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ABSTRACT

The discussion is concerned with zonally averaged (or the so-
called 2-D) models of transport of trace gases in the middle atmosphere.
A brief review of processes affecting transport and an order of magni-
tude estimate of various eddy transport terms are given.

1. INTRODUCTION

For various reasons (mostly economic ones) it is sometimes desir-
able to calculate the zonally averaged distribution of various minor
constituents in the atmosphere directly from the zonally averaged
equations of transport. Since motion in our atmosphere is not zonally
symmetric, there arise in the averaged equations terms that represent
transports by nonsymmetric motion fields (the "eddies") which cannot
be determined consistently within the framework of the 2-D models.
These eddy transport terms have to be parameterized in terms of the
zonally averaged fields. The situation here is similar to the
closure problem in turbulence theory. It is by now known, however,
that the large-scale atmospheric waves in the middle atmosphere are
largely organized and their transports do not resemble those of
turbulence.

Given the fact that some form of parameterization of the eddy
transports is unavoidable in 2-D Eulerian models, it is desirable to
have a formulation in which the role played by the eddies can be made
as small as possible, so that the degree with which our model depends
on our ability to accurately parameterize the eddy transports can be
reduced. That this is at least conceptually feasible is demonstrated
by the generalized Lagrange mean formulation of Andrews and McIntyre
(1978). In this formulation, the transport of a tracer is accomplished
by advection of the zonally averaged flow only (with the average
taken with respect to the "displaced” position), and no eddy transport
terms appear explicitly. Practical problems encountered in the appli-
cation of the theory of the Lagrangian mean to the tracer transport
problem (as pointed out by e.g. McIntyre (1980)) prompted the develop-
ment of alternate Eulerian mean models which can retain some of the
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positive attributes of the Lagrangian mean theory.

Two Eulerian formulations, the residual mean circulation
(Andrews and McIntyre, 19763 Boyd, 19763 Dunkerton, 1978; Holton,
19803 Matsuno, 1980; Holton, 1981) and the formulation in isentropic
coordinates (Mahlman et al, 1981; Tung, 1982) both have the property
that for steady adiabatic small amplitude waves, the mean circulation
reduces to the Lagrangian mean circulation. However, the manner in
which this is accomplished is very different. In the residual mean
formulation, the advective transport by the steady adiabatic waves
is subtracted from the mean velocities in the definition of a
residual circulation. In isentropic coordinates, the reduction comes
from a simplification of air trajectories as compared to those in
height or pressure coordinates.

In section 2, a brief review of the eddy transport processes is
given from the viewpoint of air trajectories. This is followed by a
parameterization of nonadiabatic and nonsteady waves in the strato-
sphere. This parameterization allows us to give an order of magnitude
estimate of various eddy transports terms. Results are summarized in

section 6.
2. AIR PARCEL TRAJECTORY AND EDDY TRANSPORT

The type of transport produced by the eddy field is intimately re-
lated to the nature of air displacement trajectory. If eddy displace-
ments occur horizontally, only horizontal diffusion (or dispersion) of
tracers can result. In this case the eddy transport tensor, K, can
have only one nonzero component —Ky,. If the eddy field involves
both vertical and horizontal air disp%acements in the meridional plane,
but the motion in the vertical direction is uncorrelated with that in
the horizontal direction, the tensor K then has two nonzero com-
ponents — Ky, and Kzz, and no off-diagonal elements. This diagonal
transport tensor is relevant to random turbulence-1ike eddy
processes. The resulting transport is diffusive, and as such
the direction of transport is down-gradient, that is, from a
region of high zonal mean tracer concentration to a region of low mean
cancentration.

A subtle generalization of the above-mentioned picture of Fickian
diffusion is the parameterization proposed by Reed and German (1965).
While still retaining the interpretation that the eddy processes in the
stratosphere is turbulence-like, Reed and German suggested that the
diagonal transport tensor K for Fickian diffusion can be generalized
to include the off-diagonal components, Kyz and K,y, if a sloping
principal axis system for eddy disp]acemen%s is adopted. The eddy
motion along one axis is still assumed (albeit implicitly in their
paper) to be uncorrelated with that in the other axis. However, when
projected into the regular y-z axes, there would now be some correlation
between the displacement in y-direction and that in the z-direction,
hence the presence of the off-diagonal components. Consistent with this
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interpretation is the assumption that the tensor X be symmetric,

i.e. Ky, = K,,. (This guarantees that the tensor can be diagonalized
by a reg% ortﬁ%gona] transformation. In other words, it is assumed

that there exists a (sloped) principal axis system in which the dis-
placements along different directions are uncorrelated.) This
generalization allows the possibility that diffusion along a coordinate
axis (e.g. the y-axis) be countergradient. Countergradient northward
eddy transports have been observed in the lower stratosphere during win-
ter. This evidence, in fact, was the primary motivation for Reed and
German to generalize the Fickian diffusion tensor.

There is no reason to believe that large-scale eddy displacements
in the atmosphere should be uncorrelated in any two directions. There
has been increasing evidence to suggest that large-scale atmospheric
waves possess coherent structures and do not behave at all like tur-
bulence. Matsuno (1980) showed that fluid particle trajectories in-
duced by forced stationary planetary waves are elliptical when projected
onto the meridional plane. The transport tensor K for such an eddy
field cannot be symmetric, because the displacements that make up the
elliptical trajectories are strongly correlated in any two {fixed)
directions. For the case of adiabatic steady planetary waves studied by
Clark and Rogers (1978), Plumb (1979) and Matsuno (1980), the transport
tensor turns out to be antisymmetric (giving an advective transport),
just the opposite from what one would expect for a diffusive process.
Although the tensor becomes full when transient waves are taken into
consideration, the above-mentioned results nevertheless serves to point
out that a substantial component of the eddy field in the stratosphere
produces transports that are mainly nondiffusive in nature.

There is an interesting modification to what is said in the pre-
ceding paragraph. We have noted that the eddy transport in the strato-
sphere is more complicated than what one would infer from a turbulent
diffusion model. This is a result of the strong coherence in the hori-
zontal and vertical displacements associated with the air trajectories,
which are nonrectilinear. This fact cannot be altered by a simple co-
ordinate transformation (and so K cannot be diagonalized in general).
It will be a different story if dynamical coordinate transformations
are allowed. In particular, if the isentropic coordinate system, with
potential temperature (a dynamical variable) as the vertical coordinate,
is adopted, then all adiabatic eddy displacements, including the
elliptical trajectories deduced by Matsuno (1980), become rectilinear —
in the horizontal direction (i.e. along isentropes) only. Of the four
components in the eddy transport tensor K, only one, Kyy, s non-
zero. The resulting transport resembles the classical Fickian dif-
fusion in one dimension. Air mixes along isentropic surfaces, serving
to smooth out gradients of mean tracer concentration along the isen-
tropes.

If one further assumes that the eddy field is steady, even this
last component of the transport tensor vanishes. No eddy transport is
accomplished by an adiabatic. steady eddy field. For this idealized
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case, tracers are transported solely by the advection of mean flow in
isentropic coordinates (see Tung (1982)).

The eddy field in the atmosphere is in general nonadiabatic and
often nonsteady. Such nonconservative processes are difficult to para-
meterize, but it appears valid in assuming that in the stratosphere
(below the breaking height for gravity waves), a large component of the
atmospheric eddy field contributing to tracer transport is not
turbulence-like, but coherent waves forced in the lower atmosphere.

3. DEFINITION OF THE EDDY TRANSPORT TENSOR

Surprisingly, there does not seem to be an agreed upon definition
for the eddy transport tensor K. Consequently, there has been some
confusion, in particular concerning its dependence on the chemical
species being transported.

The original definition of Reed and German (1965), which is also
adopted here!, is that the four components of the K tensor are given

by

Kyy = ! sz = 0w, Kyz = z'v", and Kzz ='w' . (3.1)

Here n' and ' are the horizontal and vertical eddy air displacement
fields, respectively, and v' 1is the perturbation horizontal air
velocity and w' s the perturbation vertical air velocity. (The same
definition will be retained in isentropic coordinates, although the
meaning of vertical "velocity" has to be reinterpreted.) It is
important to note that the eddy field entering into the definition in
(3.1) is independent of the particular minor species being transported.

For the conservative tracers that Reed and German were primarily
concerned with, the eddy fluxes of a species with mass concentration
x is given by

Ve Dl (3.2)

W'y

LEve. though the definition in (3.1) is the same as in Reed and German
(1965), the interpretation of the eddy displacement fields n' and z'
is noL the same. Reed and German assumed n' and ¢' as mixing
lengths. This permits the further assumption that w'/v' = z'/n's
which then implies K yy "5 K... Here, however, the displacements are
related to the velocitdes a%%ording to (a/8t + u 3/ax)n' = v', and

(a/st +u a/sx)z' = w'. In general the tensor is neither symmetric
nor antisymmetric.
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When the tracers under consideration are not inert, the eddy
fluxes can no longer be expressed in the form of (3.2) with the trans-
port tensor K given by (3.1). This is due to the possible presence of
an eddy source term, S', 1in the equation for x', the eddy species
concentration (see e.g., Tung (1982)). According to perturbation
theory, the appropriate modification to (3.2) should be the addition
of an extra source term on the right hand side of (3.2), as

viy! v'ig
= - KeUy + (3.3)
WIXI ngI
where o' 1is defined through
& =By i
(Bt +u EX)O S i (3.4)

The definition for K should remain unchanged. In particular, it
should not depend on the chemistry or concentration of the minor
species being transported.

Some authors perfer to absorb the new term (the last term in Eq.
(3.3)) into a generalized K so that the same expression (3.2) can be
used for both conservative and reactive species. However, as pointed
out by Strobel (1981), the eddy fluxes of some important chemical
species, such as ozone, have terms in their eddy source fluxes that are
proportional to the mean concentration ¥, and consequently cannot be
conveniently expressed in the form of (3.2), since (3.2) is a statement
of the proportionality between the eddy fluxes and the gradient of the
mean concentration.

The parameterization of the eddy source fluxes is difficult to do
in general. We will postpone its discussion until section 5. In the
next section, the components of the tensor K as defined in (3.1) (and
therefore as independent of chemistry) are parameterized and their
magnitudes quantitatively estimated.

4. QUANTITATIVE ESTIMATES OF K

In the formulation of tracer transport in isentropic coordinates,
or in the residual mean formulation in pressure coordinates, it is the
deviation of the atmospheric eddy field from being strictly steady and
adiabatic which contributes to the diffusive and advective transports
of the tracers; the eddy transport tensor vanishes for adjabatic and
steady eddy fields. Order of magnitude estimates of the degree of such
deviations for typical eddy fields in the middle atmosphere and their
effects on the diffusive and advective transports will be given in this
section. The calculations are somewhat more direct in the isentropic
coordinate formulation than in the residual mean formulation, and
therefore the former formulation will be used first. Corresponding
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estimates in pressure coordinates will also be given for the purpose
of comparing the two formulations.

Following a common practice, I will write the transport tensor K
as a sum of a symmetric tensor D and an antisymmetric tensor ) :

K= D+ w, (4.7)

where

D
o = yy ye afd W , (4.2)

]

Dy Dgg v e

Using the definition in (3.1), but replacing z now by the new
vertical coordinate, o, and w' by the "vertical velocity" o' in
jsentropic coordinates, one can show that (see Tung (1983)7):

_a_ _.I_ T _ 1 =a__ :I_ [ :B__l [
Dy =3t 2 "M +Dge73%F 2°°% Dyg =3t 2" ° (4.3)
and
¥ ~ %n'c”r n'é'. (4.4)

Here ¢' 1s understood to be the "vertical displacement" in isentropic
coordinates, and is given by

T ] o At
+Ugg)2’; = 8 . (A.S)

(

@
|

4.1 The Diffusive Transport

The transport by the symmetric ID tensor is diffusive and down-
gradient in nature provided that Dyy,Dgg > 0 and Dyy Dgg > Dy
(Matsuno, 1980). In Tung (1982) it was mentioned that if the eddy
field can be assumed to be adiabatic, then this I tensor becomes
diagonal. In fact, only the first component Dy remained. It will
be shown here that Dy, remains to be the dominant term for non-
adiabatic eddies under’ typical conditions in the stratosphere in the
presence of Newtonian cooling.

Due to the difference in the scales of vertical and horizontal

2There are actually some density perturbations in the definition of
these quantities if the isentropic coordinates are adopted, but these
contribution were found to be small in Tung (1982) (see (D.11) and
(D.12) there).
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motions in the atmosphere, a simple ratio such as |Dgq/D y| is not
indicative of the ratio of vertical vs. horizontal eddy ¥ransports. A
more appropriate ratio is obtained when the vertical displacement is
normalized by a vertical scale "height", Ly, and horizontal displace-
ment by a horizontal scale Lp. The more appropriate ratios that we
need to consider are

2 .
L, D [ LD
ry = h ge] and r, = | 0 ¥8 (4.6)
1 ILZD | 2 LVDyy
voyy

The horizontal scale L, can be chosen, for our purpose of studying
large-scale transports, to be the radius of the earth, a. The
vertical scale L, is more difficult to fix, as it may depend on the
scale of the mean stratification of the particular species under con-
sideration. MNevertheless, since only an order of magnitude is needed
here, we will take it to be L, v 0.3¢ in potential temperature,
approximately equivalent to a density scale height H in height co-
ordinates.

As a reference, we note that in the Reed and German formulation,
typical values of the ratios are

’az Kzz
= | ol (4.7)
|H Kyy!
and
r. = Q_EXE Wl (4.8)
2 |HK ) ?
yy

using typical orders of magnitude from Reed and German (1965) or
Luther (1973):

10 2 4 2 . 7 2
Kyy ~ 107 cm /s, KZZ ~ 107 cm™ /s, Kyz v 107 em™ /s

Thus in the diffusion type parameterization of Reed and German that is
in common use, the eddy vertical and horizontal transports are roughly
comparable. The situation appears to be different in isentropic co-
ordinates using a more rational approach to eddy dynamics.

4.1.1 Newtonian Damping

In isentropic coordinates, nonadiabatic eddies have a non-
Al

vanishing perturbation "vaertical velocity", &', which can be calculated
directly from the thermodynamic equation

§ = 80/T (4.9)
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where Q s the diabatic heating range per unit mass divided by the
specific heat cp, and T is the temperature. The perturbation form

of (4.9) is

BF = [a' - =71']. (4.10)

= 2

&
T
[Note that © is not perturbed in (4.10) because it is an independent
variable.]

Following Dickinson (1973), we adopt here the Newtonian damping
parameterization, which gives

O.I = _C“NTI s

where ay is the coefficient of Newtonian damping. Thus (4.10) gives

Bt s B, e (4.11)

where

is the total Newtonian damping coefficient in isentropic coordinates.
The extra term, Q/T, is typically one to two orders of magnitude
smaller than a,. A commonly used value for the Newtonian damping co-
efficient in thd 1ower stratosphere is about 1/10 days. Its value is
1ikely to be Targer with increasing altitude, although there is no
general agreement on the exact value. Blake and Lindzen (1973) gave

3 thermal relaxation time of about 3-7 days at 35 km and 1.2-2.5 days
at 50 km. For our order of magnitude estimate I will adopt here a
damping time scale of ~b5 days for the 30-40 km region and 10 days in
the lower stratosphere.

4.1.2 The Ratio r

Using

and
ik(u-c)z' = 6

where U is the speed of the mean flow and c s the phase speed of
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the wave, one finds

.o ](E'/LV) N 1 { T’/T | (4 ]2)
- fn'/tht iLV/Bi v'/faui ’ *

In (4.12), the parameterization (4.11) s used to express the eddy
vertical velocity in terms of temperature fluctuations. van Loon et
al. (1973) and van Loon et al (1975) found largest stratospheric
temperature oscillation to occur in wavenumber 1 during winter with
an amplitude of about 10-12°C. A value of v'~13 m/s is found for the
same wave using

fov' = ike'
and adopting the value |@'/g|~600 m, also from van Loon et al. Thus

r ~ 0,07 for o

1/10 days
0.14 for o (4.13)

1/5 days

4.1.3 An Alternative Estimate

In arriving at (4.13), I have used the observed values for T' and
o' in pressure coordinates, since the corresponding values in
jsentropic coordinates are not readily available. Although such a
procedure appears to be sufficient for our purpose of obtaining an
order-of-magnitude estimate, it would be reassuring if an alternative
estimate can be given that does not rely on our knowing these
guantities directly.

To give a more deductive estimate for the ratio r, I use the
equation for hydrostatic equilibrium
A B
T *cp TR i (4.14)

The vertical displacement is then estimated using (4.14) together with
(4.11) and (4.5) as

B B ——%¥l‘-trf*'§“ @', (4.15)
c, T ik(u-c) °

while the horizontal displacement is, for geostropic waves,

PR (4.16)
(ﬁuc)fo

Thus the normalized ratio of vertical to horizontal displacements is
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" (se/0) (L /0)k €T (4.17)

In (4.17), we have written |3/36 @'| ~ |e'/a8|, where a8 1is the
vertical scale of the wave in isentropic coordinates. Note that the
wave amplitudes cancel and therefore do not appear in (4.17). The same
is true also for the factor (u-c) in (4.15) and (4.16), although as
does depend on (u-c) through the dispersion reiation.

A WKB solution of the vertical structure equation for quasi-
geostrophic waves gives

o' (0)/e' (8g) = ()" .
0
where (0)
& 0
v= Lt jeRir— L. =1, (4.18)
K f u-c T
0
= Ric = 2/7
K /Cp /

T(O) = aTe/az + g/cp, the static ability parameter

and U, = é/[(k2+12) + fg/4RHT(O)] is the Doppler-shifted speed at
which Ihe wave ceases to propagate vertically (g is the mean
potential vorticity gradient).

For stationary ultralong waves, whose vertical wavelengths are
typically larger than two scale heights, the square root in A s
typically much smaller than 1/2. Therefore

[ x| ~ L v 7/4
2

and

}éﬁ

1 a 1 -I
oo v let/(e 55 0] ~ Tar ™ 47

which gives

1/10 days

r v 0.07 for a
1/5 days . (4.19)

ro 0.14 for o

i u

{hese)figures are remarkably close to the ones estimated earlier in
4.13).

The estimates in (4.19) are for wavenumber 1. The corresponding
figures for wavenumber 2 should be reduced by approximately a factor
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4.1.4 Critical Levels

The above estimates are based on the assumption that the wave
encounters no critical Tevel in its vertical propagation (in fact I
have used in the estimates, u-c = un30 m/s.) It would appear from
(4.18) that if there exists a region in which u-c approaches zero,
then the vertical scale of the wave should vanish, yielding an in-
finite r in (4.17). This, of course, does not happen when damping is
present, and u-c in (4.18) should be replaced by u-c + a/ik when
u-c is not much larger than o/k. The quantity «/k 1s about 5 m/s

for «=1/10 days and wavenumber 1. For wu-c small, the limit for |x| is
finite and is aporoximately
1/2
2 g0
] v L[ ERHE 9 g,
8 g alk

This yields

r ~ 35% for «
50% for «o

1/10 days
1/5 days (4.20)

inn

It appears that near critical levels, the effect of vertical displace-
ment is about 4 to 5 times larger than the case away from critical
Tevels, although it is still smaller than the effect of horizontal
displacement since r is still less than one.

For forced stationary waves that propagate to the stratosphere,
critical levels (i.e. zero wind Tines) do not seem to occur freguently,
away from the tropics. Exception occurs during a major sudden warm-
ing, when easterlies descend into the stratosphere. To the extent that
major warmings are rare, our estimate of

rao107! (4.21)

in (4.19) appears to hold most of the time in mid to high latitude
regions.

4.1.5 Gravity lWaves

We now repeat the estimate of r for gravity waves. To estimate
the horizontal displacement for gravity waves, 1 use

This gives
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where 1 is the meridional wavenumber of the gravity wave,

w = k(u-¢), its Doppler-shifted frequency. Under hydrostaticity, the
vertical disolacement for gravity waves is also given by (4.15). Thus
the normalized ratio between vertical and horizontal displacements is

¥ % (/%) Ly | . (4.22)

(ae/e)(LV/e) C{T

The vertical wave scale |88/8| can be estimated from the dispersion
relation, giving

1/2
(0) (14,212
oo ~ 1 1%+ i [Bﬂ%:r Qe /)y | (4.23)

u-c)

172
G S Y

|u-c|

since the square root in (4.23) is typically much Targer than 1/2.
[This is not true for the fast periodic tides, which we are not con-
cerned with, since they seem to contribute 1ittle to transient eddy
dispersion.] Thus (4.22) becomes

2 D 12

., 2a k/a] (1+27/k™) ) (4.24)

= 1/2
(Ly/0)(e,T)

r

Note that the dependence on U-c cancels in (4.24). This is
fortunate, as this quantity can vary over a range of values for gravity
waves. Furthermore, (4.24) should hold even near critical levels.

For |2/k| ~1,(a "guesstimate" from Lindzen (1981)), (4.24) gives

rn 0.07 for a
r~n 0.14 for a

1/10 days
1/5 days (4.25)

non

indicating also for gravity waves that the effect of vertical displace-
ment is small compared with that of horizontal displacement.

4.1.6 Pressure Coordinates

As mentioned earlier, there are some indications that, unlike
the case in isentropic coordinates, the normalized ratio r is of
order unity in pressure coordinates. To illustrate the difference in
the two systems, I now redo the calculation for v in pressure coO-
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ordinates.

The vertical velocity w' 1in pressure coordinates is given by

2
gty

|Q)

JTE # POy - Q' . (4.26)

(=5}

X

Note that in isentropic coordinates the temperature advection term does
not appear as it does in (4.26).

Using as before the Newtonian damping parameterization:
QI = _ f\-"NTI

and the definition for vertical displacement ¢':

3 — 2 "
(at+u4'—)‘>:_w £

ax
one finds
o
(i-c + oyryt®
ek ~- (4.27)
(u-c)
The horizontal displacement is
GV
i RS =
ik(u-c)

The normalized ratio in pressure coordinates is

oML T (T=c)y) | T/T
() = 158 = gy \(1+L§h‘l—£ TR crwilR (4.28)

Using the same value for T' and v' as in section 4.1.2, one finds
that the ratio of the quantity r in pressure coor?iga;gs and that in
isentropic coordinates is essentially given by (HT 0/,T s about

the same as Lv/e):

(4.29)

This ratio is always greater than one, indicating that the effect of
vertical displacement is more significant in pressure coordinates.

The quantity, (Ulc)/(aN/k), in (4.29) measures the relative
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importance of the horizontal temperature advection vs. the diabatic
heating term (viz._the first vs. the third term in Eg. (4.26)). For a
typical value of u-c = un30 m/s. This ratio is

(ﬁlc)/(aN/k) ~ 6 for wavenumber 1
12 for wavenumber 2

in the lower stratosphere, where o = 1/10 days is used. This then
suggests that r in pressure coordinates is about one order of

magnitude larger than the corresponding quantity in isentropic co-
ordinates, implying that vertical and horizonta] diffusion are about

comparable in pressure coordinates.

4.1.7 Ratio of Vertical to Horizontal Transports

If it can be assumed that the time dependence in the vertical dis-
placement field is the same as that in the horizontal displacement
field, in particular, that they have the same time scales (this
assumption appears to be valid for the organized wave motion under con-
sideration), then the smallness of the ratio of normalized vertical and
horizontal displacements implies directly the smallness of vertical
transport as compared to the horizontal transport. Specifically, the
normalized ratios of vertical vs. horizontal transports defined 1in
{4.6) are estimated from

ryv ré and rp v T . (4.30)
This gives

ry v 0(1072), o(10-1) (4.31)
implying that D, , can be neglected when compared with D . and D i
can be approxima%e]y neqlected also when compared to D . In other’

words, our estimates suggest that the dominant diffusivéytransport is
horizontal diffusion along horizontal gradients of mean tracer con-
centration. Therefore it appears justified in approximatinag the
diffusion tensor by a scalar:

D 0
D =[ vy } ) (4.32)
0 0

We will next estimate the magnitude of Dyy'

4.1.5 Maximum Magnitude of Dy

Y
Since the diffusion coefficient is given in terms of a time
derivative, i.e., D = 98/dt 1/2 n'n', it is clear that periodic wave

motions do not givey¥1se to net transport. MNet transport is produced
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by irreversible processes, either caused by direct dissipation of the
wave or through cascade of wave energy to smaller scales and ultimate
dissipation of the small scale waves. Since wave amplification 1is
necessary in order to give positive diffusion, the wave must obtain its
energy from somewhere, either through forcing, wave-mean flow inter-
action, or wave-wave interaction.

In terms of kinetic energy, a large component of the eddy field in
the middle atmosphere is due to the stationary planetary waves forced
by topography and differential heating in the lower atmosphere. These
waves occasionally amplify in a time scale of about four or five days,
reaching an equilibrated maximum amplitude when forcing balances damp-
ing. A dramatic example of such events is the so-called sudden warming
phenomenon, when wave amplification of ~ 1000 meters in geopotential
height is observed to occur in less than a week in the stratosphere
(and possibly larger values higher up). The time dependence of such an
amplification episode can be modelled approximately by

n' = nge(1-e7 (7)) (4.33)

The time behavior of (4.33) is depicted in Fig. la. Essentially it
consists of an approximately linear growth initially {for t/« small),
reaching an equilibrated maximum amplitude n! when t is larger than
the amplification time scale t. (This time bghavior was deduced by Tung
and Lindzen (1978a,b) for the resonant amplification of forced
stationary wave in the presence of damping with a time scale t. The
diffusion coefficient Dyy induced by such an eddy field is found to be

Dyy _ 562- %re_(t/T)(l—e—(t/T)); (4.34)

its behavior with time is plotted in Fig 1b. Note that the maximum

1.5 T T T 0.3 T T T
At Dyr |
R em——— 0.2t 1
;
!
! 1
- !
’ T
0.5 ,/ 1 1 0.1 )
/ |
|
I
| ) N L ; \ . .
A T T I e O P
T T
Fig. la Transient amplification of Fig. 1b Contribution to the eddy
a forced wave in the diffusion coefficient from a
presence of damping single episode of wave

amplification



432

value achieved for Dyy for the episode is
(Dyy)max =g - (4.35)

To estimate this value, the eddy horizontal displacement in isentropic
coordinates is needed but unfortunately it is not readily available. I
will instead use the values in pressure coordinates, hoping that there
is not much difference in the horizontal quantities. For the 1973
sudden warming, Kanzawa (1980) gave a peak value for the geopotential
height of wave number 1 to be 1,100 meters in the stratosphere (al-
though for this particular warming event there Tater developed a second
peak in the mesosphere with a peak of 2,200 meters. This larger value
is not used here because it occurs outside the photochemical region of
primary interest here). Thus roughly ngs v @/fou ~ 3,000 km, achieved
in approximately five days, and

Jpay ™ 5 % 1019 em?ss . (4.36)

(Dyy
This value is comparable to that of K in the mixing-length for-
mulation of Reed and German (1965). N%%e, however that our estimate in
(4.36) is 1ikely to be an upperbound for the typical values of D .,
because major sudden warmings are rare over a period of a year. yy
Furthermore, the peak value quoted in (4.36) is attained only for a
short period (see Fig. 1b). Over longer periods of time, it is the Tless
dramatic, but more freguent, events that contribute more to the
diffusive process.

.1.6 p teri i f D
4.1 A Parameterization o Ly

We envisage a series of amplification episodes each of the form
(see Fig. 2):

-(t-ty) /T
!"|I =~ An'.{]—e O ) + nr;l, t i to’ (4.37)

where n' is the time mean eddy field, &n' the (maximum) amplifi-
cation aHp]itude from the time mean value and t., the starting time

of amplification. Each such episode contributes to Dyy terms:

~(t-t, )/ ~(t-ty)/T -(t-tq)T
dyy = An'z %-e 0 [;—e 0 ;} + nﬁﬂn' %—e 0 (4.38)

The superposition of contributions from all episodes gives

men'+‘%ﬂﬁzj y (4.39)

A |=

D 1 tﬁ d
vy ¥'J yy 9% T

o
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Fig. 2a A series of wave Fig. 2b Contribution to the eddy
amplification episodes difttusion coefficient
each starting at a from a series of wave
different time tO' amplification episodes

assuming the episodes are uncorrelated with each other. [By assuming
that t, 15 continuous, we admittedly are overestimating the value of
D 7. Rote that the expression obtained is independent of the fast
a%glification time (t/t), as desired, but may vary slowly on a

seasonal time scale as the amplitudes change. Note also that the first
term, n'An', may be of either sign depending on the correlation of the
phases Bf an' and n'. However, this term disappears when (4.39) is
time averaged over Periods longer than t (as denoted by < >) (since

by definition <aAn'> = 0):

- > o .._-l <A '2\
hDyy U (4.40)

If ‘in'2~, the distribution of the variance of the transient eddies?,
can be obtained from observed data, one then has the required estimate
of the diffusion coefficient Dyy'

Lau and Oort (1982) obtained transient eddy statistics using GFDL
and NMC analyses of data below 100 mb for six winter and summer
seasons. Latitude-pressure distribution of the following quantity is
displayed:

== T2
2
(<(a0/g™>)

‘Periodic trave!ling waves should first be removed from data.
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A maximum of ~ 200 m is found near the 300 mb level during the winter
season. This is not exactly what we wanted, as the zonal mean geo-
potential height was not removed from A®/g. I will use the figure,
200 m, as the upperbound for

5 1/2
(<(20'g)™>)
So we have
(<an'2>12 o 600 km
and
D > 4 x 10° cm2/S ; (4.47)
Yy =

This value is consistent with that estimated by Kida (1983) from his
GCM. He found

9

Kyy ~ 3% 10 em’/s

At the value given by (4.41), the diffusion process does not appear to
be competitive with mean advection in transporting tracers over global
scales. A time scale for global diffusion, a /D, is about three
years, while the advection time scale, a/v, is ab%ﬁt four months using
vV~ 1/2 m/s. Nevertheless, the diffusion process may be more

effective over smaller scales and in high gradient regions.

Our result concerning large-scale diffusion appears to be at
variance with the conclusion of Pyle and Rogers (1980a), who found in-
sufficient transport of columnar ozone into the high Tatitudes when
all the eddy diffusion terms were dropped (but with the mean cir-
culation replaced by the approximate residual mean circulation in the
Oxford 2-D model of Harwood and Pyle (1975)). It is possible that the
numerical scheme used in the original Oxford 2-D model becomes un-
<table when the diffusion term is removed and numerical instability
may cause the breakdown of the large scale circulation into small
cells, which are ineffective in transporting over large distances.

4.2 The Advective Transport

The advective eddy transport is caused by the antisymmetric part
of the transport tensor. The eddy induced advective velocities are

given by

1 =
s Pe¥> O
Py 8

10)

- LT (4.42)

VE©T T = 3y

>
o |

where
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V=nb6 -3Fx7 Nk

These eddy advective velocities_are to be compared with the advection
by the mean velocities v and #©. In isentropic coordinates, the mean
vertical velocity ; can be directly estimated from the thermodynamic
equation (4.9) as

. : (4.43)

Since the eddy advective transport adds to the mean transport, the
combined transport can be viewed as given by a combined diabatic
heating rate Q* (Mahlman, personal communication):

B+ b L R (4.44)
I
where
=T+
= _I--13 — _Ta
Qp = 50 Ty PV = 6'§§-w 2 (4.45)
Since the transient part in ¢: - 3/3t 1/2 n'c', can be shown to be
smaller than n'®' by one order of magnitude, we use
; E 6 —r=T
¥ouon'd = gy e L
T
and so
0.2°C/day for «=1/10 days (4.46)

— ) R
| s 1 1 A
!QEI ~ la an'T ~ 0.5°C/day for «=1/5 days

using T' ~ 10°C (van Loon et al., 1973) and n' ~ 1500 km. These values
of Q- are not negligible compared to Q, which is about ~ 1°C/day
accorEing to Murgatroyd and Singleton (1962), or ~ 0.4°C/day according
to Dopplick (1979). MNevertheless, the contribution from QE is

within the range of uncertainty in our ability to calculate- 0§ at

the present time, and so an accurate calculation of ﬁt does not

seem warranted, at lTeast for the time being.

The eddy advective transport appears to be also important in
pressure coordinates. Rood and Schoeber] (1983) have found that in
the presence of Newtonian damping the residual mean circulation cal-
culated in their model tends to overestimate the "Lagrangian mean"
circulation by as much as 30% with «=1/10 days implying that the
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advective eddy transport by nonadiabatic stationary planetary waves
accounts for about ~ 30% of the transport in pressure coordinates.

5. CHEMICAL EDDY TERMS

Eddy fluxes in 2-D models in the chemical source term have
generally been ignored in the past even for nonconservative species,
until recently, when studies, first by Pyle and Rogers (1980b) and
later by Strobel (1981), Garcia and Solomon (1983), and Rood and
Schoeberl (1983), demonstrated the importance of these chemical eddy

terms.

As mentioned previously in section 3, the presence of a chemical
source term S in the species transport equation

d = _
S =5 (5.1)

invariably gives rise to a chemical eddy source, S', when the air
motion is zonally asymmetric. The perturbation equation:

1 I_L" |a__‘_‘: 1
DOX + v ay)('*‘w 57 X 3 (5.2)

can be "solved" to yield
+ g (5.3)

where

,;a___ 7§_ s b= G
DO :at+u3X’D S

Strictly speaking, (5.3) is not a solution for x', because the
chemical eddy term o' may depend on x' (and even the concentration
of other species partaking in the reaction). In general no closed form
solution can be found for x', and hence also for the eddy fluxes of

v {see (3.3)).

To fix ideas, let us consider the following simple example of a
conservative tracer (see also Matsuno (1980)):

%g-x = %E (x-xg) - (5.4)

The "source" term on the right-hand side of (5.4) describes a re-
laxation process about a mean equilibrium distribution xn,. involving

a relaxation time 74- +~ is here treated as a mean qugntity
dependent on the meag photgchemistry involved. The perturbation source
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term is thus

B e gl i5,5)

0

Even for this simple eddy source term, (5.2) cannot be solved ex-
plicity. We shall instead attempt to solve it asymptotically assuming
that the chemical relaxation time, t,., is much longer than the
dynamical advection time scale: a/u (about three days). Therefore,

5

3y

==

T# ) e L g

— ]
X =& 37 0 T
0 (5.6)

3 — -1, 2
-:'%EXQ—O[DQHLHDO? T+ 0((=29°)

o
<
= |

0y o

The eddy fluxes of ' are then found to be

T A o — 1 (']) o (]) I
£ LV oS 2, wSgd ST i 2y
*k Kyy 2y * KYZ az * ) [Kyy 3y * Kyz 5z x]
WY = 2.7 o= 1M a_—,  0)a ~
TRV v Sl S 0 = [sz 5 % R e x] » (5.7)

where the K's are the c?mponents of the eddy transport tensor defined
in section 3 and the 's are defined here as

(1) — 1 T—r (]) — 1 -1 1
Kyy -V DO n s Kyz -V DO
(5.8)
(1) (Y & _ gl
sz = - W D0 4 KZZ W DO r

Note that, 1ike the K's, the K(])'s are also independent of chem-
istry or species concentration. They depend only on the air displace-
ments and have to be parametrized. The dependence on the mean chem-
istry, which is in principle determ1nab1e within the framework of 2-D
theory, has been separated ?u} in as a factor, 1/+t,, multiplying
the empirical parameters, K Sy WhTCh cannot be determ?ned within
the 2-D theory. It has been shown in Tung (1982) that such a
separation can in general be done.

Unlike the K matrix, whose symmetric components are($§used
entirely by transient eddies, the symmetric part of the K matrix
has a significant stationary component. This can be seen more clearly
if we reexpress the k(1)s using the identities
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iR L E__ ol A -1 _
Dga'*B" = gg @ B a'DpB" s and DDy = 1,
so that
T a 1 “1 1 1 o
and similarly
(1) 1 —=
Kzz 2 &t
(‘I)ﬁ—l_'_-ll—_i_ z"1| (.I)A.Il_a__l_‘ll
Kyz = n'¢ =g n'Dget s Kyt E e T ag t Do

The R(1) matrix is actually symmetric for steadth%ve fields. Com-
paring the magnitudes of the components of 1/tg k(1) with the cor-
responding companents of D , the symmetric part of K, we see that
the ratios are principally determined by the strength of the station-
ary eddy field vs. that of the transient eddy field in the atmosphere.
For example, using the parameterization of transient eddies (4.30), we

find

TR S PES

1419 T <n'n'>
— K /D Ao - = (5.9)
I'10 g .y.y1 T0 (An|An|>

This ratio is in general not small despite our assumption that tj be
much greater than a/u ~ 2-3 days.

Nevertheless, the K(]) matrix itself can be simplified if we
adopt the isentropic coordinate system. Using our earlier result
that the normalized ratio between the vertical and horizontal dis-
placements in isentropic,igordinates is small (i.e. r << 1 accord-
ing to (4.13)), the k(1) matrix can be approximated by

p(1) 0
1 Oyy o D;;} . %—n’n" (5.10)

This approximation is the same as that used in Tung (1982).

Using data from van Loon et al (1973), who gave a value of
600 m for the geopotential height for zonal harmonic standi.? wave
1 in January around 10 mb Jevel, we estimate the value for Dyy)

to be
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(1) 16 2
D 0 . J11)
oy o] cm (5.11)

At this value, the chemical eddy team will become important compared
with the dynamical diffusion term when the chemical relaxation time
is less than 30 days. That is

10 i
o Dyy z Dyy ¥ =5 £ 30 days.

There are a few more points that are worth making concerning
this simple example. First, that the eddy fluxes in (5.7) can be
expressed in terms of the mean species gradients is entirely a
consequence of our assumption that +tp contains no eddy term. In

more general systems, the photochemical relaxation time is rather
temperature-dependent and perturbations in the temperature field
should cause perturbations in g, which then leads to an additional
term in (5.7) proportional to %. Secondly, our asymptotic solution
procedure requires the assumption that the photochemical time scale
is Tonger than the dynamical time scale, a/u. This assumption 1is
probably correct in the lower stratosphere but becomes increasingly
invalid higher up. In regions where the relaxation time is very
short, a different assumption -- the photochemical equilibrium
assumption -- can be used, namely, the dynamical transports can be
neglected and (5.4) approximated by

"R PR T (5.12)
0

yielding the equilibrium solution y = x.. The troublesome region
is the so-called transition region where-the photochemical and
dynamical time scales are comparable. The method presented here
cannot handle this problem and further study is needed.

6. SUMMARY

A main problem in the formulation of zonally averaged models of
tracer transport is the treatment of eddy fluxes. As these eddy terms
cannot be determined consistently within zonally averaged models,
their magnitudes need to be calculated from a knowledge of the wave
field in the atmosphere. I have attempted in this paper to give an
order of magnitude estimate of various eddy transport teams,
assuming that the eddy field in the stratosphere consists pre-
dominantly of organized (but nonadiabatic and possibly nonsteady)
planetary and nonbreaking gravity waves forced in the lower atmo-
sphere (gravity wave breaking level appears to occur higher up in



440

the mesophere, above the photochemical region of interest here
{see Lindzen (1981)). Though the estimates obtained depend somewhat
on the parameters chosen, the following features appear to be

typical:

(1)

(2)

In isentropic coordinates, the effect of vertical dis-
placement is found to be about one order of magnitude
smaller than that of horizontal displacement (even after
the difference in vertical vs. horizontal scales is

taken into account). The eddy displacements are, there-
fore, approximately rectilinear in isentropic coordinates.

As a consequence, the dominant eddy diffusion is horizontal
(i.e. along jsentropes) across horizontal gradient of mean
tracer concentration (the K y term in the transport
equation). Contrast this wit% the situation in pressure
coordinates where the normalized ratio of the vertical and
horizontal diffusion coefficients is about order unity (see
(4.7) using Reed and German's Ky and Kzz). This ratio
is found also by Kida (1983) to %e of order one in his GCM,
although both of his calculated Kyy and Ky, are about
one order smaller than the values used by Reed and German.

Assuming that the transient eddies are due to damped forced
waves, I have given a parameterization of the coefficient

Ky (or called Dyy here), and estimated its climatological
mﬁ%nitude to be

9 2
Kyy < 4 x 107 cm /s.

At this magnitude, the diffusive transport appears to be one
order of magnitude smaller than the mean advective transport
over scales comparable to the radius of the earth, but may
be more effective over scales less than a thousand kilome -

ters.

Occasionally during major sudden warmings, the diffusion
coefficient can achieve a maximum value of

N 10 2

Kyy 5% 107 cm /s,

for a short period of time (a few days). Though at this
value the diffusive process is competitive with the mean
advection in transport, the short duration at which this
larger value is achieved and the infrequency of major
sudden warmings tend to make the former a less effective
means of systematic transport than the latter over
seasonal time scales.

The eddy advective transport is found to be dominated by
the stationary planetary wave component in the presence of
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eddy diabatic heating Q'. Assuming Q' is about 1-2°C/day,
I have estimated the magnitude of this transport to be
equivalent to that arising from a mean diabatic heating
rate of about a fraction of a degree per day. Though not
clearly negligible compared to the mean diabatic circula-
tion, the eddy advective contribution is within the range
of uncertainty in our ability to deduce the diabatic heat-
ing rate from observed data.

For nonconservative tracers, chemical eddy terms may also
be present. Since perturbations in the minor chemical
species arise ultimately from perturbations in air, the
chemical eddy terms should in principle be expressible in
terms of air displacement correlations, which can be para-
meterized; the parameterization would then be independent
of the minor species within the same atmosphere. We have
shown here using a simple example how this can be done for
the case when the photochemical time scale is longer than
the advection time scale, a/u, which is about 2-3 days.
It is found that the chemical eddy term in our example is
important when the photochemical relaxation time is less
than about 30 days.

As far as the dynamical transports are concerned, it now appears
that the dominant mechanism for systematic tracer transport is

advective in nature, with horizontal diffusion playing a secondary
role and vertical diffusions even less significant. The approximate
transport equation is then:
3 -,V 3 — Wy = 3 I
i Ty % & a5 X "oy (Dyy 3y x) =P ., (6.1)
where P involves various chemical source terms. In (6.1) the
advective velocities are found from (see Tung (1982) with
Wx = W+ NE):
W - a%/[(o) (6.2)
T+ Wx =0 (6.3)
ay gt
with
A i e B
q* q + I By P ]

q: the mean diabatic heating rate per unit volume.

The mean density 75, _?ggearfng in (6.1) can be approximated by the

basic state density’

only:

. which is a function of vertical coordinates
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S0y = 50 (e (&) (5.4)

Thus from a diagnostic point of view, g* is the only quantity that
needs to be specified in determining the advective transports. Be-
cause of the uncertainties in g, one can replace g* by q at the
present stage of model development.
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