
nonlinear model with momentum forcing, this is no
longer a problem. In Part IIl, we investigate the model
response under more realistic parameter regimes.
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APPENDIX A

Formulas for Computing the Interaction Coefﬁcients
and the 8-term Coefficients

As described in section 2, the eigenfunctions, F;, of
the spectral expansion fall into three categories:

1) fary = V2 cos(P;y) _
2) fxaipy = 2 cos(M;x) sin(P;y)
3) fre,py = 2 sin(H,;x) sin(P;y)

where P;,= 1,2, +++and M;, H;= 1,2, - - -, In this
context we supply general formulas for the interaction
and G-term coeflicients.

1. Interaction coefficients and their general formulas

The formal definition of the interaction coefficients
is ¢y = FiJ(F;, Fy), where the overbar denotes a hori-
zontal average. This algebraically tedious formula,
which equals zero for most combinations of eigen-
functions, can be greatly simplified. The simple for-
mulas are presented below. Only three combinations
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of eigenfunctions may yield non-zero interaction coef-
ficients.

(l) f;q(pi s fKU"Ij,Pj) and fL(Hk,Pk) determiﬂe the coef-
ficient

-2V2 ( B1* B2
\BI*-1 B2*-1

X 6(M;— HNP; + P+ Py)

Capyka, P)LEPY =

where P+ P P.—P,
B1 E"—R_—’, B2 E—"E—J,
=1 if r=0
= otherwise, and
Mry=1 if risodd
- =0 otherwise.

(ll) fK(M,Pi)afK(Alj,Pj) and ﬁ«(Hk,Pk) determine the coef-
ficient

Cra, poxung, PyL Py = S 1{8(M; — Hy— M))
X o(P;— P+ P)— 6(M—H1;—M)B(P,-+Pk—1’j)
+ [0(H —~ M+ M)+ 8(H, — M;— M))]
X 8(Pi+ Pi— P)} + S2{6(M;— Hy— M)
X8(P;— Pr— P) + [6(Hy— M;— M)
+06(M;+ Hi~ My))[o(P;— P+ P)
— §(Pe— P+ P)l}

where S1 = —(PcM; + P;Hy)/2 and S22 = (PM;

— PHp)/2. )
(1) Szq,pys Sriaypy and frgn,py determine the coef-
ficient

Cr, Py pyLipy = S3{[8(Hy— H;— H))
— 0(Hy— H;+ H))o(Pr.+ P;— P)+ 8(Hy+ H;— H))
X 8(Px— P+ P) — 8(Hy+ H;— H))o(Pr— P;— P)}
+ S4{8(H+ H;— H)3(Px— P;— P+ [§(Hx— H;+ H)
— 8(Hix— Hj— H)][6(Py— P;— P)
— (P — P+ Py)]

where S3 = (PyH; + P;Hp)/2 and S4 = (PH;
— P Hy)/2.

The above formulas generate interaction coefficients
unique to within the possible permutations. (Recall
that, in the old notation, ¢ = —cji = ¢y = Cjii.) For
example, consider the only nonzero interaction coef-
ficient in the 1x-, 1y-mode model. It is a case (i) coef-
ficient:
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Cayka,nLa,ny = CK(l,l)L(l,l')A(l) = CLa,namka,1)
= _CA(I)L(I,I)K(I,I) = —CK(I,I)A(I)L(I,I)
= _CL(I,I)K(I,I)A(I)= "8‘/5/(377)-

- 2. B-term coefficients
The -term coefficients are defined by
bij= FoF;/ox.

Although this formula is not as tedious as the definition
of the interaction coefficients, it can be reduced to a
trivial form. There is only one combination of eigen-
functions that results in nonzero b;:

(l) F, KM, P) and F, L(H;,P) determine the coefficient
by, Py, py = Mid(M;— H)S(P;— P).

This relation, together with the fact that b; = —by,
determines all nonzero S-term coefficients. For ex-
ample, the only nonzero 3-term coefficient in the 1x-,
1y-system is

bxa,nLa,n=—bra,nka,n= 1.

APPENDIX B .

Numerics

1. Time integration

The spectrally decomposed model equations form
a nonlinear system of first-order ordinary differential
equations in time. The equations were programmed
in double precision and two packaged integration rou-
tines, ODE by Shampine and Gordon (1975) and
DO02BDG of the NAG Library, were tested against each
other. Both codes determined that the equations were
not numerically stiff. The time-dependent calculations
in the present work were run using Shampine and
Gordon’s ODE code. .

Data was recorded at intervals of 2.5 hours (or 1.0
in nondimensional time). Both ODE and the NAG
routine use implicit methods, internally decreasing the
integration step size until the desired accuracy is
reached. We used a local relative and absolute error
tolerance of 107'°, Separate tests were run using the
explicit Lorenz 4-cycle scheme. That routine was found
to be inaccurate. )

2. Bifurcation diagrams

The bifurcation diagrams of the 1x-, 1y-mode, six-
equation system were generated by the continuation
code of Rheinboldt and Burkardt (1983a,b). This code
uses the pseudo-arc length method to trace bifurcation
branches.
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3. Stability of the large-scale equilibria

The stability of the large-scale [i.e., (1x, 1y) model]
equilibria to perturbations in the first x- and y-modes
was determined by performing in a linearized stability
analysis. The eigenvalues of this matrix were calculated
using the NAG Library.
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