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ABSTRACT

The present paper deals with the fundamental issue of whether one can treat waves as normal modes
when critical surfaces, where the phase speed of the wave matches the zonal wind speed, are present. In
particular the question of whether a Rossby critical level (such as the zero-wind line for stationary
waves) is absorbing or reflecting is raised and subsequently addressed. It is found that the critical level
is never totally absorbing; Rossby waves are partially reflected even if the critical layer is dominated
by dissipative processes. The relevance of nonlinearity in planetary-scale Rossby wave critical layers
is also discussed and it is found to be the dominant mechanism. With the relative magnitudes of
nonlinearity versus viscosity relevant to the earth’s atmosphere it is found that the steady-state critical
level should be almost perfectly reflecting to incident Rossby waves. Consequently, normal-mode
solutions can be found; the quantization condition for these waves is also derived.

1. Introduction

This paper is concerned with a discussion of
Rossby wave critical levels or lines (CL) in general
and the behavior of stationary planetary waves near
the zero-wind line! in particular. During winter,
planetary-scale stationary waves are mostly gen-
erated in the high-latitude westerly wind region, and
propagate equatorward toward the zero-wind line,
which is usually situated in the equatorial region.
While shorter scale waves may be prevented from
reaching the zero-wind line by the so-called ‘‘polar
waveguide’’ formed between the pole and the strong
westerly winds of the jet streams, which tend to
confine these waves to the high-latitude region, it
can be shown that such ducting is more imperfect
for long waves with zonal wavenumberss = 1, 2, 3
and 4. Through reflections and refractions by the
wind shears, the wave rays are bent ultimately to
a path incident normally on the zero-wind line. Here
the linear inviscid wave equation becomes singular.
A domain for wave propagation bounded by such a
singular surface is called a singular waveguide.

What happens near the singular or critical surface
is not yet well understood. A common approach
taken by numerical modelers interested in study-
ing Rossby waves in the Northern Hemisphere is
to introduce enough numerical friction so that ‘“‘no
wave activity”’ appears to the south of the CL,

! A zero-wind line separates, in the meridional plane, a region
of westerly flow (& > 0) from a region of easterly flow (7 < 0);
thus, it is also the location of the CL for the stationary waves.
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thus decoupling the Northern Hemisphere from the
Southern. In support of such an approach is a brief
analytical study in Dickinson (1968), which suggests
total absorption of the waves by the mean flow at
the singular surface. A later study of the initial
value problem, also by Dickinson (1970), reaches the
same conclusion. However, both of these studies
use a wind profile which extends linearly without
bound. We shall show that the conclusion of total
wave absorption is the consequence of the use of
unbounded winds or local analyses. When bounded
winds are used in a global model the absorption
becomes partial. The presence of nonlinearity near
the critical surface can also significantly alter the
final state as indicated by the works of Murakami
(1974) and Beland (1976). With sufficient non-
linearity the critical surface can evolve into a
perfect ‘‘reflector’’,? a state predicted by Benney
and Bergeron (1969). However, no estimate of the
magnitude of nonlinearity versus viscosity in the
real atmosphere has been given in the literature.
As a‘result there has existed considerable uncer-
tainty concerning reflective versus the absorbing
nature of CL. An unresolved question has been: Is
the critical layer in the real atmosphere a viscosity
dominated one, or is it nonlinearity dominated?
A probable answer is provided by the study in this
paper.

* T. Wart, in a private communication, suggested cz;.ution in
using the word ‘“‘reflection’”” when referring to a CL which does
not actually reflect, but by not absorbing, merely permits the
southern boundary to do the reflecting.
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A comprehensive study of wave absorptions and
reflections by the CL will be undertaken here. We
shall first reexamine Dickinson’s (1968) wave ab-
sorption problem under the more realistic condition
of bounded winds. A range of possible environ-
mental conditions will be used in the present study
in order to determine the response of the CL under
various conditions. Both barotropic and nonbaro-
tropic waves will be considered. Also both the case
of one and two CL’s will be investigated. Finally,
nonlinearities of various'magnitudes will be intro-
duced near the critical layer and possible responses
studied. The time evolution of the mean zonal flow
under wave-mean flow interactions will, however,
not be considered here [but see Geisler and
Dickinson (1974), Beland (1976), Warn and Warn
(1978) and Stewartson (1978)].2

In Section 2, we show how the three-dimensional
primitive equations on a sphere can be reduced,
under appropriate assumptions, to the two-dimen-
sional barotropic vorticity equation commonly used
in critical layer calculations. Prior to this, the ques-
tion about the relevance of the idealized equation
for a real atmospheric situation has often been
raised. On the other hand, in the outer region (the
region away from the critical layer), because of the
fact that the domain of interest for the planetary
waves includes the equatorial region, the geo-
strophic approximation does not seem appropriate.
Also there is no a priori assurance that the
sphericity of the earth may not play a significant
part in the calculations. Consequently, the primitive
equations on the sphere are again used for the outer
region, though the waves in the outer region are
assumed to be linear and inviscid. The resulting
outer equations are nonseparable in the presence of
both vertical and meridional shears. In the present
study, we have obtained separability by assuming
that the zonal wind is a function of only latitude
in each layer of the atmosphere. This model cannot
treat the problem of a horizontally aligned CL, for
which presumably a different set of approximation
can be used. In Section 10, the applicability of the
present model to the more general problem of two-
dimensional shears is discussed; it seems that our
results on wave reflections from the zero-wind line
are equally applicable to the more general case,
provided that the zero-wind line is oriented more or

3 The validity of the assumption made here that the steady
state in the outer (away from the critical layer) region can be
reached within a time shorter than the meteorological time
scales of interest is still open to debate. However, a recent
numerical calculation by Beland (1978) seems to give some sup-
port to the assumption: In less than a week, the waves in the
outer regions settled down to a quasi-steady state and experi-
enced a phase shift close to that predicted by steady-state
theory, even though the critical layer may still be highly non-
steady.
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less vertically. In Section 3, the solution near the
CL is given. Here use has been made of the ex-
isting result of Haberman (1972) on nonlinear vis-
cous critical layers for nonrotating flows; the rele-
vance to the present problem is discussed in the
Appendix, where appropriate modifications for ro-
tating flows are also given. In Section 4 an estimate
of the relative magnitude of nonlinearity versus
viscosity in the critical layer is given. It is shown
that, under conditions appropriate to the earth’s
atmosphere, nonlinearity is the dominant mecha-
nism in the critical layer. That nonlinearity cannot
be justifiably neglected in any calculation involving
the zero-wind line in the atmosphere is the important
conclusion of this section. The reflectivity of the
zero-wind line to incident planetary waves is cal-
culated in Sections 5 and 6. In Section 5 a very
simple model on an equatorial B-plane is used to
illustrate the procedure involved, and Section 6
modifies the results to include the more general

‘case of a nonbarotropic wave on a sphere. Sec-

tions 7 and 8 contain the results of numerical
evaluations of the reflectivity under a variety of
atmospheric conditions and show that, contrary to
common belief, almost perfect reflections can be
achieved when nonlinearity of the relevant magni-
tude is introduced in the critical layer. The fact
that the CL turns out to be nonabsorbing paves
the way for a discussion of quasi-normal modes
in the singular waveguide, and Section 9 is devoted
to this purpose. In particular, an approximate quan-
tization condition for the waves in the singular
waveguide is derived and it is suggested that this
approximate condition be used (in the absence of
adequate resolution for the critical layer) instead of
either the artificial wall or the absorbing side
boundary conditions currently in use.

2. The governing equations

The following viscous rionlinear primitive equa-
tions of motion on a sphere (Phillips, 1966) (in-
cluding the energy equation) will be used (a list of
symbols is given in Appendix A):

iu_—(2Q+ “ )singov
dt a cosge
-1 9 4.p 1)
a cosg oA
iv+(29+ “ )singou
dt a cose
=—i—a—<I>+F¢, Q) .
a d¢
0 R/Cp
¢, Lo =o, OET(pO—()) )
dat p
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In log p coordinates

0
Z*Eln(pO()) i @)
p
the substantial derivative can be written as
. 0 0 0
4_0, 4 9,29 2
dt 0t acosp O\ a Op 0z*
where w* = dz*/dt is the vertical ‘‘velocity’’ in the

logp coordinate system. ®is the geopotential height,
and is related to the temperature T through

2 oy

6
pye ©)

for a hydrostatic atmosphere. The law of conserva-
tion of mass takes the form

9
Vou+ (__ - l)w* =0,
oz*

while the horizontal divergence V-u is given by

™)

Vo=

1 9 d
u + — (v cosyp)
a cosy N d¢
Eqgs. (1), (2), 3), (6) and (7) constitute a complete
set of equations if the viscous forces can be param-
eterized in terms of the dependent variables. The
form of parameterization that is used in this study is

1 0

F, =vwWu +v— u,
a2 62*2
1 &

F, =1V + v — v,
a2 62*2

where
a?ve =

1 & 1 ( d )
— + CosS¢p —
cos?p N2 cosp dp O
Here v denotes the horizontal eddy diffusivity and
v’ that in the vertical direction. It is assumed, be-
cause of the difference in vertical and horizontal
scales in the earth’s atmosphere, that

Z=rviv<l.

The viscous nonlinear equation applicable in the
critical layer will now be derived from the primitive
equations. We let { denote the vertical component
of the relative vorticity, i.e.,

{=k'VXxu
1 d 9
= — 0 —— (u COS(p)}
a cose| O\ dp

Egs. (1) and (2) can be combined to yield

s fl+ @+ fVu
dt
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[— (w* cosyp) —u
a cosp| Oy az*
2
-iw*—?—v]zv(vz+6’“’ )g, ®)
oA oz* 9z*2
where
f= 2(9 + ) sing ~ 20 sing
a cose

is the Coriolis parameter. To reduce Eq. (8) further
(in particular we wish to show V-u — 0) one needs
to make some assumptions concerning the orienta-
tion of the CL and the flow outside the critical layer.
We assume that the flow away from the critical
layer is linear and inviscid and attempt to match
this ‘‘outer’’ solution to the solution of Eq. (8) in-
side the critical layer. We make the additional
assumption that the CL is vertically oriented and
that the vertical shear of the mean zonal flow
i,~ is negligible near the CL. Under these assump-
tions, the linearized outer equations derived from
Egs. (1) and (2) are
4] u a1\,
— + —u
(Gt a cose 3)\)

20
- {20 + — cotp ( )J singv’
a cose a cosy

@', (9)

a
a cosg O\

(8 u ] ) ,

—+ — v

0t -a cosp O\
2i

+ [29 + ] singu’ =
a cosp

where A is the zonal average of A, and A’ is given by

A=A+ €A,

19 @', (10)
a d¢

where
0<e<1

is a small-amplitude parameter. Assuming steady
wave solutions of the form eV where o is the
frequency and s the zonal wavenumber of the wave,
Egs. (9) and (10) can be combined to yield

[ A iOA- ’
Vou=V-u _ZQ_%EFM[(I‘) 1, (11)
where
. i
og=0+s
a cose

is the Doppler-shifted frequency, and the operator
F, is given by

F,= _{—_(1 —#) i:|
op A o
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1 o /f s? d S -
—— | + —, (2 (—— - 1) Z..I1S] + Z =0, 18
[&/s ou ( A ) A(l — y.z)} ) dz* ! ] 40%* (18
with : ,
_ where the Lamb’s parameter
Mm = sing, 40242
1 €=
= g 1% — fal, gh
. has been used as a separation constant; 4 defined by
_s(a 7] . the above equality is called the equivalent depth of
f= + 2 cosp Sing, the wave mode.* Eq. (17) can be recognized as in
the same form as the Laplace tidal equation. It
—a2(a + u ino — cos. 0 u shall be called the modified Laplace tidal equation,
9= a cosg sthe ¢ @ a cosg) as it includes the effect of the meridional shear of

Since the CL is defined as the location where the
Doppler-shifted frequency is zero, Eq. (11) would
imply that the flow becomes nondivergent as the CL
is approached, i.e.,
Vau—>0-as 6—0

provided that one can show F,[®’'] is bounded near
the CL. To show this, one needs the linearized
form of the continuity and energy equations:

1 d d
[—u’ + — (v’ cosyp)
a cosp| O\ (9(,0»
+ (—a— - l)w* =0, (13)

0z*

(14)

(a NTE}
— 4+ -
0t a cosg OA
In Eq. (14),

) e+ Sw* =

0
S =RT — Iné
oz*

is called the stability parameter. The divergence
V-u’ can thus alternatively be expressed as

V' = —(i - l)w*
az*

d io
=— - 1) — P;« 15
(62* )(S ) (1)

Egs: (11) and (15) then give
1 i} 1 '

— F - [— - 1) —®,.) =0. (16
Tl ] (62* )(S ) (1

Eq. (16) is_separable if it is assumed that § is a
function of z* only. On writing

D' (,2*) = Z(z*)d(w),

Eq. (16) can be separated into the following hori-
zontal and vertical equations: ’

Fd(w] + ed(p) = 0, 17

the mean zonal flow.

Eq. (17) has a logarithmic singularity at the CL.:
= pe, where d(u,) = 0. Therefore the solution
has a singular derivative but & itself is bounded at
@ = we. Hence

F,[®] = —ed(u) is bounded at u = u,
and so from Eq. (11),

Vu—->0 as 6&—0.

We have thus shown that the waves become non-
divergent as the CL is approached, even if they are
divergent away from it.

The waves also become two-dimensional, as Eq.
(14) shows, i.e.,

w¥—=>0 as & — 0.

Note that the above results do not apply to waves
that are fully nonlinear away from the CL. This fully
nonlinear case has recently been treated numerically
by Ward (1974). These waves would presumably
remain three-dimensional and nonbarotropic near
the CL if they are so away from it. Also we have
not ruled out the possibility that the waves again
can become three-dimensional and divergent well

“within the critical layer, where the linear inviscid

expression for the V-u used above long ceases to be
valid. Such a three-dimensional nonlinear inner solu-
tion is not sought for here, as the simpler two-
dimensional solution will satisfy the inner equation
and the matching conditions. It should be kept in
mind, however, that by not considering the three-
dimensional case, one eliminates the mechanism by
which the nonlinear flow inside the critical layer
can become unstable to secondary inertial insta-
bilities, which are three-dimensional in nature.
Using the results

Viu—-0 and w*— 0

4 Eq. (17) implies (i6/gh)®’ + divu’ = 0, which is just the con-
tinuity equation for an incompressible ocean of depth 4. All the
meridional structure equations can be alternatively derived using
the two momentum equations and this equivalent continuity
equation alone.
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and the fact that the u-variations are more important
than the z*-variations near the CL, the equation
applicable in the critical layer can be derived from
Eq. (8); the result is the nonlinear barotropic
vorticity equation

] i] 1 i)
[5 (a6<p )a cosp OA

' 0
N T
a cosg O\ adyp adep
0 92
X — ¥ = u(V2 + &2 )Vz\lf, 19
ady atdz*?

where ¥ is the streamfunction defined by

a
Y, u=—-——1".
aox ade

v COSp = (20)

Furthermore, since Eq. (19) is to be used in a
limited region only, local coordinates x and y can
be used. With

dx = a cospd\ and dy = ade,
Eq. (19) becomes

(i - \Ify_a_ + v, _a_)
or Ox dy

X (VAW + f) — wiV¥,.. = vV 2V20, (21)

where
2 2 2
V2=—a—+-a—, V=V + & 0 .

Ax2 dy? aoz*?
These local approximations cannot be used on the
outer equations since the outer solutions should
have a greater region of validity; therefore the
effects of spherical geometry cannot be neglected,
especially for the long planetary waves under con-
sideration. Except for the additional ‘‘turning and
twisting’’ term w}¥,,. and the extra fterm, Eq. (21)
is almost the same as the two-dimensional baro-
tropic vorticity equation considered by Benney and
Bergeron (1969) and Haberman (1972). It reduces
(in the absence of f) in its linear limit to the Orr-
Sommerfeld equation in classical hydrodynamic sta-
bility theory (see Lin, 1955). It will be shown in
Appendix B, where the asymptotic solution of the
inner and outer equation is treated, that the ‘‘turn-
ing and twisting’’ term has no effect on the matched
asymptotics to the orders considered. On the other
hand, the Coriolis term does enter the matched
asymptotics, but it turns out that the presence of
the Coriolis term in the present equation does not
alter the results significantly; it merely changes the
curvature term i, to (i,, — B), where 8 is dfldy
evaluated at the CL. This will be shown in Ap-
pendix B.
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For the outer region (i.e., away from CL) we
shall use the separable linear inviscid equation
[e.g., Eq. (17)] in the present study. The «’ and
v are related to ® through

1 a
7 - p)— & - Acb}, 22
&= o [q(l V«)aM oy ( ,)

- 40%%A

where

b d [&(1 - m)inin - sfd ] , (23
o

i =u' cosgla, b =70 cosgla.

Equations involving & or § alone can also be derived.
We find that in most of our analysis it is more
convenient to use d as the dependent variable in
the equation

d{(1~p,2) d 1‘;]+[ 1 d
du y du o/s d,u,(

A 2
+ - ——sz——}v =0, 4
y (- pty
where
a®(G/ls)?
y=1-(0-p)——.
gh
The other variables are related to » through
- ."—[1(1 L +qﬁ]
isylL s d

and
: — 2 2f N 2
12=l(l ;L)[_(i_ﬁ+a(a/s)_‘z_f)].
sy du gh &/s

3. Outer solutions: Series expansion near CL

In this section and the following section, the linear
inviscid equations in a meridionally sheared zonal
flow possessing a vertical oriented CL are to be
solved and matched to the nonlinear viscous solu-
tion in the critical layer. Eq. (24) is used as the
governing equation, subject to the boundary condi-
tions that the solutions are finite at the poles,
which imply

=0 at pu= =l 25)

We are interested in the case where the zero(es)
of the Doppler-shifted frequency (or & — c,;, where
cpn 1S the phase speed of the wave) exists inside
the domain —1 < u < 1. Eq. (24) then possesses
logarithmic singularities at these points. For sta-
tionary waves (i.e., o = 0) the singularity occurs
at the zero-wind line, while for slowly moving
waves, the singularity will be shifted somewhat. We
let the singularity be located at u = u,. and define

X = M — M-
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We now let f(x) and g(x) be the two linearly inde-
pendent fundamental solutions to Eq. (24). They
have the following expansions near the singularity
x =0

£60 =x+ 3, anc’ 26)

200 =1+ 3 bux = feInlxlf00. @)

In (27), Bc is the dimensionless mean vorticity
gradient at CL, and is given by

4 4
) I d
B = B, (28)
1 -un? d _
—_—
dp He
where
: .
w =
a cose

is the angular velocity of the mean zonal flow and

d i d d

—q =20 + @ ———[(l - u?) —d)}

du du du

is the mean vorticity gradient; its counterpart on a
B-plane is 8 — a@,,. It is assumed here that

He

is nonzero. Without loss of generality @; is taken
to be positive. The recursion relations for a, and
b, can be obtained by substituting (26) and (27) into
Eq. (24). Here we just note that a, and b, can be
taken to be real, so that both f(x) and g(x) are
real functions. A similar set of fundamental solutions
has been used by Benney and Bergeron (1969) for
the simple shear flow problem, and Tollmien (1935)
gave the first several terms in the expansions, also
for the simple shear flow problem.

The general solution to Eq. (24) can be expressed
as a linear combination of the regular and irregular
functions f(x) and g(x):

b = [fu(x) = Af(x) + Bg(x),
_(x) = Af(X) + B'g(X),

In Egs. (29) and (30), the solutions are allowed to
be different on different sides of the critical layer.
The relation between the two sets of constants
(A,B) and (A’,B’) is to be found by matching (29)
and (30) to the solution of the fourth-order, viscous,
nonlinear equation (21).

For the case where nonlinearity is absent, the
asymptotic results of Lin (1957), Wasow (1950) and

x>0
x < 0.

(29)
(30
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many others suggest that the relations
A" =A —i(-mB.B
B' =B

are appropriate. (Note that correction has been
made for the effect of the Coriolis force here.) Eq.
(31) implies that the solution remains continuous,
i.e., 0,(0) = 9_(0), but there is a discontinuity in the
phase of the solutions when the singularity is
crossed. The relations in (31) have traditionally been
taken to mean that the solutions on different sides
of the singularity can be connected by analytic
continuation in an appropriately cut complex plane.
That is, the solution to Eq. (24) can be rewritten
in the complex plane as

€Y

500 =Af() + Bl + 3 bux* — B Inxf OOl
n=2

[Note that the absolute sign in g(x) has been re-
moved.] This is then taken to be valid on either side
of the singularity. The —7 phase shift can be ac-
counted for by the fact that In(—x) = Iny — iwina
cut plane where the +7 phase shift is excluded.

This result has been used so extensively in the
literature that one tends to feel justified in demand-
ing the analytic continuity of solutions whenever a
singularity is encountered, forgetting that the phase
shift has a real physical origin. That the solution
cannot always be analytically continued is amply
demonstrated by the case considered by Benney and
Bergeron (1969). They showed that when non-
linearity is the dominant mechanism in the critical
layer, the phase shift vanishes, giving A’ = A
and B’ = B.

The general problem of determining the relation
between (A,B) and (A’,B') when both viscous and
nonlinear mechanisms are present is more difficult.
In Appendix B, we have extended Haberman’s
treatment of this problem to include the Coriolis
effect. The result indicates that the constants are
related through

A A :(;S;BCB] ' 32)

B' =B
Here ¢ can be interpreted as a phase shift across the
critical layer. It is shown by Haberman to be a
function of the viscosity/nonlinearity ratio A. only,
ie., ¢ = ¢(\.), where ¢ varies continuously and
monotonically from the value zero at A, — 0 (non-
linear limit) to the value — at A, — o (the viscous
limit). Fig. 9, taken from Haberman (1972), depicts
the dependence of ¢ on A.. An important question
remains: What is the value of A, relevant to the
earth’s atmosphere? In the next section, A, will be
redefined and its value estimated for the atmospheric
case.
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4. Combined effect of nonlinearity and viscosity at
the critical layer

In Appendix B, the parameter A., the ratio of
viscosity to nonlinearity, is found to be

_ 1/Re
vV /U)3/2

where V is the typical meridional velocity of the
wave outside the critical layer and Re, the Reynold’s
number, is defined as

Re = UL/v,

with U = |L2;|a/s being the velocity scale and
L = ag/s the length scale. The difficulty in giving an
estimate for Re (and hence A.) lies in the fact v,
the coefficient of viscosity (or eddy diffusivity), is
not a well-determined quantity from available ob-
servations. Values of v that have been used in the
literature range from 10? to 10° cm? s, an exceed-
ingly wide range. Nonetheless, it is known from
numerical experiments that the upper limit for »
seems to be not much larger than 10° cm? s,
otherwise the simulated result would bear no re-
semblance to the observed atmosphere. We will
show that for values of v as high as 10° cm? s,
the nonlinearity is still at least an order of mag-
nitude larger than the viscosity in the critical layer.
The case of the longest waves (s = 1) is considered
first. We take a typical value for the meridional
shear iz; to be 1 m s™! per degree of latitude; then
U=60m s™! and L = 6400 km. Thus Re = 4000
when the value 10° cm? s™' is used for ». To estimate
the magnitude of the nonlinearity we take a typical
value for the meridional velocity tobe V = 5 m s™?,
so that (V/U)*? = 2 x 1072, Comparing this with
1/Re, we see that \, = 1072, suggesting that non-
linearity should be the dominant mechanism in the
critical layer for the long waves. The shorter waves
are slightly more susceptible to the influence of
viscosity. For s > 1, we rewrite (33) as

o= et ||
¢ (laz]aya / \|al)a '

The term in the brackets in (34) is just the A. for
s = 1, so that

, (33)

C

(34)

Ae(s) = sV (s = 1). 35
Thus

Ao = 512 x 1072,

It is seen that for those long waves that are able
to reach the zero-wind line (viz.,s = 1, 2, 3 and 4),
nonlinearity is at least an order of magnitude greater
than viscosity.

For small values of ., Haberman (1972) derived
an asymptotic formula for the phase shift ¢:

b= —-42x A for A <1.
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It is thus seen that —¢ is quite small for long waves
under typical atmospheric conditions, implying that
Benney ahd Bergeron (1969)’s nonlinear limit is
closer to the conditions of the real atmosphere than
the viscous limit of ¢ = —7 taken over from
classical hydrodynamics.

5. The reflectivity of the critical layer

In this and the following section, the reflection
coefficient of the CL will be calculated for a full
range of values of the phase shift ¢. One would
have expected to recover the absorption result of
Dickinson (1968) when ¢ is set to —ar, but it does
not turn out to be so. Even in this linear limit,
the reflectivity can take on a range of values de-
pending on the mean wind profile. To examine this
apparent discrepancy, the simple case of a baro-
tropic fluid on a B-plane is treated first. This is the
same case considered by Dickinson. The more
general cases (which include spherical geometry,
nonbarotropicity and more general wind profiles)
will be considered in Section 6 as modifications to
this case.

The governing equation is the barotropic vorticity
equation on an equatorial 8-plane

. .
LN [—'8 Do sz]v’ =0, (3
dy* i = Cpn

where y is the northward tangential coordinate
made dimensionless by a and 8 = 2Qa. The fol-

lowing simple profile for i(y) is used:

] Ue'(y =¥e), Y2Sysy;
@) —con= 1 ly)) —com=Uy, y=y,  (37)
iu(ys) — con=U,, y =y,.

It is assumed that the CL is located between y,
and y,, i.e., y, <y, < y,. In the constant westerly
wind region y = y,, the solution is simply

v = Ul(}’) = Alei)q(y-yx) + Ble—ih(y—yn’

A= {__’3__ _ sz]llz’
u(y:) — cpn

and A e~ represents a wave propagating to the
north, and B,e~¥=¥0 3 southward propagating
wave. Treating the southward propagating wave as
an incident wave, the reflectivity of the CL is then
measured by

(38)

where

amplitude of the reflected wave
amplitude of the incident wave
—_ Al
1B,

R =

. 39)
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To calculate R, one needs to know the behavior of
the solution near the CL and the boundary condition
applied at the southern end of the domain.

For waves on an infinite B-plane, the southern
boundary condition is that the solution is bounded,
implying the following solution fory < y,:

Dz()’) = Aze—xz(yz—y),

Ky = [—E—— + sz]m.
Con — U(y2)

In the shear zone, y, <y < y,, the solution can be
expressed in terms of the f and g functions de-
fined in (26) and (27), i.e.,

(40)

v =

b = [v+(y) =Af( = ye) + Bg(y —ye),y >ye, (41)
v-(y) =Af(» —ye) + B'g(y —yo),y <y., (42)
where
A'=A - idB.B,

B' =B,

A :8 — Uy

BC = _ H
Uy v,

fOO =x+ éanx",
800 =1+ 3 bux' = BeIn|x|£00.

For a linear profile,® the recursion relations for a,
and b, have only three terms:

n(n + Dags, + Bean —s%a,_, =0 for n=2 (43)
with N
a; = 1 aIld as, = —VZBC
and :
n(n + Dbyry + Be by — 5%y = B.2n + Day,,, (44)
where

bo=1, b, =0 and b, = ¥%(s — 3%:5:2).

The matching of the solutions in various regions
is accomplished by requiring that
. _ i
v and —ov - —2>— ' 45)
dy U — Cpp

be continuous across y, and y,, yielding

Al gy Ao

RZ=1+ . 46
B, r? (46)

5 Alternatively, Whitaker functions can be used as funda-
mental solutions instead of f and g.
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where
1 . n 2
rt= —P1 " 41— ¢’7\1,3cf1]
o
1 " 2
+ [M(;fl _»\g1) + ¢.30P1]
with subscript 1 referring to evaluation of the func-

tion aty =y, e.g8., fi = f(y; — y.). We have also
defined ‘

., .
PO = —f(0) - —2__ £(x)
dx U = Copn

d . v 47)
qgx) = —gx) ~ ——— g
dx — Cpn
and
o' =-B'/A’
= (p2 — Kzfz)f(fh — Kag3) (48)

Note that the expression for R [Eq. (46)] is
actually more general than it seems from the way it is
derived. The form of (46) is unchanged for a profile
more general than the linear profile assumed. For
any monatomic #(y) in the shear zone y, <y sy,
all the steps leading to Eq. (46) are not altered,
except the recursion relations for a, and b, [Eqs.
(43) and (44)] which become of orders in general
higher than 3. In a similar manner, the effects of
sphericity and nonbarotropicity can also be intro-
duced. This will be the subject of next section, where
it will be shown that the form of Eq. (46) is not
altered even in the presence of these effects. In
particular, the following conclusions seem to be of
general applicability:

1) For B, > 0 (a barotropically stable mean state),
R? is always less than 1 as long as there is some
viscosity in the system so that ¢ < 0. The wave is
(partially) absorbed by the mean flow near the CL.

2) As nonlinearity becomes dominant in the
critical layer, ¢ — 0, and so Eq. (46) implies RZ — 1.
In other words, a nonlinearity dominated CL is-a -
perfectly reflecting surface.

3) Even for a viscosity dominated critical layer,
for which ¢ = —7r a value used by Dickinson (1968),
R is not zero in general. This can be seen more
clearly in the following expression for R2:

R2 = {[0',.—1’ pl - ql + d’Achfl]Z
+ Mo i g - ¢/§cP112}/r2,

which is zero only if the sum of terms in-each pair
of brackets is separately zero. This in general does
not happen. Incidentally, the fact that R > 0 is not
due to the discontinuity in shear at y =y, in the
present simple model. If the flow is continuously dif-
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ferentiable, one simply replaces p by df/dy and
g by dg/dy (see next section for a more general
derivation of R?). The conclusion of R? > 0 is un-
affected.

4) If the mean potential vorticity gradient is
negative at the CL, i.e., B, < 0, the reflectivity R is
greater than 1, as long as there is some viscosity
in the critical layer. The wave is said to be over-
reflected from the CL. It turns out that wave over-
reflection is intimately related to instability.® A
separate paper (Lindzen and Tung, 1978) discusses
the relation of overreflection to instability. In this
paper we will restrict our discussions to the stable
case, i.e. 8. > 0.

6. Modifications for the spherical and nonbarotropic
cases

For nonbarotropic waves on the sphere, the gov-
erning equation [Eq. (24)] can be written in the
Mercator coordinate y defined by tanhy = u as

rwE sl
_) 7| + _
dy Ly dy \lo—cdy\y

h 2
+fé_seLZX_s_]f,=() (49)
Y Y
subject to the boundary conditions
D—>e W as y-— o, (50)

The equation reduces to a rather simple form for
the case of a barotropic fluid for which € = 0, viz.,

4,
dz d
Lo+ _elh=o 1)
dy? ®—C

The form of Eq. (51) is almost identical to the equa-
tion on an equatorial B-plane [cf. Eq. (36)], ex-
cept now g,, the mean vorticity gradient, is more
complicated in form:

—d—q = 2(Q + @) sechy — @,,. (52)
dy

Near the CL (i.e., the location where @ — ¢ = 0),
the solution to Eq. (49) can again be written in a
series form [see Egs. (26), (27),-(28), (29), (30)
and (32)]. The recursion relations fora, and b, are in
general more complicated. For our purpose, the
series solutions (29) and (30) suffer two drawbacks.
First, it is difficult to define a reflectivity R, as the
incident and reflected waves cannot be easily

¢ Incidentally, it can be shown that barotropic instability dis-
appears when ¢ — 0. It is an implicit assumption in the
classical theories of hydrodynamic instability that viscosity is
present at least in the critical layer.
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separated. Second, the radius of convergence for
the series is usually rather limited. Matching to
solutions with different domains of validity is neces-
sary. For convenience we pick the patching points
to be at the westerly and easterly wind maxima
y, and y,, respectively. For y < y,, the solution
to Eq. (49) that satisfies the south polar boundary
condition is

5=Mw=WWMmejzmn@y (53)

y

where K(y) satisfies

K2 + di K = —A¥y), ReK >0, (54)
Yy
where
Ay) = Y i(i) — 52 + €A sech?y
@ —c dy\vy

1 d? ')?
ﬂ——wmﬁqwm
Y dy* 2y
The zonal flow may or may not be discontinu-

ously differentiable. Allowing for a discontinuity in
d/dy @ aty = y,, the matching conditions

A~ Wy

—_— —

dy @w—C
give

[Y"*(y2) Azl =Af (y2 —yc) + B'g(y: —yc), (57)
K(y2)[y"*(y2)A:l =A'p(ys —~y.) +B'q(y; — y.). (58)
Here

v and » continuous (56)

4 )

p00 =L o0 - =20, (59)
dx a(x) — ¢
d Dy

a(x) = —g(x) — —[—w]—— g(> (60)
dx ‘ a(x) — ¢

and [@,] is the jump in @, as one crosses the dis-
continuity from the side nearer the CL to the other
side of the discontinuity.

On the westerly side of the CL, we want to
write the solution in terms of an incident and re-
flected wave. Since no northern boundary condition
will be applied (as we are interested only in
calculating R, and not in solving an eigenvalue
problem), a local solution will suffice. Assuming the
region near yi{ is smooth, the solution can be
written as

b= 0y(y) = 7”2(y)[A1 exp[i fy A(yl)dy]

wn

W

+ B, exp(—i Jy A(y)dy H (61)
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for y sufficiently close to y7.
Matching at y = y, yields

[71/2()’1)31][(141/31) + 11

=Af(y, —y) + Bg(y: —yo) (62
and _
iIAy )y (y1) B l(A/B) — 1]

= Ap(y1 = ¥e) + Bq(y: — yc). (63)
Note that in Eq. (63), as well as in (58), the fact that
dir/dy vanishes at y,, the westerly jet maximum, and

ys, the easterly jet maximum, has been helpful in
- simplifying the expressions because ' vanishes.
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A(y,) is also simpler, i.e.,

Ay, = % i q(y1)

(O3] C dy
~ 52 + €A sech?y, + 1— .
- 2’y
Defining the reflectivity to be
R = i s
B,

one obtains from the matching conditions the de-
sired formula

4.,

’

where
o' = - B'/A" = (p, — Kaf2)(q: — Kag2). (65)

Here K, = K(y3). Iftheregiony < y7, is sufficiently
smooth, so that

‘_d— KIK?| <1,
dy

then K can be replaced by its WKB solution of
Eq. (59), i.e.,
K, = [-A*(y)]"2. (66)

Eq. (65) has the same form as Eq. (46) for the simple
case on a 3-plane with A and « replaced by A and K.

7. Numerical evaluation of R, the linear case

‘In this section, the reflectivity R will be evaluated
using the formulas given by Eqgs. (46) and (64).
Aside from the factor (1 — u?) = sech?y multiplying
various terms, the governing equation for the
spherical case is, if written in Mercator coordinates,
not much different from the corresponding equation
for the case of an equatorial 8-plane geometry. Here
in evaluating the series for f(x) and g(x) using the
recursion relations, we shall approximate sech?y by
1, so that the results obtained for the 8-plane case
can be carried over to the spherical case. This
approximation seems to be valid because it has been
shown in the previous section that the reflectivity is
a local function dependent on quantities only in the
range y, <y < y,. In the calculations we will pre-
sent, y, and y, are taken to be not too far from the
equator, so in a test calculation where sech?y is not
approximated, the results are not noticeably dif-
ferent from the approximated case.

In examining the numerical results, it is helpful
to remember that the following identifications should

1 P 1 .
[— P — 4y — (bAchfl} + [Al (—,fl - gl) + d),Bcpl]
o o

_, (64)

be made for the spherical case:
y = tanh™'y
Uy =adly), Us=aiy.)
B-effective = a™'(2Q — @,,),,

and a ‘‘linear profile’’ means @(y) = @, (y — y.).

The reflectivity R as given by Eq. (46) is first
evaluated for a profile that is linear between y, and
y,. It is the simplest possible continuous profile
that contains a CL; yet it is found to possess many
of the features of the other more complicated pro-
files, insofar as the reflectivity is concerned. This is
due to the fact that R, as given by Eq. (46), does
not depend on any quantity beyond the range y,
< y =< y,, and in this range, because of the presence
of the CL, the most significant contribution is from
the linear part of the profile. Dickinson (1968) also
treated the linear wind case as the limiting form near
the singularity. However, his main conclusion that
the waves are totally absorbed is a result of the
implicit assumption that the wind magnitudes in-
crease linearly without bound. This rather un-
realistic assumption is removed from the present
study by placing bounds &, and &, on the zonal wind,
with &, being the westerly wind maximum and i,
the easterly wind maximum.

Fig. 1 shows the result for zonal wavenumbers
s = 1-5. The phase shift ¢ is set to be —m, the
viscous limit, in this figure. The easterly jet max-
imum is taken to be —10 m s~ relative to the wave,
i.e., U, = —10 m s~!, with the westerly jet max-
imum taking on a range of possible tropospheric
and stratospheric wind values. The width of the
shear zone (i.e., the region of linear variation), is
taken to be 25° of latitude. Narrower shear zones
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Uz=-10 m/s

Uy=0 TO 300 m/s
SHEAR ZONE WIDTH
=25 DEG. LAT.

U m/s

Fi1G. 1. Reflectivity R vs U, (the westerly wind maximum) for U, (the easterly
wind maximum) fixed and the width of the shear zone fixed, and zonal wave-

numbers = 1,2,3,4and 5. ¢ = —7.

would give higher reflectivities, with R — 1 as the
width goes to zero (giving a Helmoltz profile). With
the width of the shear zone fixed, an increase in
the westerly jet speed U, increases the local shear
at the CL, and R is in general increased as a
result. It is seen in Fig. 1 that for low values of
U, commonly observed in the troposphere, the re-
flectivity is generally very low: R ~ 20%. As U,
takes on higher values appropriate for the lower
stratosphere (U, ~ 50 m s7'), the shorter waves
(s = 4) cease to propagate meridionally. Hence
these waves will not see their CL at higher wind
speeds. There is a rather rapid increase in re-
flectivity for longer waves when U, takes on still
higher values. For waves with zonal wavenumbers
s =1 and s = 2, the CL becomes an almost per-
fect reflector when U, exceeds 100 m s~!. These
wind magnitudes are rather high? but they are
nevertheless often observed in the upper strato-
sphere preceding the onset of sudden warming
events. In any case, the conclusion reached by
Dickinson concerning the nonexistence of normal
modes continues to hold for the present case,
since under realistic wind conditions, the reflectivity
of the CL cannot be made to be uniformly high
throughout both the stratosphere and troposphere.
Introducing nonlinearity in the critical layer will
change this conclusion. Before we present the non-
linear results, however, we would like to vary other
parameters and see if the reflectivity can be im-
proved in the linear viscous case.

” When a value of, say, 100 m s~! is used for U,, one should
bear in mind that the actual velocity &, = U, cosg, is lower on
the sphere; e.g., #; = 87 m s}, if the jet maximum is located at
30°N.

Fig. 2 is the same for s = 1 as Fig. 1, but now
B-effective = B — i,,(y.) is allowed to be different
from B, so that we can assess the effects of wind
curvature on the reflectivity. Strictly speaking, -
effective should be the same as S for a linear profile,
but if the linear profile is taken to be a first ap-
proximation to the real zonal wind near the CL, then
B-effective can have values different from 8 depend-
ing on the local curvature of the wind. For U, with
stratospheric values (U, = 40 ms™!), the reflectivity
generally increases rapidly with decreasing values of
B-effective. Thus it seems that quasi-normal modes
can still form for U; < 100 m s™! provided that 8-
effective is small. For U, between ~30-40 m s},
the behavior is rather unexpected: R decreases as
B-effective is decreased, until B-effective becomes

BETA-EFFECTIVE/BETA:

WAVENUMBER = 1
Uz=-10 m/s

U, m/s

F1G. 2. Reflectivity R vs B-effective [=(8 — iyy)y 1 fors
case B-effective/@ = 1.0 is the same as in Fig. 1. ¢
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very small; then R would approach 1 as dictated
by Eq. (46). For smaller U,’s, the variation of R
with B-effective returns to normal, but the re-
flectivities are in general still quite low, unless
(B-effective)/B becomes much less than 10%. Geisler

and Dickinson (1974) studied the quasi-linear evolu--

tion of the CL and found that a positive B-effective
will decrease in response to the absorption of wave
energy, which tends to increase the curvature of
the zonal wind near the CL. Similarly, a negative
B-effective will become less negative locally at the
CL due to the extraction of energy from the mean
flow by the wave. They speculated that an end re-
sult of such feedback mechanisms might be a
statistically small value of B-effective near the
zero-wind line. Objections to the aforementioned re-
sult have recently been raised (Beland, 1976; Warn
and Warn, 1977) on the ground that nonlinear wave-
wave interactions ignored by Geisler and Dickinson
may substantially change the evolution of the CL.

So far only the case of one CL has been con-
sidered. This is the relevant case for waves in the
stratosphere and mesosphere. In the troposphere,
however, there usually exist two CL’s, with easterly
wind in the equatorial region and westerlies in both
the northern and southern latitudes. The calculation
for the reflectivity in the presence of two CL’s has
been given in Tung (1977), where it is found, using
a parabolic profile, that the presence of an additional
westerly zone in the Southern Hemisphere does not
change the reflectivity in any significant manner.
This is a consequence of the fact that the evanes-
cent region (i.e., the easterly zone) in the at-
mosphere is wide enough so that changes to the
south of this region have only minimal effect on
the reflectivity to the north.

The nonbarotropic case is next considered. The
details of the calculation will not be given here, but
they can also be found in Tung (1977). The results
show that positive finite equivalent depths in general
lower the reflectivity, while negative finite equiv-
alent depths increase it, i.e.,

R(e>0) <R(e=0) <R(e<0). "

This trend is depicted in Fig. 3 for s = 1. For suf-
ficiently small negative equivalent depths, R can be
increased appreciably. Unfortunately, the equiv-
alent depth is not a free parameter since its value
is determined from the vertical structure equation.
It turns out that € is usually positive for most
of the planetary scale slow moving waves that we
are considering. € can occasionally become slightly
negative when the westerly wind is very strong. In
general there do not exist solutions with large
negative €’s (or small negative h’s) for westerly
zonal winds. We can therefore conclude that for the
waves that are of interest to us, the reflectivity is
not improved when the nonbarotropicity of the
waves is taken into account.
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FiG. 3. Reflectivity R vs U, for various positive and negative
equivalent depths. The infinite equivalent depth case is the same
asinFig. l. ¢ = -7, 5 = 1.

The problem becomes much more complicated
when € is allowed to be complex, as in the case of
forced waves. In a forced problem, € is to be de-
termined as an eigenvalue in the horizontal struc-
ture equation [Eq. (17) or (24)] when both of the
polar boundary conditions are applied. The details
of the calculation will not be given here and in-
terested readers are again referred to Tung (1977).
In Fig. 4, some of the results are depicted. It
seems that if €;, the imaginary part of €, were at
one’s disposal, the reflectivity could be made arbi-
trarily large. Indeed R is in principle no longer re-
stricted to values less than unity as in the real €
case. The fact is, however, that neither € nor
€, is a free parameter. It is found that in order to
satisfy the polar boundary conditions, €; turns out to
be positive and of the order of unity for planetary
waves of interest. Referring to Fig. 4 it is seen that

1.0 T T T T T T T T
WAVENUMBER =1
= 1 Up=-10m/ss .
WIDTH = 25 DEG. LAT.
o8 T Re€:=0 —
R .

o 4 -
\ Uy in m/s
osl- T .
— 80

I —
e S "
o4 — 60
r -+ S0
—
0.2 + A R— —
7 [4 T ®
40 30 20 10
il ] j ] Lo 1 1
-20 ~10 (o] 10 20
Im(€)

F1G. 4. Variation of R as a function of Ime, the imaginary part of
the Lamb’s parameter, for values of U, from 10 to 80 m s~*.
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for €; of order of unity, the change in reflectivity is .

almost unnoticeable, and in any case, R cannot be
improved over that of the real € case.

The effect of wave absorption at the CL is not as
apparent for the forced waves as for the free waves.
The existence of normal modes is no longer an issue
for the forced waves. What is affected, however, is
the vertical propagation of these waves. One would
expect that, as the wave propagates upward from
the lower boundary where it is forced, its energy
density will decrease with height if wave absorp-
tion occurs at one of its lateral boundaries. Sim-
mons (1974) calculates the ‘‘vertical penetration’’ of
the stationary planetary waves and finds that the
vertical distance penetrated by a wave in the pres-
ence of an absorbing zero-wind line is only slightly
less than that achieved by a wave in the absence
of such a singularity. The numerical results of Mat-
suno (1970) also tend to indicate that a forced
wave’s vertical propagation is not drastically dif-
ferent from what one may expect if the zero-wind
line is replaced by a reflecting wall. The question of
why it is so has rarely been raised. The answer
seems to be the following: First, the wave absorp-
tion at the zero-wind line is never total and for
partially reflected waves, ¢; is finite and turns out to
be of order unity. Second, since the vertical propa-
gation of the wave is governed by an equation

the wave solution has the form

Z x p?'i2piNz"

SG,— . € 1712
A= l: (1 +1i —) - —:l ’
4Q0%a? €, 4
and the effect of a nonzero €; is to introduce a
decaying part

Se
403%q2

Z =0,

where

e~ N

For an order 1 ¢, €/€, is usually much less than 1
for the waves of interest; thus so one has

S 1/2 €
Ai == —t
(4ma2) 2e,1

~10"t x &

€r1/2

Thus the effect of an order 1 €; on a forced wave is
felt only after the wave has propagated many scale-
heights.

It seems reasonable to conclude here that due to
the fact that the adsorption at the CL is not total as
commonly believed, but at least 20% of the incident
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waves are reflected, neither the lifetimes® of the
free waves nor the propagation properties of the
forced waves are significantly affected. However,
with a major portion of the wave energy absorbed,
as in the tropospheric case, no wave energy buildup
is possible, and hence resonant waves cannot exist.
The existence of resonant waves requires almost
perfect reflections from the CL, and we have seen
that such a condition is not uniformly met in our
model atmosphere, especially in the lower at-
mosphere which contains most of the wave energy.

All the conclusions reached so far are based on
the assumption that the dominant physical mecha-
nism in the critical layer is viscosity or eddy dif-
fusion; all nonlinear effects have been neglected.
The effect of the presence of nonlinearity at the
critical layer will be treated next.

8. The nonlinear case

The calculations presented in Section 7 are re-
peated for values of ¢ between —# and 0. The nu-
merical calculations are rather easy, since the series
f(x) and g(x) are independent of ¢ and their values
can thus be stored from the linear calculations.

In Figs. 5, 6, 7 and 8, we have plotted the
variation of R vs U, for various values of the phase
shift ¢. The case of ¢ = — has been given in Fig.
1. It is seen that, with a few insignificant excep-
tions, the reflectivities generally increase with de-
creasing values of (—¢/w). For (—¢/7) < 0.1, the CL
becomes a good reflector. For (— /) of the order of
1072, a valued reached for A\, = 1072, the reflectivity

8 It can be shown (see Tung, 1977) that the lifetime 7, of a wave
in the presence of absorption at the CL can be estimated to be

T, =~ (_1@) days x —1—
s n

0.8

0.6

WAVENUMBER =1
Up = -10m/s .
WIDTH OF SHEAR
ZONE = 25 DEG. LAT.

04

o

" (PHASE SHIFT)/(-7T)
ol 1 0 v 10141
o]

50 100
T Uy m/s
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F1G. 5. Reflectivity R vs U, for different phase shifts ¢:
00l s (—¢/m)=<10.5 = 1.
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Fi1G. 6. As in Fig. 5 except fors = 2.

is almost indistinguishable from 1 uniformly for all
values of U,. Since the value of A, in the real
atmosphere is usually less than 1072, the critical
surface for planetary waves in the atmosphere can
be treated as a reflector instead of as an absorber
of wave energy, assuming the waves outside the
critical layer have reached a steady state.

So far the only form of damping considered is eddy
diffusion. It is well known that there exist other
forms of damping, e.g., Ekman pumping and New-
tonian cooling, that have shorter damping time
scales than diffusion. A question that can be raised
is: Does the presence of these other dampings in the
real atmosphere alter the previous result that non-
linearity dominates over viscosity in the critical layer?
Having repeated the matched asymptotics for these
dampings, we find that unlike diffusion, whose ef-
fect becomes increasingly larger as the critical
surface is approached, the magnitudes of other linear
dampings remain the same order in the critical Tayer

001y
e

WAVENUMBER = 3

02 U=-10 m/s a

u WIDTH OF SHEAR ZONE |
(PHASE SHIFT)/(-) =25 DEG. LAT.
o TS NN NN N [N TN SRS NN S NN SR GO B
(o] 50 100 150
. Uy m/s

Fi1G. 7. As in Fig. 5 except for s = 3.
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as away from it. Thus even though dampings like
the Ekman pumping have shorter damping time
scales than diffusion outside the critical layer,
sufficiently far inside the critical layer diffusion
should be more important. It is found that our
previous results of matched asymptotics are not al-
tered unless dampings due to Ekman pumping, etc.,
are so large that they significantly change the outer
solutions so that we no longer have inviscid waves
away from the CL.

9. Nonlinear quantization and the virtual southern
boundary

Now that it has been determined that the critical
layer for planetary waves in the atmosphere is
probably domiinated by nonlinear processes and so is
reflecting, it is meaningful to discuss the eigen-
functions, which can now be treated as ‘‘quasi-
normal modes.”’

The Rossby waves in the singular waveguide of
the atmosphere are bounded on one side by the
North Pole, and on the other side by the singular
surface. The boundary condition near the Pole in-
volves turning points. We denote y, to be the
northernmost turning point, so that

A¥y) =0 at Yy =Yu
A (y) < 0 for y >y,
A*(y) > 0 forsome y <y,.

The solution on the north side of the turning point
should tend asymptotically to the decaying exponen-
tial exp(—s |y r) as y — o, in order to satisfy the
polar boundary condition [Eq. (50)]. The contro-
versial problem of the connection of oscillating to
exponential solutions on the two sides of a turning
point has been discussed in Dingle (1973). Utilizing
his results, it can be shown that the exact solution
satisfying the north polar boundary condition can be
written fory < y,, as

8(y) = Aw(y)[exp(,- f "k dy + iﬂ/4)

'Y

- exp(—i J " kody — i7r/4)} (67

v

where k, and k_ satisfy the Riccatti equations

ki Ed—/q = A%(y), Rek,=0, (68)
y

k.2 + i-dﬁ—k_ = A¥y), Rek_=0, (69
y

as can be shown by substituting (67) into Eq. (49).
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For A%(y) real,® Eqs. (68) and (69) imply that k, and
k_ are complex conjugates of each other, so they can
be rewritten as

ky =k, +ik; and k_ =k, — ik,

where k, and k; are real functions. Observing the
relationship

d
i = — kr/Zkr’
k -

the solution [Eq. (67)] can be put into a simpler form

¥(»)
k(y)

To obtain the quantization condition, the southern
boundary condition has to be applied to (70). Strictly
speaking, the only southern boundary at one’s dis-
posal is the South Pole, where one has

o(y) = C[ ]m sinUy' k.dy + 7r/4] . (70)

v

By) > e as y - —o,

However, various ‘‘virtual southern boundary”’
conditions have been used by those who are only
interested in waves in the westerly region and do
not wish to have to treat the whole domain be-
tween the two poles. One of the common prac-
tices is to put a wall at y = y,, with y, usually
taken as the equator, i.e., y, = 0. Applying the arti-
ficial southern boundary condition

(y) =0 at y =y,

It can be shown that c;, the imaginary part of the phase
speed, is infinitesimally small for an almost perfectly reflecting
CL.

'® Note that unlike the case of gravity waves in stratified
fluids, the integral [¥ k,dy for the present case is well behaved
at the CL. There is no rapid oscillation near the singularity.

K. TUNG

765
to (70) then yields the quantization condition!®
Yy
j kdy + w/ld =nm, n=1,2,3.... (71
Yo
Some of the well-known dispersion formulas are
contained in Eq. (71). For example, one can obtain
Rossby’s dispersion formula by considering the case
of a barotropic wave in the presence of an uniform

zonal wind on an equatorial B-plane. For this case,
we can solve for &, and obtain

1/2
kr = [_Zi - S2] »
U — Cpp
so that (71) gives
_ 2Qa

Cph — - m ’

where
I=1,= (nm — 78y — yo),

with

(ye —yoa

interpreted, in the spirit of the 8-plane approxima-
tion, as the distance between the two boundaries.
Since the artificial wall-boundary condition has no
physical basis! for a general zonal wind profile, it
is desirable to obtain an alternate virtual boundary
condition. The CL seems to be a convenient candi-
date for the location of such a boundary, if it can
be assumed that the critical layer has evolved into a
state in which planetary waves are (almost) per-
fectly reflected. If the CL were a solid wall, the
quantization condition would be simply Eq. (71) with
Yo replaced by y.. But the problem is not so simple:
the CL is not arigid wall, even though it is assumed
to be reflecting. Since ¥ is not necessarily zero at
y = ¥., we modify Eq. (71) to include the correction

Y .
J kdy + wld=nm+0, n=1,2,3..., (72

Ye

where —3/47 < 0 < 7. As far as the waves to the
north of the CL are concerned, the parameter 6
contains all the information about the region to the
south of the singularity. In principle, § is different
for different wavenumbers and for different at-
mospheric conditions south of the CL, and thus
an extensive tabulation of its values is required.
Fortunately, because of the nature of the singularity
at the CL, the value of 9 does not seem to de-
pend too strongly on the particular wind profile
chosen and hence an approximate universal value
seems to be obtainable. We proceed by examining

"' The equatorial boundary condition can be justified by sym-
metry arguments for waves in a constant zonal wind.
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the asymptotic solution near the CL. In that neigh-
borhood the governing equation (49) reduces to

—v+E°-1‘)=0 for |x| <1,

(73)
dx X
where
XEY ~ Ye
Forx > 0, two lmearly mdependent solutions to Eq.
(73) are

5,00 = 280" 20",
D20 = 2(Bex)"YA[2(Be 0],

where J, and Y, are the Bessel functions (of order 1)
of the first and second kind, respectlvely The first
solution has a node at the CL, i.e.,

6,00 = 2B.x as x— 0.

If the solution near the critical surface consists of
?, only, then the singularity would act as a wall,
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yielding [¢f. Egs. (71) and (72)]

6 =0. (74)
If instead, the dominant local solution is ?,, one
would then have -

0= —u/2, (75)

since Y, is almost #/2 out of phase with J,. The
task now is to determine which is the more domi-
nant solution for 0 < x < 1. The general solution
near x = 0 can be written as a linear combination of
the two solutions

d(x) = Cidy(x) + Cod:(x).

We would like to show that |C,/C,| > 1, so that
Y, becomes the dominant solution and (75) together
with (72) is the relevant quantization rule. To do this,
the behaviors of 9,(x) and D,(x) are examined for
negative x. If viscosity were the dominant mecha-
nism in the critical layer, the solutions for y < 0
could be obtained by analytic continuation as

Bix) = [2(ch)"211[2(3¢><)"2], x>0

X7 2B | x e 2Be x )2, x = |xle
Bo(X) = [Z(ch)"2Y1[2(ﬁcx)"2], x>0

2 = H{(=im2(Be | x NALLI2(Be | X DV2] + 2-2(Bc | x|)2KA2QB | x D)2, x = |x|e~

where I, and K, are the modified Bessel functions. For the more relevant case of a nonlinearity dominated
critical layer, the phase shift should be very close to zero (instead of the value — used above). The con-

tinuation to x < 0 becomes

51(x) = {2(&5)”211[2(;%“)1/2], x>0
=28 | x D1 [2(B. [ x])21, x<0
Ba(x) = {Z(ch)”zYi[z(ch)m], ) x>0
_277_1'2(BC|X|)1/2K1[2(,30 2], X < 0.

The solutions remain real when the critical surface
is crossed. For x < 0, §,(x) is exponentially growing
and 9,(x) is exponentially decaying away from the
critical surface. [Numerically, K,(z) resembles an
exponentially decreasing function for z around 2 and
1,(z) becomes an exponentially increasing function
for z around 3.7 (see 9.8.8 and 9.8.4 of Abramo-
witz and Stegun, 1970). Since the relevant value for
B. is around 20, z = 2(8|x|)"* would become 2
when |x| is around 0.05, and 3.7 when |x| = 0.17.
Both values are sufficiently close to the critical
surface so that A%(y) can still be approximated by
B./x-1To match to the solution away from the critical
surface one should have |C,/C,| of the order of

KA 2(B: | x2 1V, [2(Bc|xl|)"2] or less, which is a
very small quantity. Therefore, one should usually
have

|CyCy| > 1
and

v(x) = Cav(x) for x > 0.

[Note that C,v,(x) cannot be neglected from the
general solution for x < 0.] Thus it seems that the
relevant approximate value for 4 is —«/2 and the
appropriate quantization condition is

Yy
J kdy + wld =no — w2, n=1,2,.... (76)
Yo

Eq. (76) shows that the critical surface cannot be
replaced by a rigid wall even if it is a perfect re-
flector for the wave energy. The phase of the re-
flected wave differs by 7/2 from that reflected from
a wall. Note also that there is no zero for the
eigenfunction corresponding to the lowest mode

=1, i.e.,

Yy
J (kp)p=1dy + @wld = 7/2.
v

This mode has a quarter of its wavelength be-
tween the turning point and the CL.

10. Two-dimensional shears

In the presence of both meridional and vertical
shears, i.e., @ = @(y,z*), the linearized primitive
equations that we have considered in Section 2 are
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no longer separable. We have obtained separability
in Section 2 by assuming that the vertical shears

" vanish. The only way our model can be made to
handle the vertical variation of the mean wind is to
divide the wind into several uniform layers, i.e., to
approximate the profile by

(y,2%) = on(y)
for
zEszv<zi,, m=0,1,2,3,.... (77
In each layer, the mean wind varies with latitude
only, and so the calculations presented in the previ-
ous sections apply. Eq. (77) is the only separable
wind profile for the equations which are valid over
the whole sphere.

For a @ more general than that given by (77), the
primitive equations are no longer separable. How-
ever, our results concerning the reflectivity R and
the quantization parameter 6 are still applicable,
since these are local quantities which can be cal-
culated by considering only the region near the CL.
It has been shown (Matsuno, 1970) that as the waves
approach the critical surface, the wave vectors be-
come increasingly perpendicular to it. This is due to
the fact that near the singularity the normal di-
rection is the direction of dominant variations of
the solutions, and variations in other directions be-
come unimportant. The governing equation be-
comes in effect one-dimensional. For a vertically
oriented CL (as we have assumed), the equation in
the normal direction is the y equation used in this
study.

The above arguments become clearer when an
explicit example is considered. Dickinson (1968) has
shown that for long waves the governing equation
can be well approximated by the ‘‘geostrophic”
equation given below [cf. Eq. (2.5) of Dickinson]
valid on the sphere except in the equatorial region:

2
a— — 5% + tanh?y sech?e®

6y2
D e by By, s
oz* § 0z* @®—cC
where
G, = 2Q sech’y — @,, — tanh? sech?*
‘ 0 e

x-__wlk
oz §

is the gradient of the mean potential vorticity and
$ = §/(2Qa)?. In (78), y is the Mercator coordinate
and z* the logp coordinate defined previously. The
equation is nonseparable except for a very special
wind profile given by

4y _ &
w(y,z*) B[

sech?y tanh?
V(z*)

1
+

. @
U®y) } (?)
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For this profile and for stationary waves, Eq. (78)
can be separated, by assuming

_ ¥ = Y()Z(@"),
nto

42 B -
2 24+ 0 sechy tanhzwz]Y =0, (80)
[dy2 U(y)
[ez** i e’ i + A
dz* § dz* V(%)

where ¥? is the separation constant.

The applicability of this separable model to the
atmosphere is limited by the form of & required by
(79). What we will now show is, for a general
velocity profile not necessarily in the form of (79),
that the nonseparable equation (78) can be reduced,
in a region near the CL, to a form similar to the
meridional equation (80). For convenience, we as-
sume that the CL is oriented vertically (otherwise
a set of -suitably oriented orthogonal coordinates
has to be defined). Then near the CL, one can
Taylor expand

+ 5,2]2 =0 (8

a(y,z*) — ¢ = @y )Y = ye)
+ Yooy (Z¥)y — ¥e) + Oy — ¥)®)
d,(y,z*) = [20) sech®y — @y,],, — tanh®y, sech’y,

Ld e d o
X e (—12—* $ 3;; wyc(z*);l
X (y - yc) + 0(()’ - yc)z)-
Then
qu(y,z*) 20 sech’y. — @y, (2¥)]

(82)

o(y,z*) — ¢ @y (Z*)y — o)

It is seen that the vertical shear terms in the po-
tential vorticity gradient is of the order of (y — y.)
and hence drop out in (82), and the z* dependence
enters only through the meridional shear terms
@, (z*) and ®,, (z*). Also, since (82) varies most
rapidly in the y direction as y — y., and this vari-
ation is to be balanced by the 8%*ay? term in (78),
the vertical derivatives of the solutions can be shown
to be negligibly small compared with the y deriva-
tives. Therefore, the nonseparable equation (78) can
be reduced to

6—2—s2+—[ic-(£1\lf=0, (83)
b ayz (y - yc)
where
Buz*) = 2Q) sech’y, — @y, (%)

@y (z*)

Eq. (83) is similar to the meridional structure
equation (80) and is also the same as the meridional
barotropic equation we have considered in previous
sections, except here g, is allowed to have different
values at each height z*. This z* dependence is
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only parametric, as no z* derivative appears in
Eq. (83).

For the special case where (79) does apply, one
then has the separated meridional and vertical equa-
tions as given by Eqgs. (80) and (81). Eq. (80) can
be treated in the same way as done in this paper,
and Eq. (81) can be solved along the lines given
in Part II. In particular, Eq. (81) possesses internal
wave solutions (i.e., solutions which are propagating
in the lower atmosphere and become evanescent
above a certain height). The existence of such solu-
tions has been shown in Part II to be an important
aspect in the theory of resonant Rossby waves.

Before concluding this section, let us point out
that this section has shown only that the outer
linear equations can reduce to the form used in
earlier sections even when the assumption of one-
dimensional shear is relaxed. The nonlinear terms
in the inner nonlinear equation "are more compli-
cated than, and in general do not reduce to, the
simple barotropic vorticity equation used in the
previous sections unless the CL is oriented pre-
dominately in the vertical direction. In particular,
our results concerning the reflectivity of the CL do
not apply to a horizontally oriented CL in the upper
stratosphere, first because the nonlinear terms in
the inner equation near the critical layer can be
shown to be different, and second, the strong photo-
chemical damping mechanisms present in these high
altitudes may significantly affect our assessment of
the relative importance of the nonlinear verses
viscous effects.

11. Conclusion

Unlike the fast-moving waves considered by
Haurwitz (1940), who first obtained the quantization
of the planetary waves between the poles on the

sphere, stationary or slowly moving waves are '

significantly affected by the variations of the mean
wind from westerlies in the winter hemisphere to
easterlies in the summer hemisphere. To study these
waves in the westerly region, a common practice
has been to introduce two vertical walls as the
northern and southern boundaries, so that the waves
can be confined in a meridionally limited channel
(for purposes of using local approximations to the
mean wind and geometry), and quantization condi-
tions are derived for the waves that fit into this
artificial waveguide. Obviously, these walls do not
exist in the real atmosphere, but their justifications
seem to have been found in the theory of ‘‘polar
waveguides’’ (Dickinson, 1968; Matsuno, 1970),
whereby the waves are confined by the pole to the
north and the jet stream to the south. The pole
serves as a good boundary as it can be shown that
the waves are strongly evanescent near it. The jet
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stream, on the other hand, does not seem to be as
effective in reflecting the long waves. For stationary
or slowly moving waves, those of planetary scales
can leak some of their energy to the south through
tunneling and, in addition, since these long waves
are not confined vertically to the troposphere, they
can propagate first vertically to the lower strato-
sphere and then southward through the relatively
weak westerly region between the tropospheric and
stratospheric jet maxima. The breakdown of the
theory of polar waveguides for these long waves
presents a dilemma concerning the existence of
normal modes in the real atmosphere. Without the
confining ‘‘southern wall’’ the waves can now reach
the region near the zero-wind line where they find
their critical surfaces. There, along the lines of
classical hydrodynamics, it was thought that vis-
cosity becomes important even if it is negligibly
small elsewhere, and as a result the waves are
dissipated in a thin layer (called the critical layer)
around the critical surface. That the waves are
totally absorbed near the critical surface has almost
become a common belief. On the other hand, ob-
servational studies of the phase speeds of the
Rossby waves in the winter hemisphere (Eliasen
and Machenhauer, 1965, 1969; Diky and Golitsyn,
1968) seem to show that normal modes satisfying
the Rossby-Haurwitz dispersion relation appear to
exist in the atmosphere. Some of these observed
waves have phase speeds slow enough to have en-
countered a critical surface. The recent interest in
the phenomena of blocking and sudden warming
also brings into attention the existence of large-
scale stationary waves that are observed to amplify
at certain times during some winters. These ampli-
fying waves cannot be described within the existing
framework of ‘‘singular waveguides’’ with an ab-
sorbing southern boundary.

We have shown in this paper that the critical
layer is never totally absorbing; there is always
some partial reflection even with a viscosity-
dominated critical layer. This fact alone may be
sufficient for the existence of ‘‘quasi-normal
modes’’, which can retain their identity not for an
infinite period of time as implied by the mathe-
matical definition of an ideal normal mode, but for
a duration perhaps only longer than two north-
south traverses of the wave in the waveguide. How-
ever, we have not capitalized here on this possi-
bility to build a theory of quasi-normal modes,
but have instead gone on further and introduced
nonlinearity of the magnitude relevant to the real
atmosphere. It is shown that a nonlinearity-domi-
nated critical layer should be almost perfectly re-
flecting, at least in its steady state. The small
amount of wave energy that is absorbed cause the
wave amplitude to decay in time, but the e-folding
time scale is so much longer than the time scalgs
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due to other damping processes, that it is of no
practical importance to consider the amplitude
change due to absorption. These results indicate
that ‘‘quasi-normal mode waves’’ can exist in the
atmosphere. The dispersion relation satisfied by
these waves has also been determined. Surprisingly,
it is found to be only slightly different from that
obtained by imposing an artificial southern wall.
With respect to the amplifying waves that are be-
lieved to play some part in the phenomena of
sudden warming and blocking, the study in this
paper lays the basic framework upon which a theory
of resonant Rossby waves can be developed.
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APPENDIX A
List of Symbols

radius of the earth

longitude

latitude

latitude of the westerly wind maximum

latitude of the critical surface

latitude of the easterly wind maximum

angular frequency of the zonal flow
[=i/(a cosp)]

angular frequency of the earth’s rotation

Coriolis' parameter [=(2Q + @) sing]

A PRRE

Q\:g

2(€) + @) sing — cose -i @
. )

RT i In@
oz*
S$/(2Qa)?
zonal wavenumber
frequency of the wave
Doppler-shifted frequency [=0 + s®]
phase speed of the wave [= —a cosep
X o/s]
—ols
sing

®q @

Cph

T O

[6* — fel

o~ 2
Y 1 -1 - p?a® —(O-/—;), where & is the
8

44)?
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equivalent depth
€ Lamb’s parameter [=4Q%a?%/gh]

X,y local coordinates used in Section 2;
_ dx =acospd\, dy = ady

B (—‘i—f) , used in Section 2

’ dy e

X u — e in Section 3 where u, = sing,;
y — y. in Section 6

. 1 d 1 d

A o) (@)

(1 = pAH\du e \du /e

f(x), g(x) regular and irregular Tollmien functions
defined in Egs. (26) and (27)

o) phase shift across the critical surface

y Mercator coordinates tanhy = u, ex-
cept in Sections 2 and 5 where it is
the local northward Cartesian co-
ordinate

qy mean vorticity gradient [=dq/dy]}; the

: B-plane equivalent is B8 — ily,

k. satisfying Eqgs. (68) and (69) and having
the physical interpretation of being
the meridional wavenumbers

kr k; real and imaginary parts of k..

Ve turning point in Mercator coordinate:
A=0aty =y,

R reflection coefficient, defined as the
ratio of the reflected to incident wave
amplitudes

¥q location of the westerly jet maximum

Vo location of the easterly jet maximum

T, e-folding damping time scale due only
to the absorption of the wave energy
at the critical surface

PO g - B p

dx ®—cC
q9(x) 4 g(x) — M g(x)
dx ® —

a’ —-B'/A’

U, alo(y,) — c] = (&, — cpn)/cose,, where
i, is the westerly wind maximum

U, ala(ys) — ¢l = (@ — cpn)/cosg,, where
i1, is the easterly wind maximum

Ae ratio of viscosity to nonlinearity [Eq.

(138)].

There are also some temporary dummy symbols
defined where they are used.

APPENDIX B
Matched Asymptotics at the Critical Layer

The governing equation valid in the critical layer
is given by Eq. (21) to be
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) 0 B Wilyyy) ,
[a_t B Are gy—](vzdf +) = VWV — e ”lyyz) + e(|ac|/ayw by, (B3)
= vViV2 + wi,.., (B1) where
’ d
where 5 5 B=—f and w = w*/(e|i;|/a).
Vi=e —+ —, dy
axz  9y? .
\ ) 2 ap Following Benney and Bergeron (1969) we translate
V.2 = ki + 0 + & & the coordinates into a frame moving with thie phase
P oy a9z’ speed c,,, of the wave by letting
f = 2Q sine. X1 =X — Cppl.

The z*-derivative terms and the turning and twist-
ing term can be dropped from the outset without
affecting the results to be obtained. They are
nevertheless retained here.

The purpose of this Appendix is twofold: Flrst we
want to show that the presence of the Coriolis
term in (B1) and in the outer solutions does not
alter Haberman’s (1972) result that the combined
effect of viscosity and nonlinearity at the critical
layer is to introduce a phase shift in the outer
solutions and that the phase shift is a function
only of one parameter, A.. Second, the important
parameter A is carefully rederived, using quantities
relevant to our problem, thus enabling an estima-
tion of its value for the real atmosphere.

To proceed, we express ¢ as a sum of its zonal
mean'? and deviation from the mean as

v
V= - J ady + e(|a|a®), (B2)
where ey is the perturbation streamfunction made
dimensionless by |[4,§[a2, with i, being the merid-
ional shear of the zonal wind at the CL; € has
been assumed to be small. Eq. (B1) becomes

0
— + 0 —|V? a?
(Gt 7] Gx) d;+e(|u Ia)

o
T — Yy & - Uyy)Yzx
x(¢ . ) U+ (B = i)

12 We shall let the zonal mean flow & include any possible
‘‘mean flow modification’’ due to the wave. That is, if i#y(y) is
the prescribed zonal flow and €!/2u,(y) is the flow induced by the
wave, then here i1 = i1, + €"%z1,. In a steady-state problem it is
meaningless to separate the two.

Then (B3) is

0
(@ — cpn) — V% + e(|it]a?)
x4 :

a 9
X (ll’.ru — Yy a)vmd’ + (B — Uy )z,

dy
, (it yyy) =,
= PV2IVEY — _(_,1’_1’”_2 + (€|uc|/a)wy|pyz¢, (B4)
(e|it]a®)
with
2 52
V2 = 0 + —
ax12 ayz
and
92 o2 5 92
Vi = + —+ — =,
ox? 9y  a® 0z*?

In the critical layer, we introduce the ‘‘inner co-

ordinates’’ as

v =Y 7Y e gionan,
a
x=2X
a b
Z =z*.

Near the critical layer, we expand the prescribed
mean flow as

Uy — Cpp = L-lé-(y - yc) + 1/2L'¢Z(y - yc)2 +
and the mean flow modification as
€, = e?ilalH, + 2H(y — y)a + ...l

H, can be sét to zero without any loss of generality,
as its only effect is to $hift the location of the CL
by an O(e'?) distance. The total mean flow is thus
expanded as

i — Cpp = ilg — Cpn + €%it,(y)

i

las|aYe'® + |a

By — ye) + Yaite(y — yo)? +

.+ ealal2HLy —ya + ... .]

Y2 + 2H,Y ]e + O(e*?).

| [1 ura
2 Jac]
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Eq. (B4) becomes
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1 wla o 8 82
Y + € Y? + 2H,Y| + O(e) |— +
[ ) (2 || : ) (e)]ax[ < oxe ]"‘
i) 0 92 32 A
’ (‘l’ aY s )[ oY* e ox? }dl + €?Bofix — €Pwyiyg
o o @ o 9 -1
B A[ oY* e ax* ][ oY? e X2 + e oz2 }4’ — Nea?|ag| @)y, (BS)
where
B I-,l (B — dyy)y, g(x) =14+ ¥[(s?2 + §,) + [5'0(1/26! - ZBC)]Xz
" + 00¢) — Bof(x (B8)
A= ( _V )6—3/2_ with -
|a;|a?

Eq. (BS) is the ‘‘inner equation’’ valid in the critical
layer; its solution is to be matched to the ‘‘outer
solution’’ valid away from the critical layer. In the
outer region, the solution is expanded as

U =P + €y, + ey + O(7).

Substituting this into Eq. (B4) and equating like
orders in e, the following set of asymptotic equa-
tions are obtained:

- 0 _ 0
(2o — cpn) — V%Y + (B — doyy) — ¥ = 0, (B6a)
6x1 0x,
. i)
(@0 Cph) — V%0 + (B — ioyy) 'é—" VY
1 l

_ 0 - ,
=y — Py — i — V'%;, (B6b)
ox, axl
- 0 - I}
(o — Cpn) — Vlz'l’z + (B — ioyy) — P2
0x, 0x,
=i, i Yap — - V'zllla/z - (‘u Iaz)
vy %1 3 X, ¢
x (w o xl)V% (B60)

Eq. (B6a) is the linear inviscid two-dimensional
barotropic equation whose solutions we wish to
match across the critical layer. The solution to Eq.
(B6a) can be expressed in terms of the regular and
irregular functions f(x) and g(x), where x = (y — y.)
X sign(ug)la, as

¥ = [Af (x) + Bg(x)] cos(sX)
+ [Cf(x) + Dg(x)] sin(sX), (B7)

when f(x) and g(x) are gii/en previously in the text;
their first few terms are

FOO = x — Y2Bex® + Ye[Yoa e + s + 8,]x% + O(xY),

a = a?pl(|al|a), 8 = (a*al)(|ai|a).
Egs. (B7) and (B8) give the first few terms of ¢, as
¥y = [B cos(sX) + D sin(sX)I[1 — BexIn|x| + ...
+ [A cos(sX) + C sin(sX)}[x + .. .. (B9
In terms of the inner variable ¥ = xe™V2, (B9) is
¥y = [B cos(sX) + D sin(sX)] — €"2Y Ine'?B,
X [B cos(sX) + D sin(sX)] + €'*{—~[B cos(sX)
+ D sin(sX)]B. Y In|Y| + [A cos(sX)
+ C sin(sX)]Y} + O(e Ine). (B10)
The constants A, B, C, D are allowed to take dif-
ferent values for Y > 0 and Y < 0. We are primarily
interested in the matching relations for these four
constants and it is seen that they are determinable
when terms up to order €2 only are retained in
the inner expansions. However, to this order the
higher order terms, 3, and s, also contribute. The

leading term in the homogeneous solution of (B6b)
contribute an O(e"?) term [cf. (B10)], ‘

€/2sy,5 ~ €[ By, cOs(sX) + Dys sin(sX)] + O(e Ine).

The forced solution of (B6b) is of O(e Ine) in the
inner variable Y. The homogeneous solution of
(B6c) is of O(e) and therefore does not contribute,
while the particular solution for s, and higher order
terms contribute only if they are singular in y, i.e.,

T ey + €25, + ~eO(YY)] + O(e Ine).
Thus,
Y ~ [B cos(sX) + D sin(sX)]
— €2Y InelsB.[B cos(sX) + D sin(sX)]
+ €/2{—[B cos(sX) + D sin(sX)}B.Y In|Y]|
+ [A cos(sX) + C sin(sX)]Y + By, cos(sX)
+ Dy sin(sX) + O(Y1)} + O(e Ine).  (B11)
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Eq. (B11) is to be matched asymptotically to the
inner solution for Y — *xw. To O(e'?), (BS) is, as
suming A = O(1),
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n 04
+ €2Bahy — €Pwyyz = A 274

¥. (B12)

The solution to (B12) can be expanded in a form

{Y 4 61/2(1 ica y? + ZHZY):{ 0 ¥ suggested by (B11), i.e.,
2 ac] axor® b= P + 2 Ineh® + €2y + O(e Ine). (B13)
2
<.,,X_,‘3_ ~ oy _a_) Substituting (B13) into (B12) and equating like
oY 0X ) oY? orders in €, one obtains an hierarchy of equations
8 P 87 &
(0) 0 __~ 0 ____ 0) __ (0) — 0 B14
Y oxore ¥ [ oy T W (:)X]ay2 VAR Y (B14)
0 871 & 4 8 8\ o
(1) 0__~  _ 0 _ (1) _ )\ (1) — _—_ (ny__ - (__ — (0), BIS
aanzd' ['I'X ar W ax}ay2 v aw"’ ( Yoy W 6X)6Y2 ‘!', (B15)
B 87 &
Y (2) + 0 _____ 0____ (2) _ (2)
axor: " [d”‘ ar W ax} are ¥ 8Y4 "'
81 & ) 1" o
2y _____ _ (2) 0y __ . + Y2 + 2H (0) + w (0). B16
[u: o$ ] b {ﬁ (2Iucl z)ayz] ¥ + Wy (B16)

The solutions to (B14) and (B15) that satisfy the
outer matching conditions can be shown to be

$® = B cos(sX) + D sin(sX), (B17)
$o = — % [B cos(sX) + D sin(sX)]Y, (BI8)

implying that the constants B and D are the same for
Y>0and Y <0, i.e.,

B,=B_, and D, =D_. (B19)

The aim now is to determine the jump condition
on A and C from (B16) which is
o3 d
(2 4
v ox

B D si
X7 [B cos(sX) + D sin(sX)]

« [ 2 w)}ﬁ;] -z ¢, (B20)
[BY?' ‘ ort

s;ubject to matching to the €2 term in (B11). The
“turning and twisting”” term disappears since
b = 0.

It is convenient to have the parameters in the
above equation reduced to as few as possible. To
do so, we define'®

Izll
B Y36 + [—C Y36 + HZYz] ,
a ||

B cos(sX) + D sin(sX) = —B cosX,

lp(z) = l:b _ __a_
A

13 Note that aside from the 8 term, i is the same as ¢® in
Haberman, which is the total streamfunction at the same order.

A cos(sX) + C sin(sX) = A cosX + C sin)?,
¥ = v/B12,
Ae = M(sB372).

Eq. (B20) then reduces to

. 0 0% . ot .
Y e + SinX —_— = Ao —— N
72 ¥ e Y= A ¥

35 (B21a)

subject to the asymptotic matching condition as
Y —> +o00;

§ — B Y6 — HyY? — B.Y In|Y|[B cos(sX)
+ D sin(sX)] + Y[A cos(sX) + C sin(sX)]

+ Bajs cos(sX) + Dy, sin(sX)] + O(Y™1). (B21b)

Except for 8 — iy replacing —i, of Haberman, ¥
satisfies the same equation and matching conditions
as Haberman’s ¢®. Thus Haberman’s solution ap-
plies, with only a change in mean flow vorticity
gradient to include earth’s rotation. Eq. (B2la)
depends on a single parameter \,, which we have
defined to be

v _ w(|allas)?la

A = ~ = _ .
¢ ll_lé ]a2s33/2€3/2 (elaé |asB)3/z

(B22)

Since the meridional velocity of the wave (in
dimensional form) is

_, 0
v = e(|u0|a) 3% ¥

== e(|12g]a)(sl§' sinX),
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the denominator in (B22) is of the order of »*2.
Letting V = e|i.|asB be the typical meridional
velocity of the wave, (B22) can be rewritten as

[ v
IIZ; | (als) :]

1% 32 "
[ |12é|a/s ]

Thus if we interpret U = 112; |a/s as a typical velocity
scale, L = a/s as a typical length scale, then the
numerator of (B23) is just the reciprocal of the
Reynold’s number, Re, i.c., '

Ae = (B23)

14
-1 —
Ret = —,

while the denominator

G

is a measure of the nonlinearity of the wave.
Therefore
V 3/2
AC - Re_l/(_)
U

is a measure of the relative magnitude of viscosity
to that of nonlinearity.

The solution of Eq. (B21) is given in Haberman
(1972) and so will not be repeated here. The result
that is of relevance to us is that the matched
asymptotics give the following relations concerning

(B24)

K. K. TUNG

773

F1G. 9. The phase shift ¢ as a function of the viscosity/
nonlinearity ration A, taken from Haberman (1972).

A+ = A_
C,=C_- B.¢B,]’

where ¢ = ¢(\.) is plotted in Fig. 9, taken from
Haberman (1972). For small \., ¢ is given by

b = —4.2),. (B26)

The function ¢ can be interpreted as a phase shift
in the following manner: For Y > 0, we can set

+ =0 and D, = 0 without loss of generality and
write the outer solution (B7) as

(B25)

the constants A and C for Y > 0and Y < 0: Y. = Re{[A+f(X) + B g(x)e®**}. (B27)
Using (B2S), the outer solution for Y < 0 is
Yo = [A_f() + B_g(x)] cos(sX) + [C_f(x)] sin(sX)
= [A+f(X) + B+g(X)] cos(sX) + BB, f(x) sin(sX)
= Re{[(A+ — idB.B1)f(x) + B,g(x)lei**}. (B28)
Eq. (B28) suggests that if the outer solutions are written in the complex notation as
= [Af(x) + B e, ¥Y>0
¥ = [Af (x g'(x)] | (B29)
Y- = [Af(x) + B'g(yle™, Y <0
then .
A'=A - i¢pB.B and B' =B (B30)
are the required continuation formulae across the CL. Eq. (B29) can also be written as
Yy = e*X{Af(x) + B[l + Y b,x" — B. Inxf()1}
n=2 , (B31)

Yo = e{AF(X) + BI1 + 3 bax* — Belin|x| +id)fGOT}
n=2

where .
Eq. (B31) suggests that the continuation condition

(B30) is equivalent to introducing a ‘‘phase shift”

=y + X" :
F0=x n§20x ¢ in Iny for x < 0 as
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Iny = In|x| + i,

in an analogous manner to the analytic continu-
ation of

Iny = In(|x|e~™) = In|x| — im

that is used for the case A, — % (viscous limit).
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