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ABSTRACT

The time-dependent Hadley circulation is studied numerically in a nonlinear, nearly inviscid, axially symmetric
primitive equation model, with the heating varying periodically on an annual cycle. The annual average of the
Hadley circulation strength in this model with time-dependent heating is about a factor of 2 stronger than the
steady-state response to the annual mean heating and is closer to the observed strength in the real atmosphere.
This is caused by the fact that heating centered off-equator tends to produce stronger meridional circulation in
the winter hemisphere than in the case when the heating maximum is located at the equator, as pointed out
previously by Lindzen and Hou. However, unlike the steady-state solutions, there is no abrupt change as the
heating center is moved off the equator.

The temperature response in this time-dependent model is simple to understand. In the tropical region, where
there is a variable, but persistent, Hadley circulation, the temperature is homogenized latitudinally. In the high-
latitude region, where there is no meridional circulation (in the absence of the eddies), the temperature response
goes through an annual cycle with a phase lag relative to the phase of the heating. This response is as predicted
by the simple time-dependent temperature equation in the absence of meridional circulation.

1. Introduction

Although the zonal mean circulation in the extra-
tropics is believed to be driven by eddies (departures
from the zonal mean), the zonal mean circulation in the
tropical region can exist even without them. Theoretical
studies of axisymmetric models aim to understand this
simpler subset of the possible circulation systems. An
excellent review can be found in Lindzen (1990, chap.
7).

With the notable exceptions of Hack et al. (1989),
Hack and Schubert (1990), and Liu and Mak (1995),
past theoretical studies of the Hadley circulation have
focused on understanding the steady states achieved
by axisymmetric models (Schneider and Lindzen 1977;
Schneider 1977; Held and Hou 1980; Lindzen and Hou
1988; Hou and Lindzen 1992; Plumb and Hou 1992;
Fang and Tung 1996, 1997). We note, however, that
the adjustment time for an axially symmetric model to
obtain a steady state is of the order of 100 days or
even longer, which is longer than the seasonal time-
scale. Since heating varies on a seasonal timescale in
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the atmosphere, it is of interest to study the time-de-
pendent solution corresponding to an annually periodic
thermal forcing, and to compare it with the steady so-
lution.

In this paper, we use a time-dependent axisym-
metric primitive equation model to investigate the
temporal variability of the Hadley circulation system-
atically. The model, boundary conditions, and the pa-
rameters used in this paper are described in section
2. The steady solutions are reviewed briefly in section
3. The time-dependent solutions are presented and
discussed in section 4 and the concluding remarks
follow in section 5.

2. The model

a. The primitive equations

In this simple model, we consider a set of steady,
axially symmetric primitive equations for a Boussinesq
fluid on a sphere of radius a rotating with rate V, con-
fined between the bottom solid surface and a stress-free
lid at height H. Let Q be the (potential) temperature,
Q0 the constant reference temperature (globally aver-
aged surface temperature), Q the diabatic heating rate
per unit mass, and (u, y , w) the velocity of the fluid in
the longitudinal, latitudinal (f ), and the vertical (z) di-
rection, respectively. The equations are
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where n is the kinematic viscosity coefficient and k is
the coefficient of thermal diffusivity; Cp is the specific
heat of the gas at constant pressure. The diabatic heating
is here parameterized by the Newtonian cooling law in
(6), as in Schneider (1977), Held and Hou (1980), and
Lindzen and Hou (1988). This is done so that compar-
ison with these prior results can be made with respect
to the effects of time dependence. It should be noted,
however, that the use of Newtonian cooling gives rise
to a broader positive heating region than is the case in
the real atmosphere, where heating is concentrated in
narrow regions. The readers are referred to Fang and
Tung (1996), where the intertropical convergence zone
(ITCZ) is incorporated in a simple model. Also, the
theormal relaxation time t is generally a function of
space (see Fang and Tung 1996, 1997). In this paper,
we consider only constant t .

Following Lindzen and Hou (1988), the equilibrium
potential temperature used in our numerical calculations
here are given in the analytic form:

QE 5 Q0 2 DH(m 2 m0)2 1 DV z, (7)

where m [ sinw. Unlike that used in Lindzen and Hou
(1988), where the location of the maximum surface tem-
perature m0 is a fixed constant, here it varies in time
according to

2pt
m (t) 5 m sin . (8)0 0 max 1 2360 days

b. Boundary conditions

The boundary conditions for the velocities are no-
slip conditions at the bottom and stress-free lid at the
top. The boundary is considered to be insulated so that

no heat flux crosses it. There is no poleward velocity—
that is, y cosf 5 0—at the poles.

c. Nondimensionalization

As in Fang and Tung (1994), nondimensional vari-
ables are introduced by asterisks as follows: z* 5 z/H;
t* 5 2Vt; t* 5 2Vt ; (u*, y*) 5 (u, y)/U; w* 5
(w/U)(a/H); F* 5 F/2VaU; ¹*2 5 H 2¹2; and

Q gH R QHQ* 5 5 .
Q 2VaU Ro Q0 0

Here U is a typical zonal velocity, Ro [ U/(2Va) is
Rossby number, and RH [ gH/(2Va)2. After the non-
dimensionalization process, the superscript asterisks for
the nondimensional variables are dropped without con-
fusion:
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The values of the parameters used are DH 5 1⁄68, G 5
68 km21, Gd 5 9.88 km21, H 5 15 km, Q0 5 300 K, n
5 3.5 m2 s21, and t 5 20 days. These lead to DV [
Gd 2 G 5 3.88 km21 and E 5 1 3 1024. The typical
velocity U is taken from the thermal equilibrium so-
lution as gHDH/(2Va) and it leads to a thermal Rossby
number of Ro 5 R 5 gHDH/(2Va)2 5 0.0283. The
Prandl number Pr [ n/t is takein to be 1.

d. The ‘‘nearly inviscid’’ limit

The rationale for studying the so-called nearly invis-
cid limit was discussed by Held and Hou (1980). This
is the limit of E small but nonzero, that is, E → 01. For
moderate to large values of E, it is known that the me-
ridional circulation in the solution is viscosity driven
and sensitive to the value of E chosen (see Fang and
Tung 1994). However, as E becomes smaller, the tropical
circulation becomes nonlinearity dominated, and the de-
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FIG. 1. The dimensionless strength of the winter cell for various
m0. For the steady solution (solid line), the strength is defined as the
global maximum of the absolute value of the streamfunction. For the
time-dependent solution (dashed line), plotted is the strength of the
counterclockwise cell in the Southern Hemisphere.

pendence on the exact value of E becomes negligible.
It is this nearly inviscid limit that we wish to study here
as well. Numerical instabilities prevent numerical cal-
culations of steady-state solutions for values of E much
less than the value we used (E 5 1024). At this value
of E, symmetric instabilities are not suppressed, and
they show up as ‘‘noise’’ in some of the plots.

3. The steady solution

For each fixed location m0 of the heating maximum,
the model circulation can reach a steady state. The so-
lution is obtained and discussed by Held and Hou (1980)
for m0 5 0, and by Lindzen and Hou (1988) for m0 ±
0. We solve the problem numerically again and present
the results briefly here for the purpose of comparison
to its time-dependent counterpart.

In the steady solution, the pattern and the strength of
the meridional circulation strongly depend on m0. The
location and the maximum value of the zonal jet depend
on m0 as well.

When the heating center is placed off the equator, the
strength and size of the winter cell are enhanced, while
the strength and size of the summer cell decrease and
become almost negligible. This acute sensitivity to m0

being slightly off the equator was first noted by Lindzen
and Hou (1988). Figure 1 shows (in solid line) the de-
pendence of the strength of the circulation on the heating
center. Shown is the maximum strength of the ‘‘winter’’
circulation as a function of m0. The winter hemisphere
is defined here as the hemisphere opposite to m0(t). For
positive values of m0, this winter circulation occurs in
the Southern Hemisphere. It is noted that the increase
in the strength is monotonic with respect to m0, with a

steep slope. The strength of the circulation for m0 5
0.06 (about 3.58) is about twice that for m0 5 0. The
strength for m0 5 0.16 (98) is more than five times. We
will note that this sensitive dependency on m0 is a feature
of the steady-state solution only.

For the purpose of later comparison with time-de-
pendent solution where m0 goes through an annual cycle,
we perform calculations where m0 takes on each of the
values in the annual cycle as specified in (8), but where
the solution is allowed to reach the steady state for each
chosen value of m0. The steady solution is then ‘‘an-
nually averaged’’ in the following way:

N1
X 5 X [m (t )], (14)Os s 0 iN i51

where ti is equally spaced time in an annual cycle, m0(ti)
is the location of the heating center at time ti according
to (8), N is total number of partitions of an annual cycle,
and Xs is the steady state of X corresponding to m0(ti).
The ‘‘annual mean’’ meridional circulation calculated
this way is symmetric about the equator and has about
the same extent as the steady solution corresponding to
m0 5 0. Remarkably, the strength of the annual mean
circulation is twice as strong as that in the case of m0

5 0.
The horizontal gradient of the temperature is flat in

the inviscid core of the circulation region. More pre-
cisely, the temperature is flat within the strong circu-
lation cell in the winter hemisphere. [The temperature
is not flat within the much weaker ‘‘summer’’ circulation
cell because absolute angular momentum is less con-
served there (see Fang and Tung 1996). This nonab-
solute-angular-momentum-conserving behavior may be
due to the fact that the circulation is weak in this region
and so viscous effects become relatively more signifi-
cant there.] The temperature distribution for m0 5 0.2
is shown in Fig. 2a, where the solid lines are for the
steady-state temperature and the dashed lines are for the
radiative equilibrium temperature. The annual mean of
the steady solutions is shown in Figure 2b, where the
solid line is for the mean temperature and the dashed
line is for the temperature corresponding to the steady
solution for m0 5 0. It is noted that the annual mean
temperature in the Tropics is lower than the steady tem-
perature corresponding to m0 5 0, implying a stronger
upwelling, leading to a smaller equator–pole tempera-
ture contrast. The vertically averaged temperatures for
various m0 have been calculated and it is found that it
is not in geostrophic balance with the zonal wind at the
top. The geopotential at the surface in the circulation
region is nonzero and plays an important role in main-
taining the geostrophic balance between the geopoten-
tial gradient and the zonal wind at the top [see the dis-
cussion in Fang and Tung (1996)].

The zonal wind is given by the radiative-equilibrium
solution in the high latitudes where there is no merid-
ional circulation. Inside the circulation region in the
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FIG. 2. (a) Temperature distribution for m0 5 0.2, where the solid
lines show the temperature and the dashed lines show the equilibrium
temperature. (b) Annual mean of the steady temperature (solid lines),
and the steady temperature corresponding to m0 5 0 (dashed lines).
The temperature contours shown are (Q 2 125 K)/50 K.

FIG. 3. The position of the easterly maximum (dash–dotted line
with ‘‘*’’), of the winter jet (solid line with ‘‘V’’), and of the summer
jet (dashed line with ‘‘3’’). For compactness of the figure, the winter
jet’s position is reflected about the equator and plotted in the same
hemisphere as the summer jet.

Tropics it is close to an absolute-angular-momentum-
conserving solution. Since the summer cell is almost
negligible when m0 is large, the value of the summer
jet is approximately given by the radiative equilibrium
solution, which is much weaker than the absolute-an-
gular-momentum-conserving solution, at the jet posi-
tion. The latitude where the conserved absolute-angular
momentum originates [defined in Lindzen and Hou
(1988) as f 1] moves off the equator to the poleward
side of the heating center and causes a strong winter
jet. The maximum of the zonal wind in the winter hemi-
sphere is a monotonically increasing function of m0,
while the maximum of the zonal wind in the summer
hemisphere is a monotonically decreasing function. The
maximum of the easterly zonal wind is also a mono-

tonically increasing function of m0. The positions of the
zonal jets are shown in Fig. 3. The solid line is for the
winter jet and the dashed line is for the summer jet. As
in Lindzen and Hou (1988), we found that the winter
jet is centered closer to the equator than the summer
jet, which is the case in the real atmosphere. The po-
sition of the winter jet is also a good indication of the
edge of the winter circulation cell and we found that it
is not sensitive to the displacement of the heating center.
[The jet maximum is always located around 308, which
is not as given by the simple model solution of Held
and Hou (1980), as pointed out by Lindzen and Hou
(1988)]. Figure 3 also shows the locations of the max-
imum easterlies in a dash–dotted line. It is almost lin-
early proportional to the displacement of the heating
center off the equator. The annual mean of the steady
zonal wind distribution is also calculated according to
(14). It is noted that the tropical easterlies in the mean
field are much stronger than those in the equatorially
symmetric case and the easterly region is also wider. In
the mean field, the jet position is almost the same as
that in the equatorially symmetric case while the me-
ridional gradient becomes stronger on the poleward side
of the jet.

4. Time-dependent solution

a. Circulation

The numerical calculations for the time-dependent
case are performed with m0 max 5 0.2. The initial con-
dition is the steady-state solution corresponding to m0

5 0. A periodic solution establishes itself in about 4
months. As in the steady solution, the meridional plane
can be divided into two regions: a tropical region where
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FIG. 4. The dimensionless streamfunction for (a) the steady-state solution corresponding to m0

5 0, (b) the annual average of the steady-state solutions according to (14), and (c) the annual
average of the time-dependent solution corresponding to annually periodic heating.

a strong heating-induced meridional circulation exists,
and a subtropical-to-polar region where the meridional
circulation is mainly driven by the small viscosity and
is almost negligible.

Figure 4 shows the equatorially symmetric meridional
circulation from (a) the steady solution corresponding
to steady symmetric heating; (b) the annual average,
according to (14) of the steady-state solution for various
steady displacements of the heating maximum; and (c)
the true annual average of the time-dependent solution
in the presence of an annually varying heating. All three
circulations are remarkably similar, except the last two
(b and c) are about a factor of 2 stronger than a.

In cases b and c, although the annually averaged cir-
culation is symmetric about the equator, the actual cir-
culation is never symmetric and is instead dominated
by a single cell during most of the year. The circulation
in this cell is strongly nonlinear—it is nearly angular-
momentum conserving—and therefore it is expected
that the average of the solutions corresponding to dif-
ferent heating is not necessarily the same as the solution
corresponding to the averaged heating. This explains
why b and c are different from a. The circulations that
enter into the averages in b and c are mostly asymmetric
about the equator. These single, summer-to-winter cells
are much stronger than the symmetric two cells studied
by Held and Hou (1980). Lindzen and Hou (1988) gave

a detailed analysis based on the ‘‘equal area’’ rule in
potential temperature conservation, and the principle of
angular momentum conservation.

As mentioned before, the time-dependent model me-
ridional circulation is dominated by a single cell during
most of the year. In Fig. 1, the strength of that circulation
in the time-dependent solution is plotted (in dashed line)
as a function of m0(t), along with the strength of the
steady-state circulation (in solid line) corresponding to
the same, but fixed, values of m0. Since only positive
values of m0 are shown, plotted here is the strength of
the winter circulation—the counterclockwise cell in the
Southern Hemisphere. The time-dependent solution
generally follows the trend of the steady-state solution
in that the strength of the circulation increases mono-
tonically with increasing displacement of the heating
maximum away from the equator. While the steady-state
circulation at the extreme displacement (m0 5 0.2)
reaches a magnitude that is eight times that of the case
when m0 5 0, the time-dependent solution achieves a
factor of 7 when m0(t) reaches the same extreme po-
sition. One could attribute this to the fact that the time-
dependent circulation has not ‘‘attained its full poten-
tial’’ in the extreme m0 position before m0(t) starts to
move back toward the equator, when the circulation
weakens. Nevertheless, due to inertia, the time-depen-
dent solution does not weaken as much as in the steady
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FIG. 5. (a) The maximum (dashed line), i.e., maximum clockwise
strength; and the minimum (dash–dotted line), i.e., maximum coun-
terclockwise strength, of the streamfunction and (b) their positions
(dash–dotted line with ‘‘3’’ for the maximum and dashed line with
‘‘V’’ for the minimum) as functions of the time together with m0(t)
(solid line). The values of the streamfunction shown have been mul-
tiplied by 100.

solution for the same m0. At m0(t) 5 0, the circulation
strength is about 1.7–2.5 times that of the steady-state
solution corresponding to symmetric heating (m0 5 0).
And the solution is not equatorially symmemtric at the
instant when m0(t) crosses the equator (we will come
back to this point later).

Figure 1 shows that while the annual averages of the
time-dependent and steady circulations are about the
same, the time-dependent solution does not have an
abrupt change of circulation strength as the heating max-
imum, m0(t), is moved off the equator. The circulation
is never equatorially symmetric in the time-dependent
case. Therefore, the steady symmetric circulation’s low
strength is irrelevant because this (symmetric) state is
never realized in the time-dependent solution.

Another difference between the time-dependent so-
lution and the steady-state solution is that the former
depends not solely on the location of the heating center
m0, but also on the direction of the movement of m0(t)
in its annual march. Thus, the solution at spring equinox
is different from that at autumn equinox. While this
behavior is to be expected in a time-dependent solution
when there is a ‘‘time lag’’ or ‘‘inertia,’’ the actual be-
havior is opposite from what one may expect based on
simple inertia arguments. Figure 1 shows that the cir-
culation strength decays faster as m0(t) moves back
toward the equator from its extreme winter solstice po-
sition than its earlier increase when m0(t) moves away
from the equator toward its extreme position. For ex-
ample, when m0(t) first moves off the equator toward
the Northern Hemisphere, the (nondimensional) circu-
lation strength is 2.5 3 1023. This is to be compared
to the strength of 1.7 3 1023 when m0(t) next returns
to the equator. (For comparison, the steady circulation
strength for m0 5 0 is 1.0 3 1023. We will use this as
a standard unit when comparing circulation strengths.)
The situation is obviously more complicated than the
picture of single-cell strength conveyed by Fig. 1.

Figure 5 gives a more detailed description of the evo-
lution of the circulations through an annual cycle. In
both Figs. 5a and 5b, the solid line indicated the position
of m0(t) in its annual march. Although we have said
that the circulation is dominated by a single winter cell,
the single cell picture is strictly true only for 3 months
during the northern winter (days 210–300) and 3 months
during the southern winter (days 30–120). During the
southern winter, m0(t) is in the Northern Hemisphere,
and the summer cell in the Northern Hemisphere is al-
most nonexistent. The winter cell in the Southern Hemi-
sphere strengthens to a value that is seven times that of
the steady symmetric solution, before it weakens after
solstice as m0(t) moves back toward the equator. As
m0(t) crosses the equator, the circulation strength is 1.7
times that of the steady symmetric solution. This is as
depicted in Fig. 1.

As m0(t) crosses the equator into the Southern Hemi-
sphere, the counterclockwise circulation in the same
(southern) hemisphere becomes the summer cell. The

summer cell decays to almost zero strength and moves
to higher latitudes. It stays at zero strength for the full
3 months of summer. The clockwise circulation in the
Northern Hemisphere is now called the winter cell. It
is not a continuation of the counterclockwise cell in the
Southern Hemisphere. In other words, the circulation
cell in the Southern Hemisphere does not move to the
Northern Hemisphere and becomes the winter cell. In-
stead the winter cell in the Northern Hemisphere is a
continuation of the summer cell in that hemisphere and
hence does not need to be continuous with the winter
cell in the Southern Hemisphere. The growth of the
Northern Hemisphere circulation, from its summer
strength of almost zero to its winter maximum strength
of 7 (times the symmetric steady value), is a continuous
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FIG. 6. Time-dependent streamfunctions for (a) one, (b) two, (c) three, (d) four, (e) five, and
(f ) six months; after the spring equinox.

process. At the instant when m0(t) crosses the equator
from the Northern Hemisphere to the Southern Hemi-
sphere, the northern circulation reaches a value of 2.5
(times the symmetric steady value). This is as depicted
in Fig. 1, if m0 is changed to 2m0 and the strength is
defined as the maximum clockwise streamfunction in
the Northern Hemisphere in that figure.

In Fig. 5b we plot the latitudinal location of the max-
imum value of the clockwise circulation (dash–dotted
line with ‘‘3’’) and the counterclockwise circulation
(dashed line with ‘‘V’’), as a function of m0(t) (in solid
line). As m0(t) moves northward, the dominant circu-
lation is the counterclockwise one with the maximum
located near 108S. As m0(t) returns to the equator and
then moves into the Southern Hemisphere the clockwise

circualtion becomes the dominant one 17 days after
m0(t) crosses the equator. Its maximum is located near
108N. Prior to this, the maximum values of both the
clockwise and counterclockwise cells are located in the
Southern Hemisphere. The former is a thermally indirect
cell, called the Ferrel cell here. It is located more pole-
ward, and has a larger strength, than the direct cell in
the same hemisphere during equinoxes. Ferrel cells play
a role in accelerating the switch from counterclockwise
to clockwise circulation in this half of the annual cycle.
This is shown next in the meridional-height plane.

The contours of the streamfunction for each month
after (northern) spring equinox are shown in Fig. 6. The
dashed lines show the winter cell (counterclockwise
with negative values), the solid lines show the summer
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cell (clockwise with positive values) and the dotted line
shows the location of the heating center m0.

When m0 moves from the equator to the maximum
location in the Northern Hemisphere, the strength of the
winter cell in the Southern Hemisphere increases and
reaches its maximum 15 days after the (southern) winter
solstice. The summer cell in the Northern Hemisphere
is negligible.

After the winter cell reaches its maximum, the
strength of the winter cell starts to decrease monoton-
ically as m0 decreases. When m0 , 0.17, there appears
a Ferrel cell in the Southern Hemisphere. The summer
cell in the Northern Hemisphere starts to be enhanced
as m0 decreases further.

When m0 returns to the equator at the autumn equinox,
remnants of the winter—counterclockwise—cell are
lifted to the upper levels. There are now two strong
clockwise cells: a summer cell in the Northern Hemi-
sphere and a Ferrel cell in the Southern Hemisphere.
The indirect cell—the Ferrel cell—is stronger than the
direct cell in the same hemisphere. As m0(t) moves into
the Southern Hemisphere, the northern clockwise cell
strengtherns as the Ferrel cell, which has the same sign,
merges with the winter cell. This accelerates the switch-
ing to a single clockwise winter cell.

In conclusion, there are four stages in an annual cycle
for the meridional circulation: 1) three months with a
dominant winter cell in the Southern Hemisphere (from
day 30 to day 120); 2) three months with a three-cell
structure (one winter cell, one summer cell, and one
Ferrel cell in the south), when the Ferrel cell is dominant
in first 2 months (from day 120 to day 180) and the
summer cell is dominant in the last month (from day
180 to day 210) among the clockwise cells; 3) three
months with a dominant winter cell in the Northern
Hemisphere (day 210 to day 300); and 4) another 3
months with a three-cell structure with a counterclock-
wise Ferrel cell in the Northern Hemisphere. The three-
cell patterns was also suggested by Asnani (1995), with
one equatorial cell separating two Hadley cells.

The time-dependent solution loses its symmetry about
the equator. The circulation is never equatorially sym-
metric although its annual mean is. Although the time-
dependent meridional circulation is quite different from
its counterpart in the steady state, the annual averages
of these two have almost the same in strength as well
as in extent (the former is 10% weaker than the latter),
provided the annual average of the steady-state solutions
is taken according to (14).

b. Temperature

The behavior of the temperature distribution is easy
to understand. For a steady solution, the temperature in
the circulation region in our present nonlinear limit [the
nearly inviscid limit of Held and Hou (1980)] is hori-
zontally homogenized. This result was noted previously
in numerical calculations in dry (Held and Hou 1980;

Lindzen and Hou 1988) as well as moist (Satoh 1994)
model atmospheres. Fang and Tung (1996) recently gave
a general derivation. It is a consequence of angular-
momentum conservation in the circulation core, which
yields a zonal velocity that is independent of height. By
thermal wind the temperature gradient then vanishes.
This result depends on the steady-state assumption but
is nevertheless still valid in the portion of the Tropics
where there is always a persistent circulation; it does
not matter that the sign of the circulation reverses from
winter to spring.

Away from the circulation region, the temperature Q
approaches its radiative equilibrium value QE in the
steady solution. This is not the case in the time-depen-
dent solution. It is noted that even without a meridional
circulation, the temperature does not approach QE. It
should approach a ‘‘dynamical equilibrium’’ state QD,
which is determined by a local time-dependent radiative
process:

]Q Q 2 QD E D5 . (15)
]t t

With QE(m, z, t) given by (7) and (8), we know that QE

consists of two harmonic components:

Q (m, z, t) 5 Q (m, z) 1 2mm sin(vt)E E0 0 max

21 0.5m cos(2vt), (16)0 max

where QE0(m, z) 5 Q00 2 DVz 2 m2 2 0.5 . In2m0 max

high latitudes, the first harmonic component (the annual
cycle) is dominant while in the equatorial region, the
second harmonic component (the semiannual cycle) is
dominant. Solving (14), we obtain a periodic solution
as t → `:

2mm0 maxQ (m, z, t) 5 Q (m, z) 1 sin(vt 2 w )D E0 12 1/2[1 1 (vt) ]
2m0 max1 cos(2vt 2 w ), (17)22 1/22[1 1 (2vt) ]

where

vt
21w 5 sin ;1 2 2 1/2(1 1 v t )

2vt
21w 5 sin . (18)2 2 2 1/2(1 1 4v t )

It is found that for a fast relaxation process (vt K
1), the dynamical equilibrium temperature approaches
QE(m, z, t), which is the square of sinusoidal function
of latitudes with a time-dependent maximum position.
For a slow relaxation process (vt k 1) QD approaches
a steady distribution QE0(m, z), which is also the square
of sinusoidal function of latitudes but with a steady
maximum position at the equator. Generally speaking,
QD differs from QE in both magnitude and phase. In
high latitudes, QD is primarily given by the annual har-
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FIG. 7. Temperature (solid lines) and equilibrium temperature
(dashed lines) distributions at (a) the spring equinox and (b) the
summer solstice. The solutions at the autumn equinox and the winter
solstice are reflections of these about the equator. The temperature
contours shown are (T 2 125 K)/50 K.

monic and its phase shift is w1; that is, QD has approx-
imately a time lag of Dt relative to QE, where

1 vt
21Dt 5 sin .

2 2 1/2v (1 1 v t )

For a small vt , we have Dt ø t . In our study, the
annually varying forcing has v 5 2p (360 day)21 and
t 5 20 days, which leads to approximately a 19-day
time lag. In the equatorial region, QD is primarily given
by the semiannual harmonic and it has a time lag of
approximately

1 2vt
21Dt 5 sin ,

2 2 1/22v (1 1 4v t )

which is about 17.5 days in our calculation.
It is clear that in the time-dependent case, QD replaces

the role of QE as an ‘‘equilibrium temperature.’’
The distributions of the temperature and QE at (north-

ern) summer solstice and at the spring equinox are
shown in Fig. 7. The distributions at the winter solstice
and at the autumn equinox are reflections of these about
the equator. As in the steady solution, the temperature
in the Tropics is flat. In the high latitudes, in contrast
to the steady solution, the time-dependent temperature
has a significant deviation from its radiative equilibrium
state even in the absence of the meridional circulation.
It is approximately given by the dynamical equilibrium
state QD(m, z, t). The heating could be positive or neg-
ative depending on the location and the time. Unlike
the case of the steady-state solution, it is now unnec-
essary that diabatic heating be balanced by adiabatic
heating.

The time-dependent solution of the temperature, the
steady solution of the temperature, the dynamical equi-
librium, and the equilibrium temperature at the level of
z 5 0.5 and at various latitudes are shown in Fig. 8 as
functions of the heating center m0. The dashed line is
for QE, the dash–dotted loop for QD, the solid loop for
the calculated temperature, and the steady solution are
shown in scattered points marked by *. The detail of
the numerical result for the periodic solution is de-
scribed in the following.

1) It can be seen that the temperature at the equator
(see Fig. 8a) has the same time pattern as QD (which
is dominated by the semiannual component) but is
colder. Both reach their maximum about 18 days
after the equinoxes. In the Tropics (20.3 # u #
0.3), the temperature Q has almost the same pattern
as that at the equator (compare Figs. 8b and 8a)
despite the fact that QD and QE vary significantly.
This is due to the temperature homogenization effect
by the meridional circulation discussed in Fang and
Tung (1996).

2) In the subtropics (m 5 0.4–0.5; see Fig. 7c), which
are near the edge of the circulation, the effect of the
meridional transport on the temperature exists in part
of the annual cycle only. The temperature is con-

trolled by the equatorial temperature in this part of
the annual cycle and is controlled by the high-lati-
tude temperature (QD) at other times. The temper-
ature increases monotonically as m0 increases but
with a time lag of approximately 30–45 days.

3) In mid- to high latitudes (m 5 0.6–0.8; see Fig. 8d),
Q is close to its dynamical equilibrium QD. Here QE

is in the same phase as m0(t) while QD and Q have
a time lag. These are all dominated by the annual
component. The temperature attains its maximum
and its minimum when it equals its dynamical equi-
librium value.

4) Compared to the steady solution, the time-dependent
temperature is less sensitive to the displacement of
the heating center off the equator. There is no abrupt
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FIG. 8. Time-dependent solution of temperature (solid line with ‘‘V’’), dynamical equilibrium
temperature (dash–dotted line), equilibrium temperature (dashed line), and the steady solution of
temperature (marked by *) at z 5 0.5 for (a) m 5 0, (b) m 5 0.2, (c) m 5 0.4, and (d) m 5 0.6.
The temperature is scaled as in Figs. 2 and 7.

change as the heating center crosses the equator in
its annual march.

5) In general, the temperature and the zonal wind are
still related by the geostrophic balance in both the
circulation region and the high latitudes. The tem-
perature in the high latitudes can be obtained by the
linearized thermodynamic equation, while in the
Tropics it is given by the temperature at the equator
with a flat meridional gradient; that is, the temper-
ature is homogenized in the Tropics. This situation
is the same as in the steady solution, although the
homogenized region is narrower than that in the
steady solution. This homogenization is due to a per-
sistent meridional circulation in the Tropics. The re-
gion where there is a persistent meridional circula-
tion during most of the year is narrower than in the
steady solution. The annual average of the time-de-
pendent temperature is, however, almost identical to
that for the steady solution in this region.

As in the steady-state solution, the zonal wind and
the temperature satisfy in the time-dependent solution
the geostrophic balance in the parameter region that we
are in. It is close to its dynamical equilibrium state in
high latitudes (with temperature given by the dynamical
equilibrium temperature QD) and is close to an absolute-
angular-momentum-conserving solution in the Tropics,

while the zero wind line is usually not at the heating
center.

5. Concluding remarks

In this paper, we have reviewed the steady solution
corresponding to various displacements of the heating
center and compared it with the time-dependent solution
corresponding to an annually varying heating. Since the
solution of the model is strongly nonlinear, it is to be
expected that the average of the solutions for different
heatings is not necessarily the same as the solution cor-
responding to the averaged heating. Thus, although the
annually averaged heating is symmetrically centered at
the equator, the annually averaged circulation forced by
an annually varying heating is stronger, by a factor of
2, than the circulation forced by the annually averaged
heating. This is even more remarkable when it is noted
that the annual average includes 3 months during the
summer when the local circulation is almost nonexistent.

Our systematic study confirmed that the steady so-
lution is qualitatively in good agreement with the time-
dependent solution in the following respects. (i) The
meridional plane is divided into a circulation region in
the Tropics and a no-circulation region at high latitudes;
(ii) in the circulation region, the horizontal temperature
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gradient is weak and the zonal wind approximately sat-
isfies the absolute-angular-momentum conservation;
(iii) the geostrophic balance is still satisfied approxi-
mately; and (iv) the circulation in the winter hemisphere
is stronger than that in the summer hemisphere except
near the equinoxes.

Although there is almost no difference between their
‘‘temporal’’ averages, if for the steady state the annual
average is properly defined, the time-dependent solution
does have some features that are different from the
steady solution.

1) There is no abrupt change of the strength of the
Hadley circulation as the heating center is moved
off the equator in its annual march. In the steady-
state solutions, there is a sensitive dependence on
the displacement of this location off the equator.

2) As the heating center moves poleward, the positions
of the zonal jets move equatorward slightly, which
is different from the result obtained in the steady
solutions.

3) In the time-dependent study, the dynamical equilib-
rium temperature plays the role of the ‘‘radiative
equilibrium’’ temperature. It is obtained from a cir-
culation-free, radiatively controlled equation. This
temperature has a phase shift from the change of the
heating center, which depends on the relaxation time
t , the annual frequency v, and the form of the ther-
mal equilibrium temperature.

4) The Ferrel cells are an obvious feature of the time-
dependent solution during the equinoxes, while they
are almost negligible in the steady solution.

It should be noted that the Newtonian cooling param-
eterization used in this study may not be appropriate to
the real atmosphere, where moist convection tends to
occur in a narrow latitudinal band. Numerical calcula-
tions for a model with a narrow heating region such as
in an ITCZ were also performed. When compared to
the steady-state solution of Fang and Tung (1996),
which showed an abrupt increase in circulation strength
as the ITCZ is displaced off the equator, the time-de-
pendent solution shows a continuous transition, similar
to that discussed in this paper.

It is noted that the external thermal condition in the
real atmosphere is not equatorially symmetric in an an-
nual cycle due to the different land–sea contrasts in two

hemispheres. Therefore, the periodic equilibrium tem-
perature that we used in this paper is an idealization
only.
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