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ABSTRACT

A theory is presented that attempts to explain the tropospheric blocking phenomenon caused by
the resonant amplification of large-scale planetary waves forced by topography and surface heating.
It is shown that a wave becomes resonant with the stationary forcings when the wind condition
in the lower atmosphere is such that the phase speed of the wave is reduced to zero. The resonant
behavior of the wave in the presence of Ekman pumping and other damping mechanisms is used to
account for the time amplification of the pressure ridges that is an essential part of the blocking
phenomenon. This same time behavior also allows the waves to interact with the mean flow in the
stratosphere, possibly initiating major sudden warmings. Such a situation was, in fact, assumed by
Matsuno (1971) in the lower boundary of his stratospheric model of sudden warming.

The basis for reviving the classical normal-mode theory (when faced with the difficulties associated
with the zero-wind line) is presented in Part III. The present Part I serves as an introduction to
the three-part series and discusses, with the aid of a simple mathematical model, the relevant physical
mechanisms involved. Though the theory of resonant Rossby waves is a classical one, the contribu-
tion of the present papers is in pointing out that the theory offers, despite the difficulties and
controversies associated with it, a viable mechanism that may be the cause of some prominent

VoLuME 107

physical phenomena in the atmosphere.

1. Introduction and discussion

This is the first of a series of papers devoted to a
study of stationary long waves in the atmosphere.
Despite the importance of these waves in influencing
large-scale weather and climate, no consistent
theory exists that can satisfactorily account for
many aspects of the wave behavior. One of the im-
portant but as yet unresolved questions concerning
the stationary waves is: Why do certain large-
scale waves amplify as they are observed to do
during some winters?

The sévere winter conditions experienced in the
United States in 1977 are believed to be the results
of a stationary high-pressure system which ampli-
fied near the east coast of the Pacific. The situation
in the winter of 1977, though unusual, is not unique.
A similar weather pattern also occurred during a
previous record-breaking cold winter in 1963, when
the United States experienced numerous outbreaks
of cold arctic air with accompanying heavy snows
and blizzards in the Northeast and persistent
droughts in the West, while Alaska was abnormally
warm. The weather patterns of these two ‘‘ab-
normal’”” winters in the United States are strikingly
similar and both can be attributed to the same
cause—a persistent and ‘‘enormously amplified
ridge in the eastern Pacific’” (O’Connor, 1963). The
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blocking ridge, as it is called by meteorologists, is
an amplified stationary high-pressure center that
blocks the normal passage of the westerlies and the
accompanying weather. When a block forms near
the west coast, it diverts to the north the warm
moist air from the Pacific, causing drought in the
western states and high temperatures in the arctic
region, while the anticyclonic flow associated with
the high guides cold polar air to the south over
most of the states east of the Rockies. Sometimes
the jet “‘meanders’’ as far south as Florida, caus-
ing citrus damage, as reported for both winters.
Simultaneously with the large-scale blocking ac-
tivity in the troposphere, a sudden warming was
observed in the stratosphere in both winters. Ampli-
fying stationary waves were recorded to precede
the warming events. Sudden warming is a strato-
spheric phenomenon that occurs during some
winters in high-latitude regions. It evolves in the
darkness of the polar night with no apparent ex-
ternal source of heating. Yet in a major warming
event the mean temperature of the stratosphere is
increased at a spectacular rate of up to 10°C day~!
and in less than a week the normal north-south
temperature gradient (with warmer temperatures
near the equator and colder ones at the North
Pole) is reversed. The strong westerly circumpolar
Jet stream that existed before the warming is com-
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pletely destroyed and sometimes even reverses its
direction.

The simultaneous occurrences of both phenomena
are probably not mere coincidences. It seems that
during every sudden warming occurrence in the
stratosphere, a large-scale -blocking ridge can al-
ways be found‘near the surface level. Such coinci-
dence has been noted previously for some cases by
researchers studying the sudden warming phe-
nomenon (Murakami, 1965; Julian and Labitzke,
1965; Labitzke, 1965). That it seems to be true, in
general, can be verified by checking the weather
records for the periods when a major warming
is taking place in the stratosphere.

More than one blocking high can sometimes occur
simultaneously over different regions. For example,
simultaneously with the blocking activity over the
North American continent another ridge prevailed
and amplified between Iceland and Britain during
January 1963. The disturbance roughly resembles a
wavenumber 2 pattern with two highs and two
lows around a longitude circle. In the stratosphere
the warming event that was taking place at the same
time also had a wavenumber 2 character (Finger
and Teweles, 1964).

There are also years when pronounced blocking
occurrences in the troposphere are not accompanied
by warming events in the stratosphere. An example
is the winter of 1968-69 when ridges amplified
simultaneously over the United States, Europe
and Asia (a wavenumber 3 pattern), while no
significant warming in the stratosphere was re-
corded. In fact, it is well known that blocking
activity in the troposphere is a much more frequent
phenomenon and can occur during all four seasons
(Namias, 1964; Sumner, 1954; Brezowsky et al.,
1951; Rex, 1951). The disturbance can often have
a higher wavenumber character. The absence of high
wavenumber disturbances in the stratosphere can
be attributed to the ‘‘filtering”’ effect of the atmos-
phere, which traps the shorter wavelength disturb-
ances and prevents them from reaching the strato-
sphere (Charney and Drazin, 1961). The higher
frequency of occurrence of the blocking phe-
nomenon, as compared to the stratospheric warm-
ing events, may suggest that it is easier to excite the
shorter wavelength disturbances than the larger ones.

In this paper we present a theory that attempts to
explain biocking phenomena as caused by the
resonance of planetary-scale waves forced by topog-
raphy and land-sea differential heating. Possible re-
lations to sudden warmings are also discussed. The
reasons for focusing our attention on resonant
waves instead of other mechanisms are twofold:
first, it is generally observed that preceding the on-
set of warmings, planetary waves amplify in time in
the stratosphere and these amplifying waves can
be traced all the way down to sea level (Muench,
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1965). Second, in order for the wave disturbances
to alter the mean flows and temperature, wave-
mean interactions must take place. But it is well
known that no such interactions are likely if the
waves are periodic or steady (Dickinson, 1969).
This fact, however, does not preclude the possibility
that the phenomena are caused by unstable waves,
but previous attempts at explaining the warming as
caused by barotropic and baroclinic instabilities of
the stratospheric jet are largely unsatisfactory.
There is some indication that the jet is stable on the
time scales relevant to the problem (Mclntyre,
1972), and for the cases where the necessary condi-
tions for instabilities seem to have been met, it is
found (Charney and Stern, 1962) that the strato-
spheric jet stream in the Southern Hemisphere
should be more unstable by the same criteria, and
yet no major warming events have been observed
there. Indeed, as we will show in a separate paper
where the necessary and sufficient conditions for
instability are derived, the polar night jet is not un-
stable to stationary disturbances.

One major difference between the Northern and
Southern Hemispheres is the degree of inhomo-
geneity of the earth’s surface. Large-scale topo-
graphical disturbances are generated by wind blow-
ing over major mountains and oceans. A large
component of the energy of the disturbances lies
in the wavenumber 1 and 2 regime. Cooling over
land masses and warming over the oceans are also
capable of producing large-scale disturbances of
comparable magnitude, with possibly a difference in
phase compared to that of topographic origin. The
wave disturbances generated by the combined ef-
fects of topography and differential heating propa-
gate their energy upward and, during winter when
the mean wind is favorable for vertical propagation,
the longest waves can penetrate into the strato-
sphere. It is generally agreed that the distortions
of the circumpolar jet which are observed in the
stratosphere during winter are due to the stationary
long waves propagated up from below.

That the warming events in the stratosphere are
probably caused by waves generated in the tropo-
sphere is revealed by several studies of the ener-
getics of the stratosphere. It is found that preceding
the warming events, unusually large fluxes of wave
energy are transferred to the stratosphere from be-
low and represent a main source of energy for the
whole event (Reed et al., 1963; Murakami, 1965;
Muench, 1965; Julian and Labitzke, 1965; etc.).
Early researchers were misled by the apparent
downward propagation of the warming from above
the highest observational level to search for an upper
energy source. Recent observational studies show
that the initial phase of warming probably occurs
simultaneously at all levels, but the effects begin
to be more pronounced at higher levels, probably
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due to the lower density of the atmosphere there.
Moreover, numerical simulations, notably that due
to Matsuno (1971), have been rather successful in
reproducing many of the observed features of a
warming event by specifying an observed wave forc-
ing at the bottom of the stratosphere as a boundary
condition. These experiments confirm the notion
suggested by observations that the warming is forced
by waves from below the stratosphere.

As pointed out by Matsuno, an important feature
of the forcing function that he used (based on the
observations of Hirota) is that of wave amplification
preceding the onset of warming. It is the con-
vergence of heat and momentum fluxes of this
‘“‘transient’’ wave that is responsible for producing
an induced meridional circulation through which
the Coriolis torque acts to decelerate the westerly
jet. Since the waves have larger amplitudes at greater
heights due to the density effect, the deceleration
of the mean flow is greatest at the higher levels,
where the jet is first destroyed. The appearance
of an easterly flow above the westerly produces a
critical level where the mean wind speed matches
the phase speed of the (stationary) wave. Here the
drastic dissipation of the easterly momentum of the
wave is responsible for the suddenness of the
destruction of the westerly jet and the accompany-
ing large increase in temperature. The easterly re-
gion descends as the westerly wind is destroyed.
This sequence of events would not have been
possible without the initial amplification of the wave
present at the lower boundary (300 mb) of Matsuno’s
model. Since the presence and the behavior of this
wave has not yet been accounted for, sudden
warming remains in this sense an unexplained phe-
nomenon, though Trenberth (1973) produced some
timé amplifying wave features in his nonlinear
numerical model with annual heatings. Why certain
waves are selectively amplified preceding a warming
event seems to be a key question in the search for
the real cause of the phenomenon.

In our theory of resonant Rossby waves, wave
amplification occurs when the flow in the atmos-
phere is such that free-traveling Rossby waves of a
certain zonal wavenumber and meridional structure
are rendered stationary with respect to the surface

of the earth, and hence can resonantly interact with’

the forcings of topography and differential heating
which are stationary. Such a mechanism seems to be
tentatively supported by recent satellite observa-
tions (Quiroz, 1975) showing that preceding the
warming the traveling wave system slows down and
finally coalesces with the standing wave. The
resultant system then amplifies, as indicated by its
increase in radiance. When a planetary wave be-
comes resonant, it manifests itself as an amplify-
ing block in the troposphere. and simultaneously
as a cause for the sudden warming in the strato-
sphere where the temperature and flow can be al-
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tered more drastically due to the diminished
density. The persistence of the blocking is deter-
mined by how long the mean flow remains near the
state that makes a particular wave resonant. On
the other hand, once a critical level is produced
through the interaction of the amplifying wave with
the mean flow, the further evolution of the warm-
ing event is no longer dependent on the waves
being resonant. That blocking is a more frequent
phenomenon can be accounted for by the fact that
shorter waves (with zonal wavenumber 3, 4, 5 and
up) are easier to resonate. But these waves are
trapped in the tropospheré and thus are not capable
of influencing the circulation in the stratosphere.
The theory will show that the resonant conditions
for the longest waves (with wavenumbers 1 and 2)
cannot be met by the climatological state of the
winter atmosphere; this accounts for the infre-
quency of the sudden warming phenomenon. It
takes abnormal conditions both in the troposphere
and the stratosphere to make these waves resonant.
Since a major part of the forcings for the planetary
waves is in these long scales (Eliasen and Machen-
hauer, 1965), the long waves, once excited, would
produce pronounced disturbances with amplitudes
larger than those produced by the shorter waves.

What are the ‘‘abnormal’’ conditions for the
atmosphere preceding a warming event? From the
limited observations available it seems that wester-
lies in the stratosphere generally reach unusually
high intensities before a warming. Johnson (1969)
reports a 5S-day mean wind speed of nearly 60 m s™!
at the 10 mb level along 60°N preceding the 1967—-
68 warming, a speed 25% greater than the speeds for
the same period during any of the ‘‘normal years”
from 1964 to 1966. Preceding the 1963. warming,
winds exceeding 200 kt at the 10 mb level extend-
ing from middle latitudes northward to the arctic
are reported by Finger and Teweles (1964). Four
days before the 1957 warming it is reported that
the wind above Goose Bay reached 225 kt at the 28
km level (Craig and Hering, 1959). Increase in the
stratospheric wind speed per se is not necessarily
a favorable condition for the resonance of long
waves. In order for resonance to occur, the winds
in the stratosphere have to be (among other things)
such that these long waves become evanescent
above the middle stratosphere. The reason for this
condition is physically clear. If the waves are not
trapped, their energy will be radiated away to the
top of the atmosphere and no buildup of wave
energy necessary for resonance is possible. If the
waves become evanescent at too high a level, the
increased damping of the waves at high altitudes will
dissipate the waves and therefore also prevents their
resonance.

Simple analytic studies (Charney and Drazin,
1961) suggest that waves are trapped by strong
westerly winds. This is not always true in the real
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atmosphere where vertical shears of the mean wind
seem to play a rather important role in determin-
ing whether a wave is evanescent or propagating.
It can be shown that positive shears such as those
found at the base of the jet maximum enhance
the propagability of a wave, while negative shears,
found usually above the jet cores, tend to make a
wave evanescent. The long waves under considera-
tion would be more effectively trapped if the strato-
spheric jet maximum were to descend to the middle
stratosphere, so that there would exist an extended
region of negative shears above approximately the
40 km level. Is this the condition that pervails before
the warmings? No definite conclusion can be drawn
from the limited stratospheric data available. The
increase in wind speeds recorded for heights below
30 km can be interpreted either as due to the pres-
ence of the jet maximum at around 35-40 km, or just
as a manifestation of a general increase in wind
strength at all heights while the jet core stays at
the usual position of around 65 km. More observa-
tions are needed to distinguish between these two
cases. However, there does exist a piece of data
that seems to indicate that the descent of the jet is
the case. Quiroz et al. (1975) recently have found
that a couple of days before the warming event of
1973, the jet core descended to the 35 km level
along the 90°E meridian, with the wind strength at
the core exceeding 100 m s™'. Zonal averages of
the data for the same data based on measurements
at four meridians show a weaker jet (~40 m s™?),
but the position of the core remains at the 35 km
level. We have found that the negative shear region
above the jet core traps the waves to below 35 km.
This appears to be a favorable condition for
resonance.

As mentioned above, the wind condition in the
atmosphere appears to determine whether a certain
wave becomes resonant. When a wave does be-
come resonant, the amplitude that it can attain
through resonant growth is determined by the
amount of damping that is present and also by the
magnitude of the forcing in that particular wave
component. In an inviscid linear model, a resonant
wave would grow linearly in time to an infinite
magnitude. It is shown in the present study that in
the presence of damping mechanisms, such as
Ekman pumping, Newtonian cooling and various
diffusions, the growth of a resonant wave is no
longer linear in time and the amplitude gradually
tapers off to a maximum value determined by the
shortest damping time scale in the atmosphere.
It is found that the amount of wave amplification
usually observed before a large-scale blocking event
is consistent with an Ekman pumping scale of about
5-6 days.

If the forcings for atmospheric waves were to
remain the same from year to year, then one could
reasonably expect that the maximum amplitude
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attainable by a wave through resonant growth to be
about the same during sudden warming winters.
This turns out to be true for a majority of these
winters. However, there remain a few highly ab-
normal winters (the winter of 1977 is among them)
throughout which greatly heightened wave ac-
tivities are observed (Quiroz, 1977, and private
communication). Not only do waves attain higher
maximum amplitudes during the ‘‘resonant’ epi-
sodes (there can be a number of these wave ampli-
fications during a single winter) but even the general
background wave amplitudes are larger than in
other winters. This we can attribute only to an in-
crease in the wave forcings during that particular
year. The topographic forcings are not expected to
change from year to year because the continental
elevations do not change and the averaged westerly
surface wind magnitudes do not seem to have
much variability from winter to winter. It may be a
different story for the thermal forcings arising from
land-sea temperature contrasts (sea warms and land
cools the air during winters). It is known that large
ocean warm currents occasionally meander and thus
change the sea surface temperature distribution.
During late fall and winter of 1976-77, it is re-
ported that the waters off the west coast of North
America were abnormally warm, while over a large
area in the central and northern Pacific the sea sur-
face temperature was abnormally cold (a 3°C
anomaly was recorded). How this abnormal sea sur-
face temperature distribution affects planetary
waves is still unclear. Early studies of Sankar-Rao
(1965) and Sankar-Rao and Saltzman (1969) point
to the important role played by the differential
heating. They showed with their two-layer models
that without the heating, the forcing due to eleva-
tions of mountains and oceans alone produces
planetary waves with amplitudes close to the ob-
served, but the locations of the highs and lows are
out of phase compared to the real atmosphere.
Only when the effect of differential heating is in-
corporated did they obtain reasonable agreement
in the phase. A recent work of Bates (1977) also
points to the sensitivity of the atmosphere to the
location of the surface heating. In this paper we com-
pare the observed wave amplitude in the lower
atmosphere in a ‘‘normal”’ winter with that esti-
mated using topographic forcing alone, and attribute
the difference to the thermal effects. We infer
from the results that during a normal year there
exist in the long wave components significant de-
structive interferences between the forcing due to
topography and that due to land-sea differential
heating. Therefore, it is not unreasonable to expect
that when the usual sea surface temperature
distribution is altered (as apparently was the case
preceding the winter 1976-77), the two kinds of
forcings may act in harmony to reinforce instead of
cancel each other, and thus produce planetary
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waves of unusually high intensity. As a result, a
wind condition that otherwise would produce a
minor warming in a normal year may cause a major
warming event in the presence of such large com-
bined forcings. This observation, if proven correct,
could have a predictive value in the sense that if an
abnormal ocean surface temperature distribution,
with warm currents near continental land masses
and cold waters over large areas in the middle
oceans, is observed in the fall, one can reasonably
state that the likelihood for the occurrences of
major large-scale blocking and warming events
during that winter! is higher than during normal
years.

This presentation will be divided into three parts.
In Part I, the present paper, the general ideas are
illustrated with a simple uniform wind model.
The empbhasis is on the temporal behavior of the
resonant Rossby waves forced by the topography
and land-sea differential heating in the presence of
various damping mechanisms. Part II deals with the
effects of vertical shears and includes simple nu-
merical experiments in which the wind profiles are
varied in a number of physically possible ways and
the wave response studied in search of the most
favorable configuration for resonance. The effects
of the presence of meridional shears and spherical
geometry are studied in Part III. The problem con-
cerning the existence of normal modes in the pres-
ence of the zero-wind line is investigated. It is
shown there that the waves are ‘‘reflected’’ instead
of absorbed by critical layers, given realistic
values for the ratio of viscosity and nonlinearity
that are relevant to the earth’s atmosphere. The
quantization of the waves in the presence of critical
surfaces is also obtained.

In the remaining portion of Part I, a simple model
is presented to illustrate the temporal behavior of
resonant Rossby waves forced by topography and
land-sea differential heating. To gain a better under-
standing of the essential physical processes in-
volved, some simplifying assumptions are made in
order to obtain explicit solutions. The B-plane ap-
proximation is used to simplify the spherical
geometry, and the zonal wind is assumed to be
spatially uniform but is allowed to vary in time.
Only quasi-geostrophic disturbances are considered
in this paper. These approximations will be relaxed
in the subsequent papers, where the effects of shear
and spherical geometry will be considered. In
Sections 2 and 3 the initial value problems will be
considered, and it is shown that as the zonal wind
is varied in time, a Rossby wave becomes resonant
when the wind speed reaches the Rossby-Haurwitz

! The time scale of ocean temperature variability is rather slow
compared to the atmospheéric time scales, and thus it is reasonable
to expect the anomalous fall ocean conditions would persist to
winter.
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phase speed for that particular wave mode. When
this happens, the free-traveling wave is rendered
stationary with respect to the earth and can thus be
in phase with the stationary forcings of topography
and differential heating. The resonant speeds for
various wave modes are calculated in Section 4. Itis
seen that the resonant speed requirements for the
shorter waves are low and easily attainable with the
normal conditions of the atmosphere. On the other
hand, the resonant speeds for large-scale waves with
zonal wavenumbers 1 and 2 are relatively high and
are not usually attainable. This result may explain
why the warming event is not a frequent occur-
rence. A majority of the tropospheric blocking oc-
currences are caused by resonant waves with higher
wavenumbers (s = 3, 4 and 5), but their influences
are not felt in the stratosphere, for these shorter
waves are usually trapped in the lower atmosphere.
In Sections 5 and 6 the amplitudes of the combined
forcing due to topography and land-sea differential
heating are estimated. It is found that the longer
waves, though more difficult to resonate, produce
much larger amplitudes once they become resonant.
The results from these sections also point to the
likelihood that the forcings due to continental eleva-
tions and land-sea differential heating’ have com-
parable magnitude and are usually out of phase
during normal years.

The resonant waves amplify roughly linearly in
time until either the zonal wind moves off the
resonant value (either due to other external circula-
tion mechanisms or due to interaction with the
waves), or an equilibrium is reached with the
damping mechanisms that are present in the system.
Damping due to Ekman pumping and other mech-
anisms is considered in Section 7. The time variations
of the heights of isobaric surfaces are calculated
in Section 8, and for wavenumber 2 the results
are compared with the ‘‘lower boundary forc-
ing function”’ used by Matsuno (1971) in his numeri-
cal model. Good agreement is found. Thus we may
have an explanation of the origin of the wave that
forces the sudden warming event in Matsuno’s
model. In Section 9 sensitivity of the wave re-
sponse to changes in wind condition from the exact
resonant configuration is studied. In Section 10 we
point out that resonant stationary waves are also
capable of producing large meridional heat fluxes,
which have traditionally been attributed to ‘‘baro-
clinic eddies.” ‘ '

2. The initial value problems

Assuming geostrophy? for the large-scale waves
that we are interested in, the eastward and north-

2 Strictly speaking, both the g-plane and gesotrophic assump-
tions are not valid approximations for the long waves under
consideration and instead the primitive equations on a sphere
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ward velocities can be expressed as (see Appendix A
for list of symbols): ’

Uu=u+u
, ] M
v=uv
with
14 1 -
U =—- —— @', 5,:___6_q>
f oy f oy
and
v’:liq)',
[ ox

where @’ is the perturbation geopotential and
f=2Qsinp = f; + By is the Coriolis parameter. In
logp coordinates, where

z* = ln(—p—o) ,
P

the governing equation for ®’ is the following con-
servation equation for potential vorticity (see
Charney, 1973):

a _ 0 02 0?2
[(57 ta a)[(a;% * w)
+_fi( 02 0

0
i) | R LA

In obtaining Eq. (2), it is assumed that the mean

zonal flow is a function of time ¢ only, i.e., & = a(¢).
The lower boundary condition is specified on the

vertical velocity by the tangency condition

3

w=1 —a——ﬂ(x,y) at z* =0,
Ox

where £ is the surface elevation, a Fourier com-
ponent of which can be written as

A(x,y) = £oe™* sin[l(y, — y)],

where y, is the location of the northern polar
boundary. To express w in terms of ®', one proceeds
by using the definitions

d 0 0 0 d

wh= —z¥ —=_ 4

dt ° dt o ox dy 9z

the hydrostatic condition (8/9z)z* = g/RT = 1/H
and dz* = —(1/gH)d®. After linearizing these give

1 9 1
WE= — — — @+ —w,

4
gH ot H @

should be used. However, the temporal and vertical structures of
the wave are not expected to be qualitatively affected (see Part ITI
for a more detailed discussion), and therefore the present simple
model suffices for our purpose here.
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but w* and @' are also related through the energy
equation

(—a-+zzi) L+ Sw* = 0. (5)

ot ox

Substituting (5) into (4) then yields the desired
relation:

1
(3 +i -a—)(ﬁ cb;ﬁ) _ 19— .
ot ox )\ S

The simplest initial value problem that can be
posed seems to be a switch-on problem with &(¢)
taking the formi(t) = U-H(t), where U is a positive
constant and H(¢) is the Heaviside unit step func-
tion given by

©

1 for t>0

H@) =
® [0 for t <0.

The set (2), (6) and (3) then defines the problem.
A similar switch-on problem has been considered
by Clark (1972, 1974). Although his boundary condi-
tion is not appropriate for our problem of topo-
graphic forcings [Clark, in our Eq. (3), used w* in-
stead of w], some of his results concerning the time
behavior of the solutions can be shown to be still
applicable to our present problem.

It is shown in Appendix B that the solution for
w consists of two parts: one part is the transient
waves introduced by the discontinuity in forcing at
t = 0. These waves represent the atmosphere’s
adjustment to a varying forcing and decay in time as

Wiransient ™ 0(1—5/6) (8)

[see also Clark (1972), Eq. (30)]. The remaining part
of the solution is the forced wave

wo = ikBUH(t)e™* sinl(y, — y)]

x expl(z*2) — bz*], 9)
where
1 S B 1/2
= l-e | =k 4 10
O i) BT

is defined so that Reb; > 0 or Imb, < 0 to satisfy
the boundedness or radiation at infinity. Eq. (9)
alone satisfies the boundary condition (3) and is the
long-time solution in the sense that it will be the
only remaining term in the solution when the transi-
ents have decayed to insignificant values after a
sufficiently long time.

For a moment we neglect the transient waves
and discuss the forced wave in more detail. The
forced part of @’ corresponding to w, can be found
by substituting (9) into (6) to yield

o = —#ole™” sinl(y, ~ y)] expl(z*/2) — b,z*]

_ [5G-2)
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To this one can always add a free-traveling solu-
tion satisfying Eq. (2) and w = 0 at the lower
boundary. Thus, we can rewrite ®; in the more
general form

[ e —bi1z*

564)
S\2
+ D[eika: sinl(y,, — y)]e—ikcte—bzz‘ez*lz’ (1 1)

where c is the phase speed of the traveling wave
satisfying the Rossby-Haurwitz dispersion formula

) . . — e~ tketp—be*
i = —Aole™ sinl(y, — y)le*"? ¢ 7

c-U= - B

» (12)
(k* + I3) + (f21S)(Va — by?)

where

1 S c
by = -+ — .
2 gHU-c¢

Resonance occurs when

b, —> ¥
b, — b,
c—0

13)

That is, the free traveling waves become sta-
tionary with respect to the forcing and possess the
same vertical structure as that of the forced wave
when resonance occurs. It is seen that to have
resonance, the zonal wind must reach the critical
(resonant) value given by

B

r = . 4

v k* + 12 (14)

When this happens, the phase speed of the traveling
wave is reduced to zero by virtue of the dispersion

relation (12).

The behavior of ®j at resonance is found [by

taking the limits (13) using ’Hospital’s rule] to be

—#ole™ sinl(y, — y)]

@} =

)
gH(k? + I?)

C[Sor o L]
H k> + 2)H

+ Dle** sinl(y, — y)]. (15)

Note that the resonant solution in the present uni-
form wind model is barotropic; w, does not depend
on z*, while ®; varies only linearly with height.
The resonant solution also grows linearly in ¢, with
t = 0 being defined here as the instant when U
reaches U,.

An undesirable aspect of the switch-on model is
that the transients dominate over the forced solution
described above until after more than a week. The
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large magnitude of the transient waves is artificially
produced by the discontinuous time variation of the
zonal wind in the model and it can be reduced to
insignificant values if the wind variation becomes
smooth, as will be shown in Section 3. Since these
transient waves can interact with the mean flow,
even in the absence of resonance, it is rather mis-
leading to generate ‘‘warming events’’ in numerical
models using this artificial switch-on mechanism
alone, as in Geisler (1974).

In order to concentrate one’s attention on the
more systematic time behavior of the resonant
waves (not masked by the presence of transients
which are difficult to model realistically) a two-
timing model in which the wind is varied smoothly
will be presented in the next section.

3. Two-timing formalism

In this section the case where the zonal wind is a
slow function of time is considered. The resonant
value U, of the zonal wind speed is approached
slowly and smoothly in a time interval ¢,. The
reciprocal of the approach time gives a measure of
the ‘‘slowness’’ of the zonal wind variation. Accord-
ingly, the small parameter of the problem is de-
fined as

€e=——, O<e<l.
(kU,t,)
A slow and a faét time are also defined
{ = €l
Lo 16
t* = J cdt | ° (16)
0
where ; : i
c(t) = co(t) + ec (1) + O(e?) a7

is to be determined in the process of solution.
Without the expansion for c, it is found that there
would not be enough free parameters to suppress
the secular terms and the singularity in the solution
at resonance. The zonal wind is assumed to be a
function of the slow time only, i.e., u = i(t).
Instead of expanding the solutions in an asymptotic
series in powers of €, we define another small
parameter
a@r) - U,
—— €

U, 1

and expand the solutions in powers of a(¢). Though
the resulting asymptotic formulation in terms of a
variable parameter is more complicated, it never-
theless offers the advantage that at resonance all
the higher order terms disappear and the zeroth-
order term becomes the exact solution of the
problem.

alf) = (18)
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We expand w and @' as

W=W0+awl+a2W2+o(a3)] (19)
D) = @) + a®, + 2P + O(®) ]
Since )
d o 8 ot* o
o otor o ot
ad
=€— + [co + €C —,
g TloTent ]at*
one has
0 i)
— P =cy— D;
ot Corx "
o« 0 0 0 )
+el—ce—P, + ¢, — D)+ =Dy | + O(e?).
e[ec" o L T o °}

To the lowest order, the equations become

Hco(f) 5?_ + &) %]
* [(a% ¥ 5y_2) {; (az*2 - a%)}

Wo
SRS

Treating t* and ¢ as independent variables, as
usually done in the two-timing formalism, gives the
following solutions to (20) [cf. Egs. (9) and (11)]:

wo = ikAoi(f)e™* sinl(y, — y)]

x exp{[¥s — by()z*}, (1)
where
Ao LS B el
e e el I

exp{[¥2 — b,(D)]z*}
(HIHYz ~ by(1)]

®) = —[e™* sinl(y, y)][ﬂo

+ AgD)e exp{[¥5 — bz(t')]z*}} . @)

where
Co(f) - l_l(t-)
- - p @)
(k2 + 1) + (fHS)[(1/4) — b2(1)]
S_1,. S ol
ba(t) = 2 ¥ gH a(?) — coh) 24)

An unusual feature of the present two-timing solu-
tions is that the amplitude of w, in (21) is com-
pletely determined by the lower boundary condition,
and the function A,(z) in &4 is not really ‘‘free”
to be used for the suppression of secular terms in
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higher order solutions. Ay(f) must be used in this
zeroth-order solution to suppress the singularity at
resonance and is found to be of the form

o
(HISHY ~ by(D)]

plus perhaps an arbitrary, free wave amplitude
D(1), but since the governing equations are linear,
the free wave can be considered separately.

The equations to the next order are

0 0 0° 92

{[es 52 + 10 5|55 * 5]
SO D], 8w
+_s‘(az*2 62*)}+B axﬂcp;}

2z
() oo

Here @’ has a secular term in the fast time ¢* forced
by Ay(t). To suppress it, we make use of the still
arbitrary function c,(f) and require that

At) = - (25)

= — (cl(t)

ike (t)e—bz(t)z« —zkt’*li (kz + 12)

(e
S \oz*?  9z*

+ e~ gt:[[—(k2 + 1%)

fo [ 2(1) — ﬂ A (t)e"’z“’z”] =0. 27)

From (27), one finds ‘
@A, 1 0

x ln[[ ke + ) + 20 (b 2 _ %ﬂe—w]

2f¢
BgH
4 o(t- )

0
— . (2
at(ﬁ - Co)] @)

In a similar way, the secular terms in still higher
order equations can be suppressed, making use of
the free functions c;(¢). We are not particularly
interested in the details of the higher order solutions,
other than the fact that they are nonsecular, thus
ensuring the validity of our expansion procedure.

_isp@alenla): 1[[ s N
 fek2b,(D — by k|| gh

x (@) — c0<t'))]
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. At resonance, i(f) — U,, a(t) — 0, all higher
order terms vanish and the solutlons become, for
t=1,,

W —> Wy = lkﬂo r[eik‘z‘ Sil’l[(yp - .V)]’

Aole™=* sinl(y, — y)]

(Dr q)/ _ —
o H_ﬁ_}
gH(k? + I2)
x [i o _KUS
H

Hk> + )
There are no transient waves in (29). This is due
to the fact that the zonal wind varies slowly and
smoothly in time. In particular, the finiteness of
c,(t) in (28) requires the approach to U, to be so
slow that

(t - t,)J . (29

da()/dt
[ — by(D)]

remains nonsingular at resonance when 15 — b () — 0.
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4. The resonant wind speed

Results from the last section show that a Rossby
wave with zonal wavenumber k and meridional
wavenumber / becomes resonant with the stationary
forcings when the speed of the zonal wind reaches
the value

2Q) B
Ukl = — £ 2 22060590 5
k*+ 2 s + m?
This is one of the ‘‘selection principles’’ in de-

termining which wave will be preferentially excited.
In (30) s is the dimensionless zonal wavenumber;
we are interested in the planetary-scale waves with

= 1,2, 3 and 4. And'm = l(a cose,) [¢, = /4 in
the midlatitude B-plane approximation] is the non-
dimensional meridional wavenumber; its values de-
pend on the particular meridional quantization rule
used. For uniform zonal winds the wave solution
can be either symmetric or antisymmetric about the
equator. The antisymmetric modes are obtained by
requiring ®’ to vanish at y = 0, the equator. This
yields the following quantization rule:

2 1 =1,2,3,...
oo tT_ 2 _ D {” L - 31)
Yo a n=135....
The symmetric modes are obtained by requiring (3/8y)®’ to be zero at y = 0, giving
! 2 ! =0,1,2,3,..
l=l,§3)=(/2+n)ﬂ=(n+l)=(n + 1) {n 32)
Yo a a n=0,2,4,....

In many previous studies using the simple uniform
wind model, walls are placed at the equator and
the pole as side boundary conditions. As a result,
only the antisymmetric modes given by (31) are pres-
ent in those models. It turns out, however, that in
the real atmosphere in the presence of a zero-wind
line in the equatorial region, the stationary nor-
mal mode waves resemble the symmetric modes

[Eq. (32)] more than the antisymmetric modes

commonly used. It will be shown in Part III,
where the effects of meridional shears of the zonal
wind are discussed, that the presence of the zero-
wind line significantly affects the character and
quantization of the wave modes in the westerly
region. If the zero-wind line totally absorbs all
incident waves as in Dickinson (1968), no normal
mode waves can form, and therefore the existence of
the resonant waves discussed here is very much in
doubt. However, as will be shown in that paper, for
conditions relevant to the real atmosphere, the non-
linearity of the waves seems to dominate over
the effects of viscosity in the critical layer, and
as a result, the stationary waves are most likely
“‘reflected’’ rather than absorbed at the zero-wind

line. The resulting quasi-normal modes are quan-

tized so that there are an odd number of quarter-

wavelengths between the critical surface and the

North Pole. In the present simple model, the pres-

ence of the zero-wind line and its reflecting nature

can.be simulated® by using a Helmholtz type wind
U, y>y.

profile
i =
{—Ua }’<}’c

where U is a positive constant and y,. the location
of the zero-wind line. In the westerly region (y
> vy.), the meridional wave structure that satisfies
the northern boundary condition is sin[l(y, — y)I.
The quantization rule that gives an odd number of
quarter wave-lengths between the crltlcal surface
y. and the pole is

(33

L(yp —y) = (2 +m)m, n=0,1,2,3.. (34

% The zero-wind line in the Helmbholtz profile is perfectly
reflecting due simply to the infinite shear of a shear layer of zero
width.
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For the case when the zero wind line is located at
the equator (i.e.,y, = 0), the quantization turns out
to be the same as that for the symmetric modes
given by Eq. (32) in the uniform wind profile.

In Table 1 the resonant wind speeds for various
modes with s = 1 to 4 and n = 0 to 4 are listed.
The commonly used antisymmetric modes with
I, given by Eq. (31) are listed in the third column,
while in the fourth column we list the resonant
speeds for the more relevant quantizations given by
the symmetric modes (32) or (34) with y. = 0. The
case of critical surface quantization withy, = (7/6)a
is in the last column. It can be seen in Table 1 that,
depending on the values of the zonal wind speed i,
different wave modes will be resonantly excited.
It is important to note that the shorter waves
(i.e., waves with larger values of s and n) require
lower wind speeds to be excited. It is more difficult
to resonate the longer waves but, as will be shown
in a later section, they would have larger ampli-
tudes once excited. One should also note that for a
wave mode with a given number of nodes in the
meridional domain, the resonant wind speed is
lowered when the position of the zero-wind line
shifts northward. Such a change, though not strictly
necessary, may be important since it can lower an
unattainably high resonant wind speed requirement
to a more realistic value.

5. Continental elevations

The topographic elevations of continents and
oceans on the earth’s surface are recorded in topo-

TABLE 1. Values of the resonant wind speed U, = Qa[v2(s®
+ m?))~Y(m s~') in the uniform wind model.

Symmetric
modes or
Antisymmetric Eq. (34) with Eq. (34) with
K n modes ye=0 Ye = (w/6)a
1 0 — 3103 219.0
1 1 155.1 84.6 41.8
1 2 51.7 34.5 16.0
1 3 24.5 18.3 8.3
1 4 14.1 11.2 5.1
2 0 — 103.4 90.8
2 1 77.6 54.8 329
2 2 38.8 28.2 14.5
2 3 21.2 16.3 7.9
2 4 12.9 10.5 4.9
3 0 — 49.0 46.0
3 1 423 34.5 24.3
3 2 27.4 21.6 12.5
3 3 17.2 13.9 7.3
3 4 11.4 9.4 4.6
4 0 — 28.2 27.2
4 1 259 22.7 17.8
4 2 19.4 16.3 10.6
4 3 13.7 11.5 6.5
4 4 9.7 8.2 4.3
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graphic maps and are usually analyzed and ex-
pressed for meteorological purposes in terms of
spherical harmonics in the form

i i [A54 cos(sh)

$=0 n'=0

£A(\@) =

+ ALy Sin(sN] P (i)

S S Agw cOSISOA — 850} Pha(is), (35)

$=0 n'=0

where A is the longitude, ¢ the latitude, and p
= sinp. For n’' an odd integer, the associated
Legendre function P§,(n) is antisymmetric about
p = 0, the equator, and symmetric if n’ is an even
integer. The values of the cosine and sine ampli-
tudes, A and 4%, taken from Sankar-Rao
(1965), are listed in Table 2. The total amplitudes

Ag = [B + E ] (36)
are calculated and also listed.

On a B-plane, the meridional function that corre-
sponds to the associated Legendre function is*
sinl (y, — ¥), where l, = (n’ + D/a,n’' =0,1,2,3,
. ... Then (35) becomes, on a 3-plane

ANY) = 3 3 [A3 cos(sh)
s=0 n'=0
+ A3, sin(sA)] sinl,(y, — ¥)
=Y Y Agw cos[s(A — 8,.)]
§=0 n'=0

X sinly(y, —y). (37)

6. Forcings due to the combined effects of topography
and heating

Compared to topography, the forcing due to land-
sea differential heating is more difficult to deter-
mine. It depends on surface winds and on surface
temperature distributions, and hence varies from
season to season and also from year to year. Al-
though the response of a wave to the heating is not
yet clearly understood, a number of parameteriza-
tions have been devised to account for the effects
of land-sea differential heating on the waves (D60,
1962; Sankar Rao and Saltzman, 1969). A different,
and particularly naive approach is adopted here.
We assume our model is sufficient to yield the re-

* It seems that Sankar-Rao (1965) used normalized Legendre
functions, i.c.,

Jl (PSP = 1.
-1

The sine function has the same normalization, viz.,

1
f sin? L(y, — Y)d(y/Vama) = 1.
~1
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TasLE 2. Coefficients of cosine and sine spherical harmonics of continental elevations (m).
A rn A o {A£" + gorpie
s n n’' Antisymmetric Symmetric Antisymmetric Symmetric Antisymmetric Symmetric
1 0 0 172.1 205.0 267.7
1 1 -3.7 150.9 150.9 '
-2 -60.3 112.3 127.5
2 3 -50.5 -249.4 254.5
4 30.3 13.1 33.0
3 5 47.9 —255.5 260.0
6 102.7 141.6 174.9
s 7 -1.8 -76.0 76.0
8 89.4 170.9 192.9
2 0 0 -159.1 48.8 166.3
1 -209.4 122.6 242.7
2 —-191.9 19.9 192.8
2 3 10.3 -38.3 ' 39.7
4 79.1 -42.4 89.7
3 5 178.1 -33.7 181.3 -
6 7.4 —48.3 48.7
4 7 6.5 -25.1 25.9
8 -121.0 - —-17.7 122.3
3 0 0 10.2 96.5 97.0
1 1 109.1 -157.0 191.2
2 53.5 -110.4 122.7
2 3 37.3 -39 37.5
4 55.6 51.8 76.0
3 5 10.0 44.4 45.5
6 -93 22.5 24.3
4 7 -36.9 -123.5 128.9
8 4.8 —62.5 62.7
4 0 0 23.5 184.5 186.0
1 174.8 -99.1 200.9
2 132.4 ~44.7 139.7
2 3 5.9 8.1 10.0
4 -53.5 2.1 53.5
3 5 -97.1 31.5 102.1
6 -83.9 38.6 92.4
4 7 6.9 -26.8 27.7 !
8 -3.2 53 6.2

sponse to stationary forcing with modest accuracy,

and, therefore, that we can infer a realistic lower-

boundary forcing (in the form of #,) by requiring
calculated and observed stationary waves to agree.
The forcing obtained this way contains the effects of
both topographic elevation and land-sea differential
heating.® Using results obtained this way and com-
paring with those of the last section, one hopes to
obtain a qualitative feel of the relative magnitudes
and phases of the two kinds of wave forcings dur-
ing a normal year. '

The data are taken from Eliasen and Machenhauer
(1969) for large-scale wave motions over the whole
earth during October 1957, the International Geo-
physical Year. They list, in their Table 1, the mean

5 The ‘‘forcing’’ obtained this way actually contains all thermal
effects. We here loosely call it the surface heating, since it is
deduced from waves in the lower atmosphere.

amplitudes of geopotential height [(1/g)®']; . of the
500 mb surface. To deduce #,, the following ad-
mittedly crude formula for forced waves is used:

=)
g s,n’

_ (#o)sw  exp(¥2 In2)
g (HIS(2 —- b))

1/2
2L e n] 4"
f02 '»-l R 4

From (37) one can deduce that

!ﬂols,nf = '(g_lq)')s,nrl(2K)_”2(gH)”2/Qa

exp(—b, In2), (38)

where

by =

X [i_)- — (s? + mz)}uz, (39)

(0]



JUNE 1979

where @ is the angular frequency of the zonal flow.
Eliasen and Machenhauer did not give a value for
@ for October 1957, but from their earlier work
(Eliasen and Machenhauer, 1965), a mean average
value of @ = 0.0225() seems reasonable. Using this
value for the mean wind, the equivalent topographic
forcing |ﬂols,n, is calculated from Eq. (39) and listed
in Table 3, together with the observed values for
the amplitudes |(1/g)(<I)’)s,,l,|, taken from Eliasen
and Machenhauer. Note that Egs. (38) and (39)
are valid only for waves that propagate at 500 mb,
and are not applicable for waves that are trapped
below 500 mb; for the latter, a separate calculation
is needed. However, such a calculation may not
be too meaningful due to the observational uncer-
tainties for these short waves.

TABLE 3. Amplitudes (m) of the combined topographic and
thermal forcings as deduced from the observed wave amplitudes
given by Eliasen and Machenhauer (1969).

|g_l(d>’)s,n' | l(ho)s,n’ |
Antisym- Sym- Antisym-  Sym-
metric metric metric metric
s n n’ mode mode mode mode
1 0 0 8 91
1 1 19 94
2 20 96
2 3 19 88
4 17 73
3 s 16 62
6 13 43
4 7 20 51
8 14 19
2 0 0 7 35
1 1 10 48
2 22 101
2 3 14 62
4 25 102
3 5 15 S5
6 13 41
7 11 25
4 g 9 —
3 0 0 6 27 -
1 1 11 49
2 13 55
2 3 10 41
4 17 63
3 S 11 35
6 11 28
7 9 12
4 8 9 —
4 0 0 7 28
1 1 10 40
2 14 53
2 3 15 52
4 14 43
3 5 12 30
6 12 18
7 7 —
4 g 9 -
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Bearing in mind that the forcing due to land-sea
differential heating may change from year to year,
one should not place too much emphasis on the
numerical values of the forcings listed in Table 3.
Nonetheless, the following general characteristics of
the combined forcing should be noted, since we find
these gross features to be present also in other
years:

1) Thermal forcing has amplitudes comparable to
those of continental elevations. This conclusion
can be deduced from the fact that the amplitudes
of the combined forcing are substantially different
from those due to topographic forcing alone. There-
fore, in a complete treatment of forceéd atmospheric
waves, the effects of land-sea differential heating
cannot be ignored.

2) Thermal forcing is usually out of phase with that
of topography. For the longer waves the amplitudes
due to the combined forcings are substantially
lower than those due to the topographic forcing
alone. This fact can be explained as arising from
‘‘destructive interference’’ of the thermal and topo-
graphic forcings. The possibility exists that sta-
tionary waves with unusually large amplitudes may
be excited during some rare occasions when the
large-scale forcings of both forms are approximately
in phase. This may be the case during January 1977,
when blockings and warming of unusual intensity
occurred after abnormal ocean temperature distribu-
tions have been observed.

7. Resonance in the presence of Ekman pumping and
other damping mechanisms

When damping is present in the system, resonance
in the usual sense (of indefinite linear time amplifica-
tion) can no longer occur. When the amount of
damping is large (i.e., short damping time scale),
little or no time amplification of the wave occurs.
However, when the damping time scale is long,
wave amplification will still occur, but the time be-
havior is more complicated than the linear amplifica-
tion of the inviscid case. The time behavior of the
quasi-resonant planetary waves in the presence of
damping will be shown to be analogous to that of a
damped harmonic oscillator in mechanics. We will
also show that the observed amplifications can be
obtained in the presence of dampings with time
scales as short as, and in some cases shorter than,
a week.

For large-scale planetary waves, the relevant
damping mechanisms seem to be Ekman pumping,
Newtonian cooling and turbulent eddy diffusions.
Ekman pumping will be discussed first since it
seems to have the shortest damping time scale.
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The equation for the conservation of vorticity
can be written as

Ay R A

o .
=f02§ (e™*'w*). (40)
Uéing Eq. (4) to rewrite the right-hand side of
Eq. (40) yields

4 _ 9\ 9 o?
ek 5
[(6: ox \ox?  dy*
i} 0 0 e,
ﬁ_—+fL———]( e )
ox  gH oOr oz*

2 e~ w).

@41

Let a(¢r) slowly approach the resonant value U,
= B/(k? + [?) in the manner described in Section 3.
Whena = U,, the following balance of terms exists:

2 2
ui(_"’_+‘9_)qy+3_q>r_0
ox2  dy? ox
Thus Eq. (41) reduces to
fi* 070 .
-+ )+ 2 — = (e
{ @ + ) Haz*} (=)
’ P8 L
= ——(e7"W),
H 0z*

which, when integrated on both sides with respect

to z* from z§, the top of the planetary boundary

layer, to «, yields

k% + 1?) E—J (e ®')dz*
ot |2

fo

El—f_ — [exp(— zF)Y®'(z)]

fo?

= FW(Zi*)exp( z¥). (42)

At z¥, the vertical velocity w consists of two parts:
W(Zik) = Wy + We,s
where
wy = ikt Ay[e™® sinl(y, — y)]
is caused by surface forcing. The other part, w,, is
related to Ekman pumping in the planetary bound-

ary layer and is given approximately by (Charney
and Eliasen, 1949)

H
We = 72— a V' (z$),

0

“é3)
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where
a sin2a (K fy)Y?
V2 H
In Eq. (44), a is the angle between isobars and the

surface wind, and K is the eddy-diffusivity. Eq.
(42) now becomes

(44)

k2 + I2) %[expz’."J (e~ ' )dz* ]

5071-— @'(z}) + (k2 + »)a D'(z})

If one neglects, for a moment, the z* dependence
of @', then Eq. (45) can be written in a form
similar to the equation for a forced damped oscil-
lator, i.e.,

9o+ a.d = foH wy,  (46)
o {(k2 + 1) + ﬁ]
gH
where
k2 + 12

a, = ( ) S Ge @7

@+ 2]

. gH

can be identified as the rate of damping.
Eq. (46) can be solved to yield the time-de-
pendent solution

< (foH)wy
fo
2 2 Jo
[(k + 2) + gH}

“ ale

It is seen that the damping time scale is given by
1 _ [1 (Qay
a. a, gH
For t/T, small, Eq. (48) is

2/H
o = v o),
[(k2 + 7)) + ﬁ’-]
gH
Thus, at least initially, the time behavior is the
same as that of inviscid resonance, and by com-
paring with Eq. (29), C can be seen to be

@ =

a1 - exp(—[zet))J +C exp(—&et)} . (48)

T, =

(s? + m2) } (49)

(50)

ZFkE + 1) i

ikU, fi
H
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For large time, however, the maximum amplitude
that can be reached in the presence of damping is

(fo*/H)w;
Jo* ]
k2 + 12 + —
{( ) gH

which is the same as that reached by linear growth
at z* = 0 in a time T,. When the z* dependence of
@’ is included, the exact solution to Eq. (45)
becomes

(P max =

(o’ lH)wy
[(k“’ + ) + fL]

Q'(z*,1) =

X [[ _1 (1 —e~ expl(V2 — p)z* - Zi‘)])]
ac

+ C expl(4 — p)* — zF) - aen] . (52)
where
1 a.(k? + I2) 12
po=|-+t ,
[4 @, — fka)(.fo2/5)]
f02 }—1
gHWK2 +12) |

1
&,_,:ae[ +
2+ w

The temporal behavior of (52) is almost identical to
that of the approximate solution (48). In particular,
the initial response at z* = z§ is linear [cf. Eq.
(50)], i.e.,

(fo*H)wy

Q'(ztr) =
{(k2 + ?) + fL]

[1 + __fe l
gH(k? + 1%)
fo? ]
gHk? + I1?)

t+C

. (53)

el
0% + W

And, for large time, the maximum amplitude that
can be reached is again

(f¥H)wy

(D" Imax =
[(k“‘ + %) + fL]

(2]

which is exactly the same as Eq. (51). Note that
this maximum amplitude is independent of height
and is the same as the amplitude at the surface
that can be reached by the inviscid resonant solution
in a time equal to the damping time scale, T, = 1/a..

In Fig. 1 the time behavior of the solution as
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Fi1G. 1. Schematic diagram of the time behavior of the resonant
solution in the presence of damping with a time scale 7.

given by Eq. (48) is shown schematically, and in
Tables 4 and 5 the amplitude of (1/g)®’ given by
(53) for t = 0 and at z* = z} are listed for various
wave modes using a. = 1/(5 days) (Charney and
Eliasen, 1949). Also listed are the maximum ampli-
tudes as ¢t — o, In Table 4 topographic forcing with
amplitudes as given in Table 2 is used, while in
Table 5 the combined topographic and thermal
forcing is used. Note the following general features:

(i) The maximum amplitudes reachable in the
presence of Ekman damping decrease rather
rapidly with increasing meridional wavenumber.
Due to their small amplitudes, the waves with merid-
ional wavenumber n > 1 can almost be discounted.
This seems to be another ‘‘selection principle”’
working against waves with short meridional scales.

(ii) The (s,n) = (1,0) and (s,n) = (2,0) modes have
very large maximum amplitudes, but as mentioned
before, these two modes cannot be excited. Focus-
ing only on the symmetric waves, which have the
proper quantization even when critical levels are
present, the next mode for wavenumber 1 is (s,n)
= (1,1), with a maximum amplitude of 389 m with
topographic forcing and 293 m with combined forc-
ing. For wavenumber 2, the corresponding ampli-
tudes for the mode (s,n) = (2,1) are 493 and 258 m.
The amplitudes are of the correct order of magni-
tude as observed. A more detailed comparison will
be given in the next section.

(iii) Ekman pumping damps shorter waves more
than the longer waves.

When the damping time scale T, is longer than one
week, it should be replaced by other damping time
scales. We will discuss this more in the following
paragraph.

a. Newtonian cooling

Newtonian cooling damps vertically propagating
waves and its damping time scale varies depending
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TaBLE 4. List of the calculated amplitudes of geopotential
heights due to topographic forcing alone, A(z*,f) = g7'®'(x,y,
z*,t)/[e*= sinl(y, — y)l at z* = z§ = 1/7.5 and t = 0, and also at
t —  for any z*.

A,
T, t =0) A(z*, t — «)
s n n' (days) (m) (m)
1 0 0 14.8 34 10 991
1 1 9.9 2.9 1549
2 7.7 3.2 389
2 3 6.6 7.3 290
4 6.1 1.0 17
3 5 5.8 8.6 67
6 5.6 6.0 25
4 7 5.4 2.7 6.4
8 5.4 6.9 10
2 0 0 8.3 3.8 1517
1 | 7.5 6.2 -1246
2 6.7 5.5 493
2 3 6.2 1.2 5t :
4 5.9 2.9 61
3 5 5.7 6.1 69
6 5.5 1.7 11
4 7 5.4 0.9 3.7
8 5.3 4.4 11
3 0 0 6.6 2.8 298
1 1 6.3 5.7 438
2 6.1 3.8 187
2 3 5.9 1.2 36
4 5.7 2.5 46
3 5 5.5 1.6 17
6 5.4 . 0.9 6
4 7 5.4 4.6 21
8 5.3 2.3 7
4 0 0 5.9 6.0 - 253
1 1 5.8 6.5 229
) 2 5.7 4.7 123
2 3 5.6 0.3 6.4
4 5.5 1.8 24
3 S 5.4 3.6 33
6 5.4 3.3 21
4 7 53 1.0 4.4
8 5.3 0.2 0.7

on the vertical wavelength of the waves.® The
damping time scale due to Newtonian cooling ca
be shown to be '

TN=_1_{1+__<"Z_+E_J,
ayl U + N

where A is the vertical wavenumber, and is related
to the vertical wavelength L by A = 27wH/L. ay is
the coefficient of Newtonian cooling; commonly
used values for 1/ay are of the order of four weeks,

4

5 In the simple model considered in Sections 2 and 3, the
resonant waves are barotropic in height. Therefore, Newtonian
cooling has no appreciable effect on these waves. However, in
more realistic models where the vertical shear of the mean wind is
taken into account, the resonant waves are internally trapped and
have finite vertical wavelengths.
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though values as short as one week have been
used by some authors occasionally.

From (54) it is seen that in the lower atmosphere,
where the long waves are usually vertically propa-
gating, the term in brackets is greater than 1; hence
Ty > lay ~ O (4 weeks). This is longer than the
damping time scale due to Ekman pumping con-
sidered earlier and can therefore be neglected.

b. Horizontal diffusion

It can be shown that the damping time scale due
to horizontal diffusions with an eddy diffusivity
v is given by

= 1 = 21(24'”12) ot
) [(a2~)s } '

Even for a rather high value of v =~ 10° cm?® s, we
have T, = 2000 days/(s* + m?). Therefore, damping

TABLE 5. As in Table 4, except that the combined topographic
and thermal forcings are used.

A(f, t =0) A(Z*, t > »)
s n n’ (m) (m)
1 0 0 . 1.2 3736
1 1 1.8 965
2 2.4 293
2 3 2.5 100 ‘
4 2.3 37
3 5 2.0 16
6 1.5 : 6.1
4 7 1.8 43
8 0.7 1.0
2 0 0 0.8 319
1 1 1.2 246
2 2.9 258
2 3 1.9 80 :
4 33 69
3 5 1.8 21
6 1.4 9.3
7 0.8 3.6
4 8 _ _
3 0 0 0.8 83
1 1 1.5 112
2 1.7 84
2 3 1.3 39
4 2.1 38
3 5 1.2 13
6 1.0 6.9
7 0.4 2.0
4 8 _ _
4 0 0 0.9 38
1 1 1.3 46
2 1.7 ‘ 47
2 3 1.8 33
4 1.5 20
3 5 1.1 9.6
6 0.6 4.1
7 — —_—
4 8 . .
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—— ¢ (60°,10 KM, }
0BS. ¢,s=2,65°N,300mb, JAN-FEB 1963

(AFTER HIROTA, 1970)

500
m CALCULATED
4001 -
77\ HIROTA
/ \\ -~=
SO 300k ~ - < MATSUNO
\ / = \
\ / \\
\ /
\200 / \\
\ / ~ e -
\
100/~
AU U R
o 10 20 DAYS

FiG. 2. Time behavior of the isobaric surface at 300 mb calculated in the present
model with Eq. (48), together with the forcing function used in Matsuno’s model

and also the observed wave behavior.

due to horizontal diffusion does not become im-
portant until the wavenumbers are larger than 15.

8. Comparison with the lower boundary forcing
function of Matsuno (1971)

As the lower boundary forcing at the tropopause
(300 mb) for his numerical model of sudden warm-
ing, Matsuno (1971) used a forcing function given by

@' = {e®* sin[m(p — 30°)/60°1}d(2),

where A is the longitude and ¢ is the latitude. The
latitudinal form was chosen based on the observa-
tions of Teweles (1958) and Hirota and Sato (1969),
and happens to be exactly the same as the latitudinal
structure for the symmetric mode (s,n) = (2,1),
which has been shown in our model to be a good
candidate for resonance, both in terms of the magni-
tude of the forcing £, and the attainability of the
resonant speed U,. The time behavior of ¢(¢) used
by Matsuno is reproduced in Fig. 2, together with
the observed wave behavior due to Hirota. The time
behavior of the resonant wave calculated in our
model is superimposed in Fig. 2. The agreement is
seen to be quite good,” at least for 1 < 2T,.8

As was pointed out by Matsuno, the initial time
amplification of the wave in his boundary ‘‘forcing”’
is a very important aspect of his model. Without

" In Fig. 2, the calculation is based on the topographic forcing
alone, since we do not have the thermal-forcing amplitudes for
January 1963 analyzed by Hirota.

8 The oscillatory wave behavior for ¢+ > 27T, in Hirota’s curve
can be similated in the present model by letting # deviate from U,
after being at the resonant value for 27,.. However, such type of
curve fitting is not done here in Fig. 2.

this initial ‘‘transient’’ behavior, the sudden warm-
ing cannot be initiated in his model. The origin of
this amplifying wave in the troposphere was not
investigated, but Matsuno did demonstrate that,
given such a wave, his stratospheric model can
produce a sudden warming. Our result here offers a
possible explanation of the origin of the empirical
forcing function used in Matsuno’s numerical model
of sudden warming.

9. Off-resonance wave response

Since the basic flow in the real atmosphere is
not expected to remain in an exact resonance state
for any length of time, it is important to study the
sensitivity of the wave amplication mechanism pre-
sented in the previous sections for cases when the
mean state is either off the resonance configuration
or fluctuates slightly about it. It will be shown
that, for wave amplification to occur, it is apparently
not very critical that an exact resonance state be
maintained.

The relevant equation to consider is Eq. (41), the
vorticity equation in the presence of Ekman pump-
ing. The exact solution of Eq. (41) at off-resonance
will be given in Appendix C. Here for the purpose of
presentation, a simpler case of barotropic waves is
considered. Neglecting the vertical dependence of
@', Eq. (41) reduces to [cf. Eq. (46)]

g—(b’ + a. P + k(@ — U)P'
t

fo'H

= , (585
i@ )+ rgE
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where a, is the rate of damping due to Ekman
pumping, given by (44). The balance of various
terms clearly can be seen in the simple form of
Eq. (55). Suppose the wave amplitude is initially
small; then the forcing term on the right-hand side
of Eq. (55) is balanced by the amplification term
dd'/dt, giving a growth in the wave amplitude which
is initially linear in time. Such an amplification is
slowed and eventually stopped when the damping
term, the second term on the left-hand side of Eq.
(55), becomes important. This case has been con-
sidered previously in Section 7. If the mean wind is
not at the exact resonance state, so that the third
term in Eq. (55) is nonzero, the atmosphere be-
comes capable of supporting Rossby wave oscilla-
tions, and a traveling Rossby wave with a frequency
o=k(U, —it) (56)
is generated and propagates away with some of the
energy from the forcing. If damping does not take its
toll, the traveling Rossby wave will alternately en-
hance and diminish the amplitude of the forced sta-
tionary wave as it comes into and out of phase
with the latter.
When both the damping term and the free Rossby
wave term are present, the relative importance of
each depends on the magnitude of the parameter

v = ola, 57
obtained by taking the ratio of the magnitudes of the
second and third terms in Eq. (55). From the solu-
tion to Eq. (55)
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the wave response as a function of vy is clearly
exhibited: :

1

(1 + 72)112

X [1 + e72¢Td — 2o=WTe cosy(t/T,)] (59)

| @' /B | =

where
' f OZJ(H

" TR T ) + follgH

is the maximum amplitude that can be achieved at
resonance. The wave response as given by (59) is
plotted for various values of vy in Fig. 3 as a func-
tion of time in units of 7,. Note that (59) is invariant
with respect to a change of sign for 7y, so Fig. 3,
though plotted for positive values of y only, is the
same if it is changed to negative. [Observationally,
however, a positive y implies that the traveling
wave is retrograde (i.e., ¢ < 0), while a negative y
suggests progression.] The curve denoted by y = 0
in Fig. 3 is the same as the one in Fig. 1, and
depicts the resonant response of the stationary wave
in the presence of damping with a damping time
scale T,. For nonzero values of vy, the response is
diminished and wave oscillations become evident for
|y] > 2. For |y| <1, the response is not too
different from that at exact resonance, and when
|¥| = 0.5 the maximum amplitude achieved is -
within 10% of the resonance value. Thus one can say
that the wave amplification is not too sensitive to
being at exact resonance, provided that the ‘‘degree
of off-resonance’’, as measured by the frequency of
the free Rossby oscillation, is less than about half
the damping rate. If we take an Ekman damping

sle

Q' [Ppax = (1 — e %%e!)/(1 — iy), (58) time scale of about one week, then the wave fre-
y=0

101

- 0.5
197 ® may!

i 10
B 2.0
L 3.0

0 ! I 1 1 |
(0] Te 2Te 3Te 4Te 5Te

t —

Fi1G. 3. Behavior of the magnitude of the wave height field as a function of time in
units of the damping time scale T, for various values of y = k(U, — i)T,.
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quency has to be less than 1/(2 weeks) in order to
retain at least 90% of the resonance response.

We have also performed some calculations for the
case of a mean wind slowly varying about the
resonance value, utilizing the two-timing formalism
developed in Section 3. The findings are to be ex-
pected from the results presented in Fig. 3 for the
steady wind case: Resonant responses appear when-
ever i = U, occurs, and such responses are main-
tained to within 10% over periods when the deviation
of i from U, are such that |y| < 0.5.

10. The northward heat flux of the stationary waves

Traditionally, it has been a common practice for
data analysts to attribute the observed heat fluxes
in the atmosphere to baroclinic processes. It is our
purpose here to point out that amplifying stationary
long waves can also contribute significantly to the
observed increases in heat flux in the atmosphere.

For a resonant wave of the form of Eq. (29), one
has

1 )
Rev' = —Re — @'
/e

0 ox
= Ao k . [i z* sinkx
Sfoll + (f*lgHY(K® + 121 H
kU ofo? .
- m t coskx] sinl(y, -~ y),
ReT’ = i Re i P’
R az*
#oS

" HRI + (FgHYK® + )]
x coskx sinl(y, — y),

so that the northward heat flux is given by

v'T = LJ ﬂ(Re v')(Re T')d(kx)

27 Jo
_ A2Sfo Uk (k2 + 12)
2H?R[1 + (fo¥lgH)(k® + 12)~1)?
x sin¥l(y, —y). (60)

This implies a poleward flux at t = T, =~ 1 week
of 6.2°C m s™! at the midlatitude for the mode (s,n)
= (2,1). This value should be applied to the lower
atmosphere, since the present barotropic model
greatly underestimates the fiuxes at the upper levels
due to the lack of the e** growth with height.

As a result, the induced deceleration of the zonal
flow in the present model does not have the de-
sired property of increasing in magnitude with
height. More important, through the thermal wind
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relation, the induced temperature change is zero.
It will be shown, in Part 1I, that these undesirable
qualities can be overcome in a more realistic model
with vertical shears, where internally trapped
Rossby waves propagate vertically below the strato-
spheric jet maximum with their amplitudes increas-
ing in height roughly as e?*/2,

Nevertheless, the present model has the same
resonance mechanism of the other more compli-
cated models and the solution has the correct tem-
poral behavior. Therefore, the present model is ex-
pected to describe the blocking, which is more or
less a surface phenomenon, better than the sudden
warming phenomenon aloft. As far as the latter is
concerned, the present model provides an explana-
tion for the origin of the lower-boundary forcing
function used in the more realistic stratospheric
models.

11. Conclusion

It is generally recognized that stratospheric sud-
den warming events are caused by stationary
planetary waves generated in the troposphere. It
has been observed that these waves amplify pre-
ceding the onset of warmings in the stratosphere;
blockings caused by these amplifying waves also
occur in the troposphere simultaneously with the
warmings aloft. It is such transient time behavior of
the waves that enables them to interact with the
mean flow, as pointed out by Matsuno (1971), who
was able to simulate a sudden warming event in his
numerical model using amplifying waves.

In this paper a theory has been advanced to ac-
count for the unusual time behavior of the waves.
We suggest that these amplifying waves are waves
at resonance with the topographic forcing and land-
sea differential heating. In order for a wave to be
resonant, the following conditions have to be
satisfied.

(i) The wave energy has to be contained both
horizontally and vertically. The problem of hori-
zontal confinement of the waves will be considered
in detail in Part III, where it is shown that given
the parameter values of viscosity and nonlinearity
relevant to the real atmosphere, the zero wind line
is likely to be a reflecting surface to waves propa-
gated from the north. Stationary planetary waves
are therefore confined between the zero wind line
and the North Pole. In the simple, uniform wind
model presented in this part, the requirement for
vertical containment is that the wind speed is high
enough so that the waves become evanescent in
the atmosphere; the resonant waves are found to be
barotropic. In the presence of realistic vertical
shears, as will be discussed in Part II, the resonant
waves are no longer necessarily barotropic; they
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can propagate in the lower atmosphere, but there
must exist a turning point above which the waves
are evanescent. The results indicate that the condi-
tion is easily satisfied by wavenumber 4, but is met
by wavenumbers 1 and 2 only under abnormal con-
ditions. This may explain why tropospheric block-
ing is common while stratospheric warmings are
relatively rare.

(ii) To be resonant, the wind condition in the at-
mosphere has to be such that the phase speed of the
free travelling wave is reduced to zero, so that the
wave becomes stationary with respect to the surface
of the Earth and hence, also to the topographic
forcing and land-sea differential heating. This is
called the ‘‘stationarity condition.”” In the present
uniform wind model, this condition is satisfied for a
wave mode with zonal wavenumber k& and merid-
ional wavenumber / when the mean wind reaches
the Rossby-Haurwitz speed, U, = B/(k? + [?). In
models that incorporate the vertical and horizontal
shears of the atmosphere (see Parts II and III), the
stationarity condition becomes an integral condi-
tion on the wind values in the part of the atmosphere
below the turning point mentioned in (i). This
integral stationarity condition will be shown to be
satisfied by realistic wind profiles.

(iii) Dampings due to various mechanisms can-
not be too great; otherwise, little amplification of
the wave will result. We find that a damping time
scale of around 4-5 days is sufficiently long to
allow the amount of amplification that is observed.
In addition to the stationarity condition mentioned
in (ii), damping provides another selective principle,
which for most practical purposes eliminated waves
with meridional wavenumber n > 1.

For the wave mode (s,n) = (2,1), which is found
by the present theory to be one of the most likely
candidates for large-scale resonant waves in the
troposphere and stratosphere, the calculated ampli-
tude and resonant amplification behavior compare
favorably with observations and the wave forcing
function used in Matsuno’s numerical model to
generate a sudden warming in the stratosphere.
Thus, it seems that the only diagnostic part in
‘Matsuno’s theory of sudden warming can be re-
placed by a more consistent predictive theory.
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APPENDIX A
List of Symbols

s zonal wavenumber; number of waves in a
zonal circle
f - Coriolis parameter [=2(} sing, where ¢ is
the latitude]
fo 20 sing,, ¢, = 45°
1 d ) )
B — —f at ¢ = ¢y, Where a is the radius
a de of the earth
z* In(py/p) where p is pressure, p, = 1000 mb

h(x,y) continental elevation plus equivalent ele-
vation due to land-sea differential heat-
ing

amplitude of a wave component of 4 (x,y)

gas constant

scale height (=7.5 km)

stability parameter [=«xgH, k = 2/7]

resonant speed defined in Eq. (14)

dimensional zonal wavenumber [=s/(a
. X cosp)]

dimensional meridional wavenumber

[(a cosg)

number of nodes in the meridional domain

number of quarter-wavelengths in the me-
ridional domain

Yo B-plane’s equivalent location of the pole

[=mal2)

Ve location of the zero wind line

T, damping time scale due to Ekman pumping,
defined in Eq. (50)

damping time scale due to Newtonian cool-
ing, defined in Eq. (53)

T, damping time scale due to horizontal dif-

fusion

~ <

TQum»

sl\.

S S

APPENDIX B
Solution of the Initial Value Problem

The governing equations are

G =5l 3

2 2 \
+ f_"_( & _ _6_.)} + B_‘?_]cp' =0, (B
S \9z*  9z* Ox
' ) ) S
(_6_ +ﬁ—)<D;¢ - K—P' = —w —
ot Ox ot
K= i R (B2)
gH
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subject to the lower boundary condition

0
w = — A(x,y), at z* =0, (B3)
Ox

where

A(x,y) = Aoe™™ sin[l(y, — y)I. (B4)

" Due to the form (B4) of the forcing, the solutions
can be expressed as

®' = Y(z*,0)e™** sinfl(y, — y)l,
w = W(z*,t)e™* sin[l(y, — y)l.

(BS)
(B6)

For the switch-on problem where i(¢) is given by

a(@t) = U-H@) (B7)
the solutions for t < 0 are given by
w=0 (B8)
d’ = De—ikc_t
cepl[Lo (L S B +k2+12)”2]z*} (B9)
expi|z— (=t =5 — ,
“L @ f& e
where
c. = A (B10)

MR+ B+ (- ofRgHT

These represent the free waves that exist in the
absence of forcing, and since the equations are
linear, they can be considered separately. There-
fore, for the switch-on problem, we use the initial
conditions:

‘3:] =0 for ¢t <0. (B11)

On defining the Laplace transformed variables by

W= J e 'W(r)dt,

0

o= J e~ty(t)dt, (B12)
0
(B1) and (B2) become
d? d \. R
(dz*z - c—lz—":)dl LNy =0, (B3a)
S ikB
N=——— - (k*+1*}|, (BI13b
fo? [ikU + 0o ( )} ( )
. d - N S .
while (B3) becomes
W = ikU#kyla, at z* = 0. (B15)
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The solutions are therefore

A

Y(z*,0)
_ —ikU#y(S/H) exp{[}2 — (Y4 — \?)"*]z*}

B (B16)
o{(ikU + o)V — (V4 — \})V?] — ko)
and
x exp{[l2 — (4 — X*)*]z*}.  (BIT)

Eq. (B17) has the same form as the solution for &
in Eq. (18) of Clark (1972) while (B16) is slightly
different from Clark’s. The difference came from
the different boundary condition used by us which
includes a non-Doppler term. This term changes
only the phase speed of the free wave [see Eq. (12)]
and does not affect the large time asymptotic be-
havior of the transient solution. Inverting (B16)
and (B17), one finds

W= WO + Wtransient,

dl = l’lo + ¢transient,

where W, and y, are the forced waves given in
(9) and (11), while the transient waves can be shown
to decay in time as

Wiransient = (0](; _516)7
Ytransient = O@r=12),

APPENDIX C
Solution at Off-Resonance

The governing equation is [Eq. (41)]

G e hem )

29 0
el B8 )
ox gH 0t 0z*
_ f02 pe
Swar ¢ O

subject to the lower boundary condition of [cf.
Eq. (43)]

w(zt) = wy + (HIf*)a V@' 1), (C2)

where z§ is the top of the Ekman layer. Integration
of (C1) from z* = z¥ to = yields

i expz¥ [ (e " ®')dz*
ot P

f02/gH 0
e — ®'(z}) + a P (zF
W+ o (z¥) (%)
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Sf¥lH
k* + 1)
In (C3), the boundary conditions of ®e~* — 0 as

z* — @ and (C2) have been used. The solution to
(C3)is

o' =A (foz/H)Wf
k2 + ®la. + ik(U, — @)

X {[1 — e~*] exp[(¥2 — w)z* — z})]},
where

+ ik(U, — 0)®' @) = wy  (C3)

(C4)

_ . - 1 follgH 17!
0 = la, + ik(U, u)][(l/2 + )] ,

+p)  KkE4+2

1 - 4 — 1/2
4 f? 0 — ika

0
As far as the time behavior of the solution and its
dependence on the parameter y = k(U, — @)la, is
concerned, Eq. (C4) is not too different from the
approximate solution used in Section 9.
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