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[1] The phenomenon of 11-year solar cycles has a well-
measured forcing, and the response in surface temperature is
confirmed using multiple datasets, including reanalysis
(NCEP/NCAR and ERA-40) and blended in situ land-ocean
data (GISS and HadCRUT3). Missing coverage in the
historical in situ station data reduces the amplitude of the
response compared to the geographically complete
reanalysis data, but all extracted signals are statistically
robust. A transient climate sensitivity parameter can be
defined once forcing and response are known. The coupled
atmosphere-ocean models participating in the 4th
Assessment Report (AR4) of the Intergovernmental Panel
on Climate Change (IPCC) span a large range in their
transient climate response (TCR). Using observational
results on the response to the 11-year solar variation, we
derive a constraint for the TCR. It is seen that, compared
with our derived constraint, most models assessed by IPCC
AR4 have too low a TCR, even lower than that derived
from the station data. Citation: Tung, K. K., J. Zhou, and C. D.

Camp (2008), Constraining model transient climate response

using independent observations of solar-cycle forcing and

response, Geophys. Res. Lett., 35, L17707, doi:10.1029/

2008GL034240.

1. Introduction

[2] Transient Climate Response (TCR) is defined in
IPCC 4th Assessment Report (AR4) as the global mean
warming in response to 1% per year compound increase in
CO2 at the time of its doubling. TCR is deemed more
relevant in calibrating models on their ability to predict the
warming resulting from transient increases in CO2 than the
Equilibrium Climate Sensitivity (ECS), which is defined as
the equilibrium global mean surface change at doubled
CO2. The coupled atmosphere-ocean models participating
in AR4 produce a range of TCR from 1.2 to 2.6 K [Randall
et al., 2007]. This rather large range is difficult to constrain
with observations, since transient response does not easily
discriminate between models with different climate feed-
back processes [Hansen et al., 1985]. Previously Stott et al.
[2006] used the observed 20th century temperature change
to constrain three models (HadCM3, GFDL-R30 and PCM)
and then applied these models to the calculation of TCR for
the future. The calculated TCR is around 2.1 K and the 5–
95% probability range is 1.5 to 2.8 K. In this work, we

propose that the temperature response at the earth’s surface
to the 11-year solar-cycle variation in total solar irradiance
(TSI) can yield a useful constraint on the transient climate
response.

2. Datasets

[3] The solar-cycle temperature signal near the surface
stands out among larger unforced variability in our climate
because its globally coherent spatial structure is mostly one
signed (warming) meridionally. The coupled atmosphere-
ocean system naturally produces decadal variability of
larger amplitude, but the unforced variability often takes
the latitude-compensating form of annular modes of warm-
ing and cooling [Marshall et al., 2007] and so can be
filtered out using a spatial filter or a simple global average.
El Niño-Southern Oscillation (ENSO), although an internal
mode of oscillation in the atmosphere-equatorial ocean
system, appears to the atmosphere as an ‘‘externally forced’’
response, in the sense that the temperature changes even
when globally averaged. Nevertheless, the ENSO spatial
pattern is different from the solar response, with warming in
the tropics and cooling in the mid-latitudes [Seager et al.,
2003]. This and the removal of volcanic-aerosol- induced
cooling and the secular trend of global warming, in addi-
tion, has been discussed previously [Camp and Tung, 2007;
Tung and Camp, 2008]. Briefly, volcano aerosol cools the
surface, with most of the cooling occurring during the first
two years after the volcano eruptions. Two years are
excluded from our analysis after El Chichón and after
Pinatubo eruptions. There may be some residual delayed
cooling not removed by this method, but this effect is
believed to be small. A linear trend is removed before the
analysis. Our analysis method emphasizes the difference
between interleaved intervals of about 5 years in the
temperature records, thereby minimizing the impact on the
analysis of any residual secular anthropogenic effect not
removed by a linear trend.
[4] To extract the solar-cycle response signal by taking

advantage of its spatial signature, it is preferable that the
dataset we use be globally complete. This was the reason
that in our previous work the geographically complete
reanalyzed datasets of NCEP/NCAR and ERA-40 were
used [Camp and Tung, 2007; Tung and Camp, 2008]. Both
reanalysis data use available station measurements, plus
satellite, buoy and other forms of data. These are assimi-
lated by a model, which dynamically supplies the missing
information for one variable from constraints provided by
other variables. In NCEP/NCAR [Kalnay et al., 1996], the
surface air temperature is derived from observations of
upper air variables and surface pressure. In ERA-40
[Uppala et al., 2005], the surface temperature is called the
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2-m temperature. It is not obtained directly as part of the
three-dimensional variational analysis of atmospheric fields,
but is an interpolation from the lowest model level (at
�10-m) and the background forecast of the skin temperature.
Without supplementation by satellite or other data, datasets
using in situ station measurements of surface temperature
have large areas with missing or sparse coverage; these
include the Antarctic, the Arctic, and the central African,
South American, and the northern Asian continents. Inter-
polation in time and in space tends to reduce the amplitude
of the response, which depends on the difference in the
anomalies. These smaller amplitudes serve here as a lower
bound for the solar-cycle response.
[5] The land component of the Goddard Institute for

Space Studies (GISS) global surface temperature dataset
[Hansen et al., 1999] consists of the monthly mean station
data of the Global Historical Climatology Network (GHCN)
version 2 of Peterson and Vose [1997] and the Scientific
Committee on Antarctic Research (SCAR) data from Ant-
arctic stations. All station records within 1200 km of a grid
point are averaged. In data-sparse regions, a single station is
used to fill in the estimated temperature up to 1200 km. The
ocean component uses the sea-surface temperature (SST)
[Reynolds and Smith, 1994] rather than the marine air
temperature (MAT) because of historical measurement
non-uniformity (with respect to ship height and speeds)
associated with the latter. From 1982 on, satellite measure-
ments of SST are used, calibrated with the help of thousands
of ship and buoy measurements. The same satellite-derived
empirical orthogonal functions (EOF) were applied to the

period prior to satellite observation [Smith et al., 1996].
Ship measurements were fitted into these predefined EOFs,
which were then used to extend to regions without ship
measurements. The Reynolds and Smith SST data are not
defined south of 45�S.
[6] HadCRUT3 [Brohan et al., 2006] is the latest version

of the historical blended air surface temperature over land
and SST over ocean. The SST in HadSST2 [Rayner et al.,
2006] consists of gridded dataset from in situ ship and buoy
observations from the new International Comprehensive
Ocean-Atmosphere dataset (ICOADS). Over 4000 land
stations are used, with additional monthly data obtained
from stations in Antarctica. Infilling of missing grid box
values using data from surrounding grid boxes, used in the
previous versions, is no longer done. Consequently cover-
age is sparsest over the interior of the continents of Africa
and South America, and over Antarctica.
[7] The period considered is from 1959–2004 for NCEP,

GISS and HadCRUT3. ERA-40 is available only up to
2002. Figure 1 shows the 2D composite mean difference of
the surface temperature between the solar max years and the
solar min years. The solar max (min) years are defined as
the years when the TSI is above (below) the record mean
value, with a few years near the mean excluded [see Camp
and Tung, 2007]. Missing data areas are left blank, and
serve to show that in situ dataset such as HadCRUT3 is
missing data over large areas in the continents. This
situation has not improved in recent decades. It also shows
the effect of interpolation schemes used in filling in the
missing data in GISS. It is seen that the spatial features

Figure 1. Composite mean difference between solar max years and solar min years in surface temperature in K; missing
data areas are left blank. Annual average is the average of seasons, provided that at least three seasons are available and the
missing season is not winter or summer. Seasonal average is the average of three months in the season, provided that at least
two months are available.
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revealed by all four datasets are very similar. Not surpris-
ingly, the in situ datasets with their many regions of missing
data requiring interpolation show smaller anomalies than the
reanalysis data. The results for the two geographically
complete datasets, NCEP and ERA-40, are strikingly sim-
ilar in the latitude and longitude locations of warming and
cooling, except for the rather larger cooling in Siberia seen
in ERA-40 than in NCEP. GISS data is more similar to
NCEP than to ERA-40 in the Arctic region, with no zonally
averaged cooling near 70�N.

3. Linear Discriminant Analysis (LDA)

[8] The method of LDA [Schneider and Held, 2001; Tung
and Camp, 2008] finds the spatial weights that best distin-
guish the solar max group of years from the solar min group
of years in surface temperature after detrending and removal
of the volcano years as described above. Here we use zonal
mean patterns. The zonal mean is taken provided that data
are available for at least 35/36 of the longitudes. That
criterion needs to be relaxed for HadCRUT3 (to 6/7), as
only a few latitudes satisfy it. There is no useful zonal mean
information south of 45�S in any of the in situ datasets.
Projection of the original temperature data onto these spatial
weights yields the time series (C(+)) shown in Figure 2. The
regression of the original temperature data onto these time
series yields the zonal mean spatial patterns in Figure 3. The

zonal mean and 2D (not shown) spatial patterns obtained
this way are very close to those obtained by composite mean
difference (shown in Figure 1), and both are very close to
that obtained by regression of temperature data against the
Total Solar Irradiance (TSI) index [Lean et al., 1995],

Figure 2. Surface temperature time series projected onto the zonal mean spatial weights obtained by LDA, normalized in
such a way that the left axis indicates the globally averaged value (using the available data). The dotted line is the TSI
index, whose scale is shown on the right axis.

Figure 3. Zonal mean spatial pattern that best distin-
guishes solar max years from the solar min years, obtained
by LDA.
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meaning that these are the robust spatial patterns associated
with the TSI variations. All LDA time series are statistically
significant at above 95% confidence level as determined by
a bootstrap Monte-Carlo test of the separation ratio R, which
measures the ratio of variances between the solar max and
solar min groups to the variances within each group [Tung
and Camp, 2008]. The correlation coefficient r between the
signal time series and the TSI index is also statistically
significant.
[9] A conservative measure of the amplitude of the

response is given by k, which is the regression coefficient
of the projected time series shown in Figure 2 against the
TSI time series, also shown. We see that in situ data yield a
solar cycle signal of k�0.12 K per 1 Wm�2 variation of
solar constant. The amplitude of the solar cycle signal is
larger in NCEP (0.17 K) as expected. In subsequent sections
we will adopt the range

k ¼ @T

@S
� 0:12� 0:17 K=Wm�2: ð1Þ

The 2s regression errors, indicated in the range of k in
Figure 2, are related to the goodness of fit of temperature
response with TSI, and are affected by trend removal and
method of analysis; they will not be discussed further here.

4. Climate Sensitivity Parameter

[10] A measure of climate sensitivity can be defined as
the ratio of the global-temperature response to the radiative
forcing change,

l ¼ dT= edFð Þ; ð2Þ

where dF is the radiative forcing (RF) change for the
troposphere, evaluated above the top of the troposphere.
This quantity l, called the climate sensitivity parameter, is
expected to be different for different time scales. In order
that the definition of the climate sensitivity parameter be
more general, and applicable to the greenhouse forcing as
well as solar-cycle forcing, the RF change in equation (2) is
multiplied by the efficacy factor e, which measures the ratio
of a unit of RF of, say, the solar-cycle phenomenon, to a
unit of RF of CO2 in terms of their effect in causing global
warming. In particular, it is meant to take into account the
slight difference in spectral distribution of the radiation
between the two phenomena (with more bias towards the
infrared in the greenhouse RF). The models in AR4 have
calculated values of efficacy for solar forcing close to 1,
meaning that it is close to that of GHG forcing once
reaching the troposphere, and all models in AR4 fall within
the range of 0.7 to 1.0. Thus for solar-cycle forcing and
response, we have

lsolar cycle ¼
dT
edF

� dT
dF

¼ 4

1� a
dT
dS

; ð3Þ

using dFsolar cycle = dS(1�a)/4, where the factor of 4
accounts for the geometry of the circular disk on which the
solar constant is measured and the spherical area on which
the RF is expressed, and a � 0.3 is the albedo, the fraction
of the radiation reflected back to space by the surface and

the clouds. Substituting dT/(dS) from equation (1), equation
(3) becomes

lsolar cycle � 0:69 to 0:97 K= Wm�2
� �

: ð4Þ

3The definition of RF used by IPCC differs from the usual
top of atmosphere value in that the former is evaluated at the
tropopause after the stratosphere has adjusted. Absorption
of UV radiation by stratospheric ozone reduces the RF
reaching the tropopause from the top of the atmosphere.
Since 12–15% of the solar variability lies in the UV range
(below 295 nm) [Lean et al., 1997], this reduction can
potentially be as large as 12–15%. The stratospheric
adjustment involves both the warmer temperature by the
enhanced UV heating, which increases the longwave
radiation reaching the troposphere, and the enhanced
production of stratospheric ozone. There is some uncer-
tainty in the net change of RF caused by the different
predicted vertical distributions of enhanced ozone, as
reviewed in Table 4.1 of Gray et al. [2005]. We take the
result from Larkin et al. [2000], RF � 0.18 Wm�2, which
happens to be the same as our top of atmosphere estimate.
Using a smaller RF however does not affect our inequality.
[11] This solar RF turns out to be almost 1/20 that for the

total change in RF due to a doubling of CO2 (RF � 3.7
Wm�2). Therefore the annual rate of increase in radiative
forcing of the lower atmosphere during the five years from
solar min to solar max happens to be equivalent to that from
an average 1% per year increase in greenhouse gases, close
to that used in TCR calculations. The global pattern of
warming and cooling for the solar cycle signal shown in
Figure 1 is also quite similar to the IPCC AR4 global
warming runs, for example, as given by Leroy et al. [2006].
[12] A climate sensitivity parameter for model TCR can

be defined as

lTCR ¼ dT=dF ¼ TCR=3:7Wm�2: ð5Þ

Since TCR is defined as the dT at the time of doubled CO2

after it has been increasing at a compounded rate of 1% per
year, we have

lTCR > lsolar cycle � 0:69 to 0:97 K= Wm�2
� �

: ð6Þ

Multiplying equation (6) by dF = 3.7 Wm�2 we obtain the
desired constraint:

TCR > 2:5 to 3:6 K: ð7Þ

The equilibrium climate sensitivity (ECS) should be greater
than TCR, by approximately a factor of 3/2 (see Appendix
of Tung and Camp [2008] and Stott et al. [2006]). So ECS
should be greater than 3.8 to 5.4 K.
[13] The difference in the time scales between an oscil-

latory forcing and a secular forcing works in the direction of
the inequality in equation (7). For the TCR, at the time of
evaluation, there have been 70 years of compound 1%
increase in RF, and the delayed heating due to ocean inertia
adds to the instantaneous heating, while for the solar-cycle
response at solar max, there have been only five heating
years.
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[14] The TCRs of 19 coupled atmosphere-ocean GCMs
in IPCC AR4 listed in Table 1 fall within the rather low
range of 1.2–2.2 K with the exception of one, and thus fail
the lower constraint of 2.5 K determined by ERA-40, GISS
and HadCRUT3. The only exception is the Japanese
MIROC (hi-res), with a TCR of 2.6 K. All models fail the
higher constraint of 3.6 K determined by the NCEP data.

5. Conclusion

[15] We have examined four datasets on global surface
temperature, two reanalyses and two in situ. We can
establish the existence of a solar-cycle signal in all four
datasets at a confidence level above 95%. The measured
solar response is then used to provide a constraint on the
transient climate response of models, with the lower ampli-
tude of the in situ data serving as a lower bound.
[16] It is seen that most of the current generation of

general circulation models assessed by IPCC AR4 have
too low a transient climate response as compared with the
observed range. This is consistent with the independent
finding by Forest et al. [2006] that these models simulate
too large an ocean heat uptake as compared to observations
of ocean temperature changes during the period 1961–
2003. See Raper et al. [2002] and Meehl et al. [2004] for
different views on how ocean heat uptake affects TCR. This
excessive heat into the oceans tends to reduce the transient
climate response for the atmosphere, but does not affect the
modeled equilibrium climate sensitivity, which was calcu-
lated with a slab ocean in thermal equilibrium with the
atmosphere.

[17] Acknowledgments. The research is supported by grants ATM-03
32364 and 0808375 from National Science Foundation, Climate Dynamics

Program. We thank Professor Brian Farrell for encouraging us to investigate
the climate sensitivity implications of our solar-cycle work.

References
Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones (2006),
Uncertainty estimates in regional and global observed temperature
changes: A new data set from 1850, J. Geophys. Res., 111, D12106,
doi:10.1029/2005JD006548.

Camp, C. D., and K. K. Tung (2007), Surface warming by the solar cycle as
revealed by the composite mean difference projection, Geophys. Res.
Lett., 34, L14703, doi:10.1029/2007GL030207.

Forest, C. E., P. H. Stone, and A. P. Sokolov (2006), Estimated PDFs of
climate system properties including natural and anthropogenic forcings,
Geophys. Res. Lett., 33, L01705, doi:10.1029/2005GL023977.

Gray, L. J. et al. (2005), A review of the influence of solar changes on
the Earth’s climate, Tech. Note 62, 82 pp., Met Off. Hadley Cent., Exeter,
U. K.

Hansen, J., et al. (1985), Climate response times: Dependence on climate
sensitivity and ocean mixing, Science, 229, 857–859.

Hansen, J., R. Ruedy, J. Glascoe, and M. Sato (1999), GISS analysis of
surface temperature change, J. Geophys. Res., 104, 30,997–31,022.

Kalnay, E., et al. (1996), The NCEP/NCAR 40-year reanalysis project,
Bull. Am. Meteorol. Soc., 77, 437–471.

Larkin, A., et al. (2000), The effect of solar UV irradiance variations on the
Earth’s atmosphere, Space Sci. Rev., 94, 199–214.

Lean, J., J. Beer, and R. Bradley (1995), Reconstruction of solar irradiance
since 1610: Implications for climate change, Geophys. Res. Lett., 22,
3195–3198.

Lean, J. L., G. J. Rottman, H. L. Kyle, T. N. Woods, J. R. Hickey, and L. C.
Puga (1997), Detection and parameterization of variations in solar mid-
and near-ultraviolet radiation (200–400 nm), J. Geophys. Res., 102,
29,939–29,956.

Leroy, S. S., J. G. Anderson, and J. A. Dykema (2006), Testing climate
models using GPS radio occultation: A sensitivity analysis, J. Geophys.
Res., 111, D17105, doi:10.1029/2005JD006145.

Marshall, J., et al. (2007), Mean climate and variability of the atmosphere
and ocean on an aquaplanet, J. Atmos. Sci., 64, 4270–4286.

Meehl, G. A., et al. (2004), Factors affecting climate sensitivity in global
coupled models, J. Clim., 17, 1584–1596.

Peterson, T. C., and R. S. Vose (1997), An overview of the Global Histor-
ical Climatology Network temperature database, Bull. Am. Meteorol.
Soc., 78, 2837–2849.

Randall, D. A. et al. (2007), Climate models and their evaluation, in Cli-
mate Change 2007: The Physical Science Basis. Contribution of Working
Group I to the Fourth Assessment Report of the Intergovernmental Panel
on Climate Change, edited by S. Solomon et al., pp. 589–662, Cam-
bridge Univ. Press, Cambridge, U. K.

Raper, S. C. B., et al. (2002), The role of climate sensitivity and ocean heat
uptake on AOGCM transient temperature response, J. Clim., 15, 124–
130.

Rayner, N. A., et al. (2006), Improved analyses of changes and uncertain-
ties in sea surface temperature measured in situ since the mid-nineteenth
century: The HadSST2 dataset, J. Clim., 19, 446–469.

Reynolds, R. W., and T. M. Smith (1994), Improved global sea surface
temperature analyses, J. Clim., 7, 929–948.

Schneider, T., and I. M. Held (2001), Discriminants of twentieth-century
changes in earth surface temperatures, J. Clim., 14, 249–254.

Seager, R., et al. (2003), Mechanisms of hemispherically symmetric climate
variability, J. Clim., 16, 2960–2978.

Smith, T. M., et al. (1996), Reconstruction of historical sea surface tem-
perature using empirical orthogonal functions, J. Clim., 9, 1403–1420.

Stott, P. A., et al. (2006), Observational constraints on past attributable
warming and predictions of future global warming, J. Clim., 19,
3055–3069.

Tung, K. K., and C. D. Camp (2008), Solar cycle warming at the Earth’s
surface in NCEP and ERA-40 data: A linear discriminant analysis, J.
Geophys. Res., 113, D05114, doi:10.1029/2007JD009164.

Uppala, S. M., et al. (2005), The ERA-40 re-analysis, Q.J.R. Meteorol.
Soc., 131, 2961–3012.

�����������������������
C. D. Camp, Department of Mathematics, California Polytechnic State

University, San Luis Obispo, CA 93407, USA.
K. K. Tung and J. Zhou, Department of Applied Mathematics, University

of Washington, Seattle, WA 98195, USA. (tung@amath.washington.edu)

Table 1. Equilibrium Climate Sensitivity and Transient Climate

Response for Various Atmosphere-Ocean GCMs, From IPCC AR4

AOGCM
Equilibrium Climate
Sensitivity (�C)

Transient Climate
Response (�C)

1:BCC-CM1 n.a. n.a.
2:BCCR-BCM2.0 n.a. n.a.
3:CCSM3 2.7 1.5
4:CGCM3.1(T47) 3.4 1.9
5:CGCM3.1(T63) 3.4 n.a.
6:CNRM-CM3 n.a. 1.6
7:CSIRO-MK3.0 3.1 1.4
8:ECHAM5/MPI-OM 3.4 2.2
9:ECHO-G 3.2 1.7
10:FGOALS-g1.0 2.3 1.2
11:GFDL-CM2.0 2.9 1.6
12:GFDL-CM2.1 3.4 1.5
13:GISS-AOM n.a. n.a.
14:GISS-EH 2.7 1.6
15:GISS-ER 2.7 1.5
16:INM-CM3.0 2.1 1.6
17:IPSL-CM4 4.4 2.1
18:MIROC(hires) 4.3 2.6
19:MIROC(medres) 4.0 2.1
20:MRI-CGCM2.3.2 3.2 2.2
21:PCM 2.1 1.3
22:ULMO-HadCM3 3.3 2.0
23:UKMO-HadGEM1 4.4 1.9
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