2330

JOURNAL OF THE ATMOSPHERIC SCIENCES

On the Two-Dimensional Transport of Stratospheric Trace Gases
in Isentropic Coordinates

KA KiT TUNG
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, 02139
(Manuscript received 12 October 1981, in final form 13 April 1982)

ABSTRACT

A zonally averaged model of stratospheric tracer transport is formulated in isentropic coordinates. There
are some conceptual and computational advantages, as well as some disadvantages, in adopting the potential
temperature, instead of pressure, as the vertical coordinate. The main disadvantage is that the “density”
(mass per unit coordinate volume) in isentropic coordinates is no longer a constant as in the pressure
coordinate system under the hydrostatic approximation. However, it can be shown that this density effect
is almost negligible in the calculation of the mean diabatic circulation and the eddy advective transports.
What is gained by adopting the new formulation is a conceptually simpler picture of the interplay of diabatic
and adiabatic processes in the transport of tracers. Mean diabatic heating (cooling) forces a direct rising
(descending) mean mass flow. Along the streamlines of this mean mass circulation, tracers are advected in
the mean. These surfaces slope downward and poleward in the lower stratosphere. In addition to advection,
tracers are also dispersed from their mean path by transient adiabatic processes in' a direction parallel to the
local isentropic surface. As a result, the lines of mean constant tracer mass mixing ratio slope less steeply
than the mean streamlines, but more steeply than the isentropic surfaces. The effect of eddy transport on
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chemically reacting minor constituent gases is also discussed.

1. Introduction

In the stratospliere, dynamics, radiation and pho-
tochemistry are coupled in a complicated feedback
loop. The motion field which transports the trace ele-
ments is itself driven, to a large extent, by the diabatic
(radiative) heating and cooling caused by the absorp-
tion of solar radiation and the emission of longwave
radiation, processes which depend strongly on the
concentration of some trace elements such as ozone
and carbon dioxide. The incorporation of these in-
teractions in two-dimensional (zonally averaged)
models has been impeded by the inevitable presence
of eddy fluxes. The common practice of parameter-
izing the eddy fluxes using mixing-length theory
(Reed and German, 1965) fails to fully tdake into ac-
count such a feedback process, since usually the same
set of empirical parameters is used, even when the
sources and sinks are altered. The readers are referred
to Harwood (1980) for a review of two-dimensional
(2-D) models incorporating the so-called K-theory for
the eddy fluxes and to the MAP report (Mahlman et
al., 1981) for a more comprehensive review and dis-
cussion of the current developments.

1t is well-known by now that the zonally averaged
meridional circulation in the stratosphere is thermally
indirect over the winter latitudes, where eddy activity
is predominant (Miyakoda, 1963; Reed et al., 1963;
Vincent, 1968). Instead of rising motion in regions

0022-4928/82/102330-26$10.50
© 1982 American Meteorological Societv

of net heating and subsidence where the atmosphere
cools, the observed zonally averaged circulation in
the lower stratosphere consists of upward motion in
the winter polar region and over the tropics, and de-
scending motion over the middle latitudes. The ex-
planation, as given by Newell (1963), is that the
stratosphere acts more or less like a refrigerator,
driven, to a large extent, by upward-propagating
waves from the troposphere, whose effect on the mean
circulation overwhelms the thermally direct diabatic
circulation forced in situ. It has also been recognized
that conservative tracers are transported neither by
the observed (Eulerian) mean circulation, nor by the
eddy fluxes alone, but the trajectories appear to ap-
proximately follow the diabatic circulation, which is
a small residue of the two (Brewer, 1949; Dobson,
1956; Newell, 1963; Hunt and Manabe, 1968; Mahi-
man, 1969; Mahlman and Moxim, 1978; Dinkerton,
1978). Therefore, it is not surprising to find that in
model calculations of tracer transport using the ob-
served zonal mean circulation, a large, usually pa-
rameterized eddy flux transport is needed, with the
net transport obtained as a small difference of the two
large terms. This peculiarity of most existing two-di-
mensional models is a constant source of numerical
inaccuracy, in addition to the lack of physical basis
for the diffusion type of parameterization currently
in use (Mahlman, 1975; Clark and Rogers, 1978;
Plumb, 1979; Matsuno, 1980).
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Since the separation of the eddy from the mean is
simply a matter of convention and depends entirely
on how the mean is taken, as was first indicated by
Mahiman (1969), it has been suggested that perhaps
with a judiciously chosen averaging procedure, the
role played by the eddies in the transport of species
can be drastically reduced. This feasibility is amply
demonstrated by Andrews and MclIntyre (1978). By
taking the Lagrangian mean, which is the average of
a quantity at a “displaced” location, instead of the
conventional Eulerian mean, which is taken with re-
spect to fixed coordinate points, the eddy fluxes dis-
appear entirely from the averaged transport equation.
The transport is found to be caused by the advective
Lagrangian mean meridional circulation. It should
be noted, however, that the eddy problem is not elim-
inated with the use of this new formalism because,
in principle, one needs to have a knowledge of the
eddy displacement field to be able to perform the
averaging in accordance with the definition of the
Lagrangian mean. [See MclIntyre (1980) for a dis-
cussion of the practical problems facing the appli-
cation of the theory of Lagrangian mean 1o the tracer
transport problem.] Nevertheless, the conceptual sim-
plicity afforded by the theory of generalized Lagran-
gian mean has been very useful in the interpretation
of results from three-dimensional models (Kida,
1977; Dunkerton, 1978; Matsuno and Nakamura,
1979; Hsu, 1980; Matsuno, 1980). Further develop-
ment of the theory is eagerly awaited, especially in
the practical area of interpretation of lLagrangian
mean results with observational data (Danielsen,
1981). In the meantime, those working with data con-
ventionally taken. and analysed may prefer a more
conventional Eulerian formulation.

A step in this direction is the development of the
" theory of the residual mean (or the so-called trans-
formed Eulerian mean) circulation (Andrews and
Mclntyre, 1976; Boyd, 1976; Dunkerton, 1978; Ed-
mon et al., 1980; Holton, 1980; Matsuno, 1980;
Dunkerton et al., 1981; Palmer, 1981). The specific
application of this theory to the problem of tracer
transports is clearly discussed by Holton (1981). In
this formulation a residual circulation, which is the
difference between the Eulerian mean circulation and
the eddy-induced circulation, is defined so that no
eddy terms appear explicitly in the heat or species
transport equation, provided that the species is con-
servative and the eddy field is steady and adiabatic.
When these conditions are violated, as is the case in
the real atmosphere, the full eddy problem still exists
(in the sense that the eddy transport tensor is full'),

! Some of the eddy transport components may turn out to be
small, but no assessment of their magnitudes is available at this
time. As we will discuss later, such an assessment is more easily
made in isentropic coordinates (the diffusion tensor turns out to
be dominated by one component in isentropic coordinates, while
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though now presumably the large cancellations be-
tween mean and eddy transports have been removed.

The presence of eddies, either explicitly or implic-
itly, in the averaged species equation is not the only
obstacle in the formulation of a consistent 2-D model.
A second (computational) difficulty arises because the
mean quantities themselves are coupled. In particu-
lar, the diabatic mean flow velocities and the mean
temperature field are present simultaneously in the
energy equation in height or pressure coordinates. As
a consequence, a consistent determination of even
the residual (diabatic) circulation requires the simul-
tancous solution of three nonlinear prognostic?, plus
two linear diagnostic equations (e.g., the calculation
of Holton and Wehrbein, 1980). Such an expensive
undertaking appears to be excessive (especially for
diagnostic purposes) because, as far as the species
transport is concerned, only the mean diabatic me-
ridional circulation is needed. One is tempted to sim-
ply drop the mean temperature time change and ad-
vection terms in the energy equation, thus decoupling
the mean temperature field and the mean zonal ve-
locity field from the mean diabatic meridional cir-
culation. This is the approach taken by Dunkerton
(1978). The procedure suggested by him is extremely
simple: the diabatic heating rates directly give the
diabatic vertical velocity, and the meridional velocity
is then found by solving a nondivergent continuity
equation. The results obtained by Dunkerton are en-
couraging, although many of the approximations in-
volved are ad hoc and not easily justifiable. In isen-
tropic coordinates, however, Dunkerton’s procedure
is the natural procedure for obtaining the mean cir-
culation. This is due to the fact that the diabatic heat-
ing rate is the vertical velocity in the isentropic co-
ordinate system, with no eddy fluxes or temperature
advections appearing. The mean meridional diabatic
velocity is found from this vertical velocity via the
continuity equation. The mean zonal flow can be
evolved, in time, by solving one linear prognostic
equation. The mean temperature is obtainable diag-
nostically as the vertical derivative of the Mont-
gomery stream function, whose meridional derivative
is proportional to the mean zonal flow (see Section
S for more details). Of course, even this much simpler

in pressure coordinates all four components may be comparable).
Furthermore, the “residual” mean diabatic circulation has the
more direct physical interpretation in isentropic coordinates as the
actual zonal mean meridional circulation, while in pressure co-
ordinates, it is essentially a mathematical definition. Aside from
such differences, the two formulations are quite similar concep-
tually; they share the common feature that the large cancellation
between eddy and mean transport is removed, through a new
mathematically-defined circulation in the isobaric coordinate case
and, naturally, in isentropic coordinates. .

2 One prognostic equation, the northward momentum equation,
can be approximated by a geostrophic diagnostic equation: see
Section 5 for more detail.
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calculation is not needed if one is interested only in
diagnosing the 2-D transport of species and not in
the general zonally averaged circulation of the. at-
mosphere.

The zonal mean circulation calculated in isentropic
coordinates turns out to be the mean diabatic cir-
culation; the large eddy driven mean circulation that
is present in height or pressure coordinates is mostly
absent in the isentropic coordinate system. This mean
circulation is thermally direct, in the sense that the
motion is upward in regions of net diabatic heating
and downward in the part of the atmosphere that
cools. Furthermore, this direct circulation is found
to be in the same direction as tracer transport trajec-
tories.

In order for these results to be easily interpretable
with conventionally taken data, we choose to present
the formulation here in Eulerian zonal mean, though
the theory can also be formulated in Lagrangian
mean as well. In the Eulerian approach, eddy fluxes
are inevitably present in the species transport equa-
tion. These eddy fluxes are expressed in terms of gra-
dients of the mean species concentration using the
procedure of linearization of the perturbation species
equation. It is found that transient eddies disperse
tracers from their mean path of advection by the dia-
batic circulation. If we assume that eddy events, aris-
ing from planetary and gravity waves propagated up
from the troposphere, occur on a short enough time
scale so that the process can be regarded as quasi-
adiabatic, then the dispersion occurs predominantly
in one direction only—horizontally along the isen-
tropes. This dispersion process tends to smooth out
the gradients of tracer concentration on the isentropes
created by the mean diabatic advection. This situa-
tion is depicted schematically in Fig. 1, which shows
a streamline for the mass circulation: sloping down-
ward and poléward at a steeper angle than the isen-
tropes, with particles on the streamline dispersing in
a direction parallel to the isentropes.

Though there is, as yet, no rigorous justification
for such an assumption of separation of time scales,
with the mean meridional mass circulation in isen-
tropic coordinates determined by longer-term system-
- atic diabatic effects, while the eddy dispersion is
caused by shorter duration adiabatic processes, the
results from such an assumption show a mechanism
of tracer transport that seems to be consistent with
the observed behavior of tracer movements (Daniel-
sen et al., 1962; Danielsen, 1968; Newell, 1963).

As a wave disturbance propagates through the
stratosphere, it displaces the isentropic surfaces up
and down, relative to a constant-pressure surface. If
the process is quasi-adiabatic, the fluid particles on
an isentrope not only change their pressure in re-
sponse to the wave disturbance, but also change their
temperature; this occurs in such a way that the prod-
.uct of the temperature T and pressure p to the power
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FIG. 1. Schematic diagram depicting an advection path (heavy
line) by the diabatic mean circulation and dispersion by the tran-
sient eddies (thin lines with shading).

of R/c, remains unchanged. Therefore, if one uses the
potential temperature § = T(pgo/p)~/%, as the vertical
coordinate, then, with respect to such a coordinate

- system, there would be no vertical eddy displace-

ments, though, in general, there would be horizontal
eddy displacements associated with the passage of a
wave disturbance. It is this ability of the isentropic
coordinates to “follow” the vertical motion of adi-
abatic disturbances that endows these coordinates
with a quasi-Lagrangian property. They are not true
Lagrangian coordinates because the horizontal dis-
placements are not followed. Nevertheless, the ap-
proximate absence of vertical eddy displacements re-
duces the number of eddy “diffusion” terms in the
species transport equation by a factor of four, while
at the same time retaining the advantage of an Eu-
lerian system in being able to utilize conventional
radiosonde data. Since radiosonde measurements are
actually taken in the x, y, p system, with the height
z inferred (instead of measured) from the tempera-
ture, it is as easy to infer the potential temperature
as it is to deduce the height, with p and T measured
by these instruments. Consequently, the isentropic
coordinate system X, y, f can easily be adopted and,
in fact, has been generally used in meteorology,
though to a lesser extent than the isobaric system (see
Bleck, 1973; for a historical account of the rivalry
between the proponents of isentropic versus isobaric
coordinates). In the past, the isentropic coordinate
system has been used to take advantage of the fact
that for adiabatic motions the governing equations
become two-dimensional (see Kasahara, 1974; Dut-
ton, 1976). The often-encountered difficulties® occur

3 Similar difficulties also exist in pressure coordinates, with iso~
baric surfaces intersecting the lower boundary and with the fre-
quent formation of “fronts” (see Dutton, 1976).
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‘near the Earth’s surface, with isentropes intersecting
the surface, and with the occasional occurrence of
adiabatic layers, where § ceases to be a monotonically
increasing function of height. Though these technical
difficulties can be overcome with hybrid coordinate
systems such as that of Deaven (1976), Friend et al.
(1977) and Uccellini et al. (1979)*, the problem does
not present itself in the stratosphere, where the co-
ordinate system is adopted in the present application.
As seen from Fig. 2 (taken from Newell et al., 1974),
the mean potential temperature in the stratosphere
is a monotonically increasing function of height and
is almost horizontal over most latitudes for all sea-
sons. For our purposes, we point out that the “tro-
popause” (~350 K isentrope) is a nearly horizontal
surface for all seasons, which separates the tropo-
sphere, with its poleward-decreasing potential tem-
perature, from the stratosphere. We shall be interested
in the region above 350 K. The governing equatrons
in isentropic coordinates are summarized in Appen-
dix A. (Symbols are defined in Appendix F.)

2. The mean meridional mass circulation

Let X be the concentration per unit mass of a par-
ticular species under consideration and S be the net
rate of production, also per unit mass, of that species.
The species equation can be written, in any coordi-
nate system, as 4

a X=3S.
Let (#, v, w) be the velocities in the physical (i.e.,
geometrical) coordinate system (x, y, z) and (u, v,
f) be the corresponding velocities® in the isentropic
system (x, y, 6). The substantial derivative can be
specialized to either system as

L(ﬁ i+,,_6_)
dt \ot dy

i—(a+u-‘1+v3) 92
dt \ot ax ay/, a0

d
+w

™ 2.2)

(2.3)

The chief advantage of using the isentropic coordi-
nate system is that the “vertical velocity” 8 = (d/dt)0
is directly determinable from a specification of the
diabatic heating rate.

This relationship is expressed in the form of an
energy equation, from the first law of thermodynam-
ics:

p g4 (2.4)

dt T’

4 Bleck (1978) found some problems relating to the stability of
the scheme proposed by Uccellini ez al. (1979). The other schemes
mentioned above were found to perform satisfactorily.

S The horizontal velocities # and v in (u, v, §) are here understood
to be measured on constant f-surfaces.
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where p is the conventional density, mass per unit
physical volume dxdydz, and q is the diabatic heating
rate, also per unit physical volume, divided by ¢,, the
specific heat of air at constant pressure. Eq. (2.4) pro-
vides a direct relationship between the diabatic heat-
ing rate ¢, and the vertical “velocity,” § = (d/d?)6, in
isentropic coordinates. Let

oy = g(x ¥y, z) az @.5)

(x, ¥y, ) )

be the “density” in isentropic coordinates, i.e., mass
per unit “volume” dxdydb. Eq. (2.4) then implies that
the “mass flow rate” in isentropic coordinates

W= Poa,
is related directly to the di;clbatic heating through

W = g/T. (2.6)
In Eq. (2.6), T is the usual static stability parameter
defined as in Holton (1972),

=—~_—+=>. 2.7
r 9z ¢ 7

The simple form of (2.6) should be contrasted to the
corresponding equation expressed in height (or sim-
ilarly in pressure) coordinates, which is

9 i} a
tu—+v—|T+ :
(é}l u i +v ay)T (ew)I' =q. (2.8)

That is, the diabatic heating is not only associated

.with a vertical mass flow pw, but also with a hori-

zontal temperature advection. Since the latter has to
be solved as well, Eq. (2.8) is considerably more com-
plicated than (2.6), in addition to the fact that the
presence of quadratic terms in (2.8) introduces ad-
ditional eddy heat fluxes when that equation is zon-
ally averaged, though this latter problem can be cir-
cumvented using the transformed Eulerian mean
mentioned previously.

It should be pointed out, however, that our Eq.
(2.6) is not as simple as its form seems to imply. This
is because, strictly speaking, I' is a function of the
temperature, and so W cannot be deduced directly
from g even if the latter is completely specified, un-
less the temperature is solved as well. This compli-
cation can be eliminated if the common practice of
replacing I’ by its radiative equilibrium value

o= T, 98.

0, 9z’

is adopted. This approximation is used in almost all
current stratospheric dynamics'calculations. Accord-
ing to Holton (1975), this assumption appears to be
necessary for the purpose of obtaining proper -ap-
proximate quadratic energy integrals and seems to be
a satisfactory approximation in the stratosphere. We
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have examined this commonly used approximation
in more detail in Appendix B, and found that it can
be justified for the zonally averaged equation but not
the eddy energy equation. That is,

=1
W_F(O)

can be shown to be a good approximation to the zonal
average of Eq. (2.6). The eddy energy equation will
be treated separately later.

With the mean vertical flow W determined directly
from the diabatic heating via Eq. (2.9), we now pro-
ceed to deduce the meridional circulation through the
mass conservation equation, which is, in isentropic
coordinates,

] d 0

9
Lt L Uu+Z v+ Zw=o.
a” ax” Tay T o8 0

The mass flow rates U, V and W are defined as
(2.11)

On a sphere with longitude A and latitude ¥, the fol-
lowing relationships have been used:

2.9)

(2.10)

U= pou, V=pwcosP, W=p,b.

y=asin®, dx=acosPdX\. (2.12)

Since the mass conservation equation (2.10) is linear

in the quantities involved, no eddy terms will be

introduced by an Eulerian zonal average. This yields
d d . 94 .
—pt+t—V+—W=0.
af oV a0

We define a diabatic mean circulation (V, W)) as

(2.13)

. ]
Wp = RCE (2.14)
N v 9 [ G

Vp= —f % (W)dy. (2.15)

From (2.9) one knows that W), is the same as W, but
Vp is only the part of the meridional flow that is
directly driven by the diabatic heating. There is an
additional part arising from transient time changes
in mean density. In general, one should write

17= 177‘+ VD- (216)

With V), satisfying the divergence-free relation

J J -

—Vp+ =W, = .

5 V2% 3 o =0, 2.17)
one can see from (2.13) that V; is given by

lij d -

—pe+ — Vr=0. 2.1

5Pt 5y V=0 2.18)

It is seen from (2.18) that ¥ should be small in a
long-term (e.g., seasonal) time average. It is further
argued, in Appendix B, that V7, as given by (2.18),
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is negligible compared to Vp even for subseasonal
events. Consequently, we have

W~ W) (2.19)
and

V~V, (2.20)
in isentropic coordinates. These approximations per-
mit the mean meridional mass circulation to be de-
ducible from ¢, in principle, using the simple relations
in (2.14) and (2.15). However, in practice the deter-
mination of the diabatic heating rate g itself is not
an easy matter. Here we shall first consider the sim-
pler task of diagnosing the meridional circulation
which is consistent with calculated radiative heating
rates based on climatological mean conditions. In a
later section, we will discuss the procedure for the
more involved interactive calculations.

Using the more recent result of Dopplick (1979),
who calculated the total radiative heating rate per unit
mass, zonally and seasonally averaged, from various
radiative and photochemical sources and sinks be-
tween 1000 and 10 mb, we have deduced the mean
meridional mass circulation diagnostically. The pro-
cedure is described in Appendix C and the result is
presented in Figs. 3 and 4. Because such diabatic heat-
ings as latent heat release and sensible heating have
not been included in the radiative calculation of Dop-
plick, the result for the diabatic circulation appears
to be questionable in the troposphere. Therefore one
should concentrate on the features in the strato-
sphere. Dopplick’s calculation terminates at 10 mb.
Above 10 mb, the radiative heating rate of Murga-
troyd and Goody (1958) and Murgatroyd and Sin-
gleton (1961) is used, though it has a much coarser
resolution. This circulation is represented by heavy
dashed lines in Fig. 3. In Fig. 4, the streamfunction
for the meridional mass circulation is depicted. Note
the two-cell structure of the diabatic circulation in
the lower stratosphere, with rising motion over the
tropics and sinking motion over both poles. (As ar-
gued later in this paper, this feature of the meridional
circulation essentially implies poleward and down-
ward transport of tracers in a trajectory steeper than
the isentropic surfaces.) In contrast, the mean cir-
culation in the upper stratosphere and mesosphere
consists of a single cell, with ascending motion over
the summer pole and descending motion over the
winter pole. These features of the mass circulation
are consistent with those deduced by Dunkerton
(1978). However, the physical interpretation is more
direct in isentropic coordinates. '

" Equilibrium pressure coordinate

In Fig. 4, we have labeled the vertical coordinate
also in terms of a pressure-like function defined as

j:'g 1/x
De(0) = Doo(“‘) s

; (2.21)
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(1961).

with the inverse

,,zsil(&o)“
R \p.J’

where H = RT,/g is the scale-height based on the
background equilibrium temperature. The gquantity
DAB) has an approximate correspondence with the
pressure levels in an isobaric coordinate system. It is
the pressure in an atmosphere whose temperature is
the same as the globally averaged radiative equilib-
rium value 7,. Hence, p, shall be called the equilib-
rium pressure. In existing models using pressure co-

2.22)

ordinates it may be easier operationally to convert
into the isentropic coordinate system based on p/(6)
instead of 6.

3. The zonally averaged transport equation

In this section, the equation for the zonally aver-
aged species concentration is derived. Eddy fluxes are
inevitably present in the Eulerian average used here.
These eddy terms cannot be consistently determined
within the framework of two-dimensional theories.
The situation is very similar to the well-known clo-

‘FD/O \
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FIG. 4. Streamfunction for the diabatic meridional circulation in isentropic coordinates;
the indicated height is approximate. .
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sure problem in theories of turbulence; no progress
appears to be possible unless some ad hoc assump-
tions are adopted. We adopt here the a priori as-
sumption that the perturbation quantities are deter-
minable through the procedure of asymptotic expan-
sion in powers of perturbation amplitude. This
assumption is g priori because there is no sufficient
reason to believe that in the real atmosphere the per-
turbation quantities are small compared to the mean.
However, having adopted this procedure, the deri-
vations that follow are systematic and no ad hoc pa-
rameters need be introduced. Nevertheless, one should
be cautioned against placing too much confidence in
the mathematical results obtained this way, as some
of the behaviors of large amplitude disturbances can-
not be described in this manner (see Hsu, 1980;
Mclntyre, 1980).

With the aid of (2.10), the equation for mass con-
servation, one can rewrite the species equation (2.1)
in a flux form as

—(poX)+ (UX)+—(VX)

+ b@(WX) =peS, (3.1

which becomes, when the zonal average is taken,

0 —
X+_ngl

X+V X+W
ay

a0

a 1y _a_ 'Yy = <
+,5(VX)+66(WX) (0s5). (3.2)

In arriving at (3.2), the zonally averaged continuity
equation (2.13) has been used. The mean quantities
appearing in Eq. (3.2) have already been found to be
_jy 2 (-/F(O))d
Y q Vs

W~ Wy = g/TO,

V% VD

(3.3a)

(3.3b)

"The mean “density” p, will be assumed to be given

approximately by the background radiative equilib-
rium value (see Appendix B), i.e.,

0 -9/2
Py ~ Po(o) ~ Pao(o)(_) .
Bo

(3.3¢)
[This assumption is not actually necessary, as the
mean “density” can be calculated in 2-D models.
However, this degree of accuracy does not seem war-
ranted in the present context as far as the transport
equation (3.2) is concerned.]

To close the system (3.2), the eddy fluxes are cal-
culated using perturbation theory. The derivation is
given in Appendix D. The results are summarized
here. The transport of the mean species concentration
X is governed by the following equation:

KA KIT TUNG

- a ¥a U
PoEiX‘F(VD‘F Ve — = pom

i)
atpad’

_ N\ 9
% (”"Dy" Y, X) a6

—paS——(V’a’)——(WoJ) (

_)_

J -
9 (f)aDoo 55 X)

(f)oD ()% a
IV}
ot

dy

a

+ @ — )ppo’
uax)py

EpaP-

In (3.4), we have defined

3.4

0 —-
Pe=—2 [n'W' ~Yipe sy, n'¢'], (3.52)

a0
We=2 [n_vV — gy 2 n'—df] (3.5b)
dy ot ’

D, =% g; 77,

Dy = 1/23?77&7 =D,
ot Ve

Dy ="' 9 e . (3.6)
o

It is seen that the advective transport of X consists
of 1) the diabatically forced direct circulation (V)p,
Wp), 2) an eddy-flux-induced flow (Vg, Wg) and 3)
an additional advection caused by the correlation
between “density” perturbation and particle displace-
ments: (—(8/31)psn’, —(9/01)ps¢"). This last term is ab-
sent in isobaric coordinates. In height coordinates,
however, a similar term should also exist but is often
neglected. The “diffusive” terms, that involve the
symmetric components of the diffusion tensor, are
seen to arise entirely from transient disturbances,
since the D’s in (3.6) are all in the form of explicit
time derivatives. It should be pointed out that even
though the D-terms in Eq. (3.4) have the form of
diffusion, they act physically as diffusion only if the
following conditions are met (Matsuno, 1980):

Dyy Dgg = O; D Dag D 2

However, for convenience, we will continue to use
the word “diffusion” to refer to these D-terms. The
D’s would vanish in models that assume steady or
periodic wave disturbances [e.g., Clark and Rogers
(1978); Pyle and Rogers (1980b)]. On the right-hand
side of Eq. (3.4), there are some new terms involving
the zonal asymmetries in the source term:

9 — s _o
A 7 W 7 — 9\
ay (az ax)” o

where ¢ is defined from
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(8 + ui)d S
ot ax

These terms are difficult to calculate, and have been
considered only very recently. They are found by
Tuck (1979) and Pyle and Rogers (1980b) to be im-
portant in isobaric coordinates. We will discuss them
later in Section 4.

Eq. (3.4), then, is the equation governing the 2-D
transport of a species. When more than one species
are involved in a chemical reaction, each one of the
species is transported in the manner described by Eq.
(3.4). Their chemistry combines these individual
equations through their source terms.

a. Adiabatic eddy model

In terms of the number of eddy transport terms
that are present in the species transport equation, Eq.
(3.4) is not simpler than the corresponding equation
in either height or pressure coordinates under the
transformed Eulerian interpretation. However (as
detailed in Appendix E), many of the eddy transport

terms appearing in Eq. (3.4) are actually small in is- .

entropic coordinates and can be approximately ne-
glected in first-order models. This is the case when
the eddies are associated with disturbance events of
short durations. These eddies can be regarded ap-
proximately as adiabatic if their residence time in the
atmospheric layer of interest is shorter than the time
it takes for the disturbance to gain or lose appreciable
heat to the environment. Under such a circumstance,
the disturbance conserves its potential temperature
(i.e., 8 =~ 0) and consequently no “‘vertical™ particle
displacement occurs in isentropic coordinates. Setting
¢’ and W’ to be zero in Eq. (3.4) then leads to the
following simplified equation:

e (7
ax

g —\) 0 - _ 6>_
Lol L+ W2 X
az”””)ay > 39

0

ay
Note that of the four components of the diffusion
tensor, only one, the horizontal diffusion along an
isentropic surface arising from the horizontal gra-
dient of mean concentration, remains. No compa-
rable simplification can be achieved in height or pres-
sure coordinates, unless the disturbances are assumed
to be steady (or strictly periodic), which is difficult to
justify for the real atmosphere.

It is shown in Appendix B that the horizontal
eddy advection induced by density perturbations,
—(8/91t)pyn', appearing in (3.7) is generally small com-
pared to the mean advection V;, for both quasi-geo-
strophic waves and gravity waves, and so can be

ignored in first-order models. Eq. (3.7) reduces to the
following simple form:

o I
(l—’oDyya)X) = peP. (3.7)
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X+ W, %

. _ 9
po— X+ Vp—
Po D 90

ot ay
a
ay

The transport of an inert tracer, as described by Eq.
(3.8) with P = 0, consists of advection by the diabatic
mean mass circulation (Vp, Wj) and dispersion
(““diffusion”) by the transient eddies along isentropic
surfaces. '

In the absence of transient eddy dispersion (i.c.,
D,, = 0), the equilibrium solution of Eq. (3.8) for
inert tracers is (see Appendix C)

X = F(‘i,D)a

0 _
(pﬁDyy a ) = I_)GP (38)

3.9)

where ¥, is the streamfunction for the mean mass
circulation (see Fig. 4). Eq. (3.9) implies that the lines
of constant X would tend to coincide with those of
¥, in the absence of eddy dispersion. In the winter
latitudes below 30 km, the mean vertical velocity on
the isentropic surfaces is downward, since that region
is radiatively cooled, while the velocity is upward in
the tropical region due to radiative heating. The lines
of constant ¥, for the thermally direct circulation
(Vp, Wp) therefore slope at a greater downward angle
than the 1sentropes This feature of the direction of
advection is evident in Fig. 4. The result in Eq. (3.9),
therefore, implies that the tracer should be trans-
ported poleward and downward at a greater slope
than the surfaces of constant potential temperature.
The present simple and direct explanation of this fea-
ture of tracer transport should be compared with the
rather complicated arguments in height or pressure
coordinates (e.g., Hunt and Manabe, 1968; Wallace,

1978). This feature is qualitatively consistent with
most observations of tracer concentration in this part
of the atmosphere, though the steady-state slopes of
tracer mass mixing ratios calculated here appear to
be too steep near the polar region. Fig. 5, taken from -
Newell (1963), suggests a poleward and downward
transport of ozone (which can be treated as a con-
servative tracer below 25 km) in northern latitudes,
where the mean vertical velocity in pressure or height
coordinates is observed to be upward. It is obvious
that a model in height or pressure coordinates, with
only advective transports by the observed mean Eu-
lerian velocities, is not even qualitatively acceptable,
while a model in isentropic coordinates, with only
advective transports by the mean mass circulation,
is qualitatively correct. It is on this basis that we spec-
ulate that the effects of eddy transports are of sec-
ondary importance away from the poles in the present
formulation.

For quantitative purposes, however, the effect of
dispersion by transient eddies has to be considered.
The presence of dispersion (or “diffusion™) tends to
lessen the gradient of the tracer concentration created
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FIG. 5. The observed ozone mass mixing ratio (micrograms per gram of air) for
January and February. Dashed lines are potential temperature surfaces (K). Taken

from Newell (1963).

on the isentropic surfaces by the diabatic advective
transport, making the slope of constant tracer mass
mixing ratio less steep. These two competing effects
of tracer transport, depicted schematically in Fig. 1,
have previously been suggested by Mahiman et al.
(1981).

b. Comparison with Dunkerton’s Lagrangian mean
transport equation

Dunkerton (1978) treated the case of steady con-
servative eddy fields. Under these same conditions
our Eq. (3.4) reduces to

I N
mmX+WMW@®X
_ _ 0 -
+(Wp+ W) o, X =0, (3.10)

for an inert tracer. Eq. (3.10) implies that the tracer
is simply advected by the mean flow

[_i (Po+ Po). ~ (W + WE)].
Po Pe

These advective velocities can be shown to be ap-
proximately equal to the Lagrangian mean flow of
Andrews and MclIntyre (1978), under the same as-
sumptions used by Dunkerton (i.e., small-amplitude
steady waves). That is, if one defines the generalized
Lagrangian mean of 6 to be

M

2T
Ox+ &, y+1,0+¢)dr (3.11)

el
27!'0

then by Taylor-expanding the integrand in (3.11),
assuming small wave displacements, one finds

<L - a . a . 6 .
pb ~p|O+E O+ =0+ O
Pg P0[0 £ o i ay ¢ 30 J

_ —_— a - a — T
= pobl + polf + —— (pn'0) + — (ps0'0). (3.12)
dy a0

The first two terms on the right-hand side (rhs) of Eq.
(3.12) are psd = W. The last term vanishes for the
steady waves under consideration. The third term is
simply Wg. Thus

. 1 — —
i~ = (Wp+ W), (3.13)
('} .

and similarly

ot cosP ~ _L (VD + VE)' (3.14)

. Do )

We have now shown that the advective velocities in
isentropic coordinates are approximately the Lagran-
gian mean velocities.

Dunkerton, by replacing the Lagrangian mean dia-’
batic heating rate g by the Eulerian mean g in the
energy equation, in effect ignored Wy compared to
Wp, with the final result that the advective Lagran-
gian mean flow is taken to be approximated by the
Eulerian diabatic circulation, i.e.,

_ <L 1 - 1 .
(P cos?, 0 ) ~ (_— Vp, — WD). (3.15)
Po Py

In isentropic coordinates, the approximationin (3.15)
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follows from the assumption that the eddy distur-
bances are quasi-adiabatic. The present arguments,
then, constitute a somewhat more systematic justi-
fication of Dunkerton’s procedure for steady adi-
abatic wave disturbances of small amplitude, but the
use of isentropic coordinates is essentlal for our ar-
guments.

Under the same assumption of steady waves, it can
also be shown that the source terms on the rhs of the
species transport equation can be interpreted as a
Lagrangian zonal mean. In Appendix D (D18), we
have shown that the source term on the rhs of Eq.
(3.4) can be expressed as

d d
—_ '+ 7 1
-

P0P=P0[S+E&S +nay

)
o

which becomes, for steady waves

[ (pan'@) + - (pa¢0’)+p96’]_

- d d d
- oy ' = S 4 g — ' + ¢ — '
poS+pe[EaxS nayS ¢60S]
= ppSL.  (3.16)
This result gives additional support that the Eulerian

L . {1 _ _

mean diabatic circulation (— Vp, — WD) approxi-
Ps Po

<L

mates the Lagrangian mean transport (% cos®, 8 ),

as our Eq. (3.4) becomes, under the approx1mat10ns
used by Dunkerton and using (3.16),

WD d

—X=8, @G.17)

which has the same form as the corresponding species
transport equation under the Lagrangian zonal av-
eraging of Andrews and Mclntyre (1978).

‘As pointed out by Matsuno (1980), the neglect of
transient eddies by Dunkerton eliminates the disper-
sive transports which might otherwise be present.
Numerical simulation of ozone transport in isobaric
coordinates, using only the diabatic mean circulation
of Dunkerton in the Eulerian formulation (Pyle and
Rogers, 1980a), is found to poorly predict the ob-
served ozone concentration.

c. Nohsteady disturbance field

As the assumption of steady (or periodic) wave
fields cannot be justified in the real atmosphere, the
transport equation should be more complicated than
Eq. (3.17). However, as suggested earlier, maximum
simplification can still be obtained if the adiabaticity
assumption can be justified (see Appendix E). It is
interesting to note here that, even in the presence of
a nonsteady eddy disturbance field, the vertical Eu-
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lerian mean velocity in isentropic coordinates is still
the same as the Lagrangian mean, provided the eddy
field is adiabatic and of small amplitude. That is, with
0’ ~ 0, ¢’ =~ 0, Eq. (3.12) implies ‘

<L =

6 = (3.18)

Eq. (3.18) therefore illustrates the quasi-Lagrangian
nature of the isentropic coordinate system. It is not
a true Lagrangian system, as the horizontal eddy dis-
placements are not followed. In fact, the Eulerian and
Lagrangian mean horizontal advections differ by a
transient eddy dispersion term:

1 1
vthcosp = —V+—— (p,,Dyy)
* Po Ps O

(3.19)

4. Chemically reacting épecies

We will now discuss the procedure for calculating
the mean and eddy source terms in the species trans-
port equation for a system of chemically reacting
minor constituents. The relation between the eddy
source fluxes and the dynamical diffusion coeflicients
will be illustrated. We will emphasize the point that
within the framework of small amplitude perturba-
tion theory, the diffusion coefficients are determined
by the dynamics of the atmosphere and consequently
should remain the same for all minor chemical spe-
cies within the same atmosphere. The apparent dis-
crepancy between this statement and the result of Pyle
and Rogers (1980b), will be shown to be merely due
to the different definitions used. The discussions in

- this section do not depend on the adxabatlc eddy as-

sumption adopted earlier.
A chemical scheme involving N participating mi-

nor species can be written in the form

d

p X =S,
Thesé equations are generally coupled because the
production rate of the ith species usually depends not
only on the concentration of that species, but also
other species reacting with it. For illustrative pur-
poses, let us consider an extremely simple example
of the “classical” theory of ozone photochemistry in-
volving the oxygen allotropes only [see Craig (1950)]:

i=1,2,...,N. 4.1

.

0|+02+M_’O3+Mw
k

0, + 0; = 20, 42)

J3
03 + hl/ — O‘ +02

0, + w220

From this scheme, one can easily deduce that the
production rate of the ozone, for example, is
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d
E /Y()3 = So3

= k2Xo,Xo,XM - k3X01X03 - JiXo;.

(The reaction and photodissociation rates are appro-
priately scaled by p for the mass mixing ratio used.)
Similarly for atomic oxygen,

4
dt

(4.3)

XO| = SO| = 2J2X02 + J3X03

- k2X01X02XM - k3XO|XO3'

Since O, and M (air) are not minor species, their
concentrations are assumed to be known and so can
be absorbed into the rate “constants™, which are also
assumed to be known. Writing X, for Xo, and X, for
Xo,, the reactions can be put into the form of (4.1)
as

(4.4)

d . -

—d_[Xl = Sl = 2J2 + J3X2 - k2X1 - k3X|X2 5 (4.53)
d N .

tiz = S2 = k2X| - k3X|X2 - J3X2 . (4.5b)

This simple example illustrates how the species equa-
tions are coupled through their source terms. (Due
to its short lifetime, the radical species O, is often
assumed to be in photochemical equilibrium. Since
our purpose here is to illustrate the formal procedure
for coupled equations, this approximation is not in-
troduced at this point.)

Returning to the general case of N minor species,
one can easily see that the perturbation production
rate S'; is of the form

N

j=1

8s;
6Xv] X=Xk ’

to first order in perturbation amplitudes. The A4,;’s are
zonal mean quantities and in general are rational
algebraic functions of the mean species concentra-
tions. [It is assumed here that the rate ‘“constants”
are mean quantities. This is in general not true be-
cause some of the reaction rates are sensitive to local
temperature change. Modifications to (4.6) due to
such temperature fluxes will be considered at the end
of this section.] For the example in Eq. (4.5), linear-
ization gives

St = KXy = ko Xt — kXX — kXoXY
St =X = S X5 — ks X X5 — ks XX

i=1,2,...,N, A;= (4.6)

and hence
Ay —k, — k3/\72, Ap=J3— k3X1 s
Ay = ifz - kaXz, Ay =—J3— kle .

I
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The expression in (4.6) for S} will be needed for the
calculation of the eddy flux

VX=X, WX,

since the perturbation concentration X; is given by
(see Appendix D)

o - .9 -

o Xi— 0 X+ S,

DX = —v' cos¥ 3y 30

4.7

d .
where D, = % +u P It was found that the solution
to (4.7)is

Xi=d pX- ¢ G hitd, @)
with the displacement fields defined by
7 = Dy 'v' cos®,
¢' = Do™'8,
o = Dy'S}. 4.9)

The inverse Dy ! of the operator D, is defined for-

mally according to:
DO_IDO = 1.

Since the operator D, is the time derivative following
the mean zonal flow, the inverse operator D, ! is then
the time integration along the mean zonal flow. Sub-
stituting (4.8) into the expression for eddy fluxes, we
get

VX, = —pK-VX, + V. (4.10)
The K-matrix
K= |:K.vy Ky(i]
K0y Ky

is the so-called eddy transport tensor whose elements
have been defined in (D.8) in Appendix D. (For
adiabatic eddies, K,y = Ky, = Ky = 0. We have used
D,, to stand for K,, in Section 3.) It is important to
point out that the elements of the K-matrix are ex-
pressible exclusively in terms of %' and ¢/, the aqir dis-
placements in the horizontal and vertical directions,
respectively, and therefore should be independent of
the concentration of the minor chemical constituents.
Once parameterized and validated for one species,
the same set of K’s should, in principle at least, be
applicable to other species. Pyle and Rogers (1980b)
defined their K-matrix to include the source term [the
last term in (4.10)] in it as well. Therefore, it is not
surprising that they concluded that their K-matrix.
depends strongly on species concentration.

Since the perturbations in the species production
rate ultimately arise from the eddy air motions, one
should, in principle, and with a knowledge of the
chemical scheme involved, be able to reduce the eddy
terms in the source fluxes to dynamical eddy dis-



. 2342

placements. Using (4.6) and (4.9), we find that the
last term in (4.10) can be expressed as

N

Vi, = 2 4,V'Dy ' X},
j=1

With (4.8) for X, this further becomes

Vo, = —p 2 AKD.VX + Z A;V'Dy'd} .
Jj=1 Jj=1

. The K" matrix in (4.11) is defined such that its ele-

ments are .

4.11)

] ] —
Kyy(l) =— VIDO—l,nI, Kgg(l) = WyDO_ld),
Pe . Pe
1 | . (4.12)
Kyg(l) =— VID0—1¢I,' Kﬂy(l) = WrDo—ln/
P Pe

This procedure can be repeated indefinitely. The final
result can be written in a compact form if we define
A to be the N X N square matrix whose (ij)th element
is A;; o’ and X each to be the 1 X N column matrix
whose ith element is ¢} and X, respectively. This leads
to the following expression for V'o’:

—plA- (KD V)X + A-A-(K?-V)X
+A-A-A-(K(3)-V))_( + oo t]

Vid -

= 5 T (A (KP- V)X, @13)

n=1

and hence (4.10) becomés

o0
—ps 2 (AY'(K™-V)X.
n=0
In these expressions, we have defined K™ to be the
2 X 2 matrix whose elements are defined in the same
way as those of K, except with Dy™! replaced by
(Do')". Also K© = K and (A)° = I. The factor in front
of VX should reduce to Pyle and Rogers’ K-matrix
for stationary planetary waves.

Provided the series converges, the expression in
(4.14) then generalizes the K-theory for conservative
tracers to chemically reacting minor species partici-
pating in an N-reaction scheme. It expresses the eddy
fluxes of each species in terms of the mean gradients
of the participating species. It clearly separates the
coefficients into a factor K™ that depends on the dy-
namics of eddy air displacements only (and so is in-
dependent of the chemistry) and another part (A)”
which is a function of the mean species concentra-
tions and rate constants only. Given the chemical
scheme, (A)" is, in principle, known. Given the dy-
namics, K™ can either be calculated or parameter-
ized. This is done once for all species within the same
atmosphere.

For practical calculations, it seems that (4.14) can
be severely truncated, provided that the chemical life-

VX' =
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time of the species involved is not too short [see Pyle
and Rogers (1980b) for the case of steady planetary-
wave eddies]. (When the chemical lifetime is short,
a separate photochemical equilibrium approximation
can be used instead.) The rationale is that the operator
D, ! appearing in K™ is an integration operator, and
its acting on a perturbation displacement field would
have the effect of smoothing the latter. It appears,
then, that each successive application of the operator
would tend to reduce the magnitude of the eddy term
further. For a first-order model, it is recommended
that the series in Eq. (4.13) be truncated beyond the

= 0 and 7 = 1 terms. This retains the first order
effect of eddy transport on chemistry:

Po Z AKD.VX;,

j=1
i=1,2,...,N. 4.15)

For adiabatic eddies, (4.15) can be simplified further
because the only nonvanishing element in K is K,

10 — C .
=33 n'n’ = D,,, and the only nonvanishing element

VX, ~ —pK-VX, —

in K is
| o 0 ———
K,V =—=V'Dy 'y —nn — =Dy 'y
Do at
— ﬂ'ﬂ'ED 1)
So
—_ i)
VX~ ,oﬂDyya —poD()ZAUaX
and
W'X;~0. (4.16)

With the parameterization of one function D,,(" in
addition to the “diffusion” coefficient D,, needed for
tracers, all chemically reacting species can be consid-
ered in this manner. The fact that the two parameters
are in theory related, i.e.,

d
Dy = ot ot D

may help simplify the process of parameterization,
but in statistical approximations D,, and D,,\" should
be treated as two distinct functions, as the processes
dominating the statistics of a function may be very
different from the processes dominating the statistics
of its derivative.

We now turn to the calculatlon of the source term
in the right-hand side of the spemes transport equa-
tion (3.4):

d
+ ﬁ*)pb'd;

s ss (2
pePi = pyS; (6[ ax

0 T 0 s
_5;(’/0’1‘) aa(WO‘?)- (4.17)
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Despite its appearance, the first term on the right-
hand side of (4.17) contains some important eddy
terms. For the simple example used earlier, we have
[from (4.5)]
S, = —Xs + kX — ke XXy — X\ X5;

the last term, S,% = —k; X1.X5, depends on the eddy
dynamics. In general, with only quadratic terms in
eddy correlation retained, the eddy terms in §;, de-
noted by S/%, can be written in the form

SE=2 2 BuXi X\
j=t k=1
N N
_ 9 . 3 -0 -
= B. oy —X—X,.+dd—X.— X,
EE. ”"[""a i gy kT PP 55 i gg Ak

J d a
+ 70 ( 2n+2x2 x)] “.18)
Again, severe truncation has been used for the source
terms. In (4.18), B, is known from chemistry, and
E,, =17 = D", E;y = ¢'¢' and E,; = 7'¢' need to
be parameterized (but independently of chemistry).
For adiabatic waves, only vy 18 nonzero, and so

d d

SE ~D<'>ZZB,,k X Xk 4.19)

Jj=1 k=1

The last two terms in (4.17) have already been

treated. The result is

0 — 0 ——

—_— Vl(___ ()

oy V') = 35 W'
N

~V-[py 2 AKDV.VX]. (4.20)
- j=1 .

_ 90 . .

+ u —)p;,~a§ 1s new (it
ox,

disappears in isobaric coordinates), but can be treated

the same way, giving

The remaining term —(%

g ,,[ :X+F,, ,], (4.21)

where F Dopg DO 1] and Fg Dopa Do d)’. For
adlabatlc waves, only F) is nonzero. However, as we
have argued previously, the density perturbation is
small for geostrophic planetary waves. For gravity
waves, pp and ' are 90° out of phase, and so F, is
small even for unstable waves. Thus, we will neglect
the term in (4.21). All the eddy correlation terms in
the mean production rate in (4.17) have now been
considered. The result is complicated, but in isen-
tropic coordinates the number of terms can be re-
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duced by a factor of four when the quasi-adiabatic
approximation is adopted. It is instructive here to
synthesize all the results up to this point and apply
them to a simple example.

a. An example

We use, again, the simple example considered ear-
lier in (4.2) involving oxygen allotropes. (This ex-
ample should only be used for illustrating the pro-
cedure involved. The photochemical equilibrium as-
sumption for the radical oxygen should be applied in
practice from the beginning to simplify the equations
involved.) The zonally averaged species equations are
[from (4.5)):

o Vpd o Wpe . 1 a( ] )
—X —Xi+——=X -
a" T by ay tF py 00 : Pe Y 2D 5 6y
=P =2J2+J3X2_‘k2X1_k3X1X2
d 14
—‘Dyylk3 sz +—05—{ 9Dyy“)

[( k, — kst) Xl + (J3 — k3 Xy) %Xz]} 4.22)

)

and
Vp 8 .

Wpd 16( ]
X, + X, —
ot Paayz

po 9072 5,0y \PPw g, X
= kZXl - k3X1X2 -

_ J -
J3X2 - Dyy(l)k3‘aT/X1

9 1 a9 - =0
X 5 X, + 6 {pBDyy( [(kz — k3 X5) 5} X,
_ .0
+ (=3 = k3 X)) g)Xz]}. (4.23)

Eqs. (4.22) and (4.23) are a highly coupled set, but
they can, in principle, be solved when a parameter-
ization of D,, and D,,(" is adopted. (Furthermore, for
this particular example, the equations can be simpli-
fied greatly if the photochemical equilibrium as-
sumption for O, mentioned earlier is adopted in the
beginning.) The extra terms in P, and P, arising from
eddy dynamics [terms multiplying D,,(’] have not
been commonly treated in photochemical calcula-
tions. They are expected to play an important role
in determlmng the mean concentrations X, and X,.
Thus, there is considerable room for improving the
prediction by treating the eddy dynamics more con-
sistently in the source terms, without having to adopt
more sophisticated chemical schemes.

b. Modification due to eddy fluctuations in the re-
action rates

The photochemical reaction rates, the k’s and J’s
in Eq. (4.5), have previously been taken to be zonal
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mean quantities. Here, we shall consider the modi-
fication to our formulation arising from eddy fluc-
tuations in the reaction rates. These terms have not
been treated previously in existing 2-D models, but
their contribution needs to be assessed in the future.

Suppose that the reaction rates are predominantly
sensitive to local temperature 7. Then the pertur-
bation source term S’} should have the following form
[cf. Eq. (4.6)] according to small amplitude pertur-
bation theory

- N
Si=2 4;X;+ BT, - (429)
Jj=1

where A4, is the same as before, i.c.,

aS;

Aj=—
Yy 6X)

Xi=Xi, T=T,

and the extra term B;T" is due to local temperature
fluctuation, with

as;

B;=
: aT

Xi=Xp, T=T.

With the extra temperature variation term in (4.24),
the eddy flux of the species is seen to be [cf. Eq. (4.14)]

VX = —p 2 (A) - (K?-V)X];
n=0

+BVD,'T". (4.25)
The modification, the second term on the rhs of Eq.
(4.25) is the product of a term B; that depends on the
chemistry of the zonally averaged quantities with zon-
ally averaged temperature, and a part V'Dy,"'T' that
depends on the dynamics of atmospheric air pertur-
bations. We find that (4.16) now becomes

VX~ Dy s K= Dy

(4.26)

WX;=0
One additional parameter,
G,=V'Dy"'T,

has been introduced in (4.26) and has to be pa-
rameterized along with D,, and D,,.

S. Interactive 2-D model of radiation and dynamics

Qualitatively, the structure of the mean diabatic
circulation deduced in Section 2 (see Figs. 3 and 4)
is seen to be consistent, from angular momentum
considerations, with the observed zonal wind distri-
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bution without the need for large eddy momentum
fluxes. Below 30 km, the two-cell meridional circu-
lation should produce westerly zonal winds in both
the winter and summer midlatitudes because the fluid
from the equatorial region carries excess (and hence
westerly) angular momentum when it is transported
to higher latitudes by the diabatic circulation. Above
30 km, the one-cell pole-to-pole diabatic circulation
is seen to produce easterlies in the summer hemi-
sphere and westerlies in the winter hemisphere by the
same angular momentum consideration. This situa-
tion should be contrasted with the Eulerian zonal
mean circulation in pressure or height coordinates,
where in the high latitude lower stratosphere, the pres-
ence of an indirect mean meridional. circulation in
a westerly region would violate the angular momen-
tum principle unless a large eddy momentum flux is
invoked. It is, therefore, apparent that it is concep-
tually simpler to study zonal mean circulations in
isentropic coordinates. Furthermore, since the eddies
in this formulation are relegated to a secondary role,
the model is less critically dependent on the particular
parameterization adopted for the eddy fluxes. This
property of the present 2-D model is important when
interaction between radiation and dynamics is al-
lowed.

Our previous quantitative calculations of the mean
meridional circulation are only diagnostic because we
have regarded the radiative heating rates as given. In
fact, we have used the heating rates calculated by
previous authors, using climatological distributions
of temperature field and ozone concentration. In an
interactive model, these quantities should be inter-
nally calculated. It has, so far, not been done consis-
tently in two-dimensional models. With the simpli-
fication obtained in our present formulation, the zon-
ally’ averaged general circulation and temperature
distribution in the stratosphere and mesosphere can
be economically calculated and coupled to the radia-
tive and photochemical calculations. The procedure
for such calculations will be briefly outlined here; the
actual numerical computation is beyond the scope
of this paper.

Starting with an initial distribution of source and
sinks for the radiative heating g, one determines, diag-
nostically, the initial meridional circulation in the
manner described in Section 2, i.e., from the follow-
ing two approximate equations

= g/T, (5.1)
3
—(V) +2 W =0. (5.2)

To step forward in time, the averaged zonal momen-
tum equation is used:

) (1
20, (2.05) 2 (L o)
3y \pe 36 \py

—fVlcosp =P+ M+ F. (53)
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This equation is obtained by multiplying the zonal
momentum equation (A.3) by p, and taking the zonal
average. Here ¥ is the eddy damping term and we
have defined the eddy pressure torque 2 to be
d
P=—p,— @
Po ax

and the eddy momentum flux convergence M to be

(5.4)

d d :
= — (p.u*p* Pl * )%
3y (psu*v* cos¥) + % (psu*0 )j (5.5)

where, following the notation of Gallimore and John-
son (1981a), the asterisk denotes deviation from the
mass-weighted zonal mean, i.e.,

h* = h — psh/p, . (5.6)

The momentum flux terms in Eq. (5.5) can be in-
terpreted as mass averaged momentum fluxes. In
isobaric coordinates, the “density” is a constant,
is then the regular eddy momentum flux convergence
and P vanishes. In isentropic coordinates, however,
the 'pressure torque may be an important mechanism
for eddy forcing of the mean flow (see Gallimore and
Johnson, 1981b). We will return in a moment to a
discussion of the parameterization of these eddy
terms.

[Incidentally, in (5.3) the eddy forcing term
P + M can be written in a form analogous to the
Eliassen-Palm flux divergence (Andrews, 1982, per-
sonal communication), i.e., for a hydrostatic atmo-
sphere, we have, using (A.5) and (A.8):

19p @ 19( o c 9 ket
B b))
g a0 dx goo\ ox ) g 0x \poo

149 a
_gaﬂ(pdx‘p)'

0
P + M = — (psu*v* cos?P)
dy _

Therefore,

a (_ ; 1 0
+ — | pou*6* +—p——<1>).
5 a6 g ox

Once U is predicted, the meridional momentum
equation

_ _ 0 -

f COS‘pU ~ Po ay q),

can be used to diagnostically calculate the Mont-

gomery streamfunction ®. Eq. (5.7) is the geostrophic

approximation to the zonal flow, and its two terms

represent the dominant balance in the zonally aver-

aged meridional momentum equation (Gallimore
and Johnson, 1981a).

With &, the temperature field can be diagnosed

5.7
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easily:
_ J -
60T = 1 80— 2.

c, 90 (5-8)

The quantity 87 is the deviation of the zonal mean
temperature from the radiative equilibrium temper-
ature 7, Therefore the total mean temperature is
T =T, + 6T. Knowing T, one can then calculate the
new value of g, using also the predicted values of the
radiatively active minor constituent gases, whose dis-
tributions are consistently calculated using Eq. (3.8)
discussed earlier. Compared to that of Gallimore and
Johnson (1981b), the simpler procedure outlined here
is a result of our neglecting the time rate of change
of mean density in the continuity equation (see Sec-
tion 2), which makes the determination of ¥ diag-
nostic instead of prognostic.

Parameterization of eddy forcing of the zonal mean

Slow

As in any zonally averaged model of the general
circulation, the eddy forcing terms on the rhs of the
momentum equation (5.3) must be parameterized.
It is well-known that these eddy forcing terms play
an important part in the maintenance of the observed
zonal flow in the mesosphere (Leovy, 1964; Holton
and Wehrbein, 1980; Lindzen, 1981). If the eddy forc-
ing terms are dropped from Eq. (5.3), the Coriolis
torque arising from the diabatic circulation, i.e., the
fV term, will create an acceleration of the zonal flow
with a magnitude on the order of 10* (m s™!) day™!
or larger. In the models of Leovy, and Holton and
Wehrbein (in isobaric coordinates), the eddy mo-
mentum flux terms are parameterized as a simple
Rayleigh friction acting to decelerate the magnitude
of the zonal mean flow. Recently, Lindzen (1981)
gave an alternative parameterization by including the
deposition of wave momentum by breaking gravity
waves and the enhanced turbulent eddy diffusion re-
sulting from these breaking waves. The same physical
mechanism and analogous parameterization should
also apply to the isentropic coordinate system. In the
stratosphere however, the eddy momentum flux is
expected to be only of secondary importance.

The pressure torque term has no counterpart in
isobaric coordinates. It has the interpretation as the
Coriolis torque of the geostrophic circulation

a _
=—pg— P =—fV, .
rwhd fVe/cos®, (5.9)
where 3
V, = pgvg cosP, fv, = ™ P

Because the geostrophic flow ¥, generally is in the
same direction as the total flow ¥ away from equa-
torial regions, this pressure torque term in isentropic
coordinates probably tends to reduce the magnitude
of the acceleration due to the Coriolis torque. Since
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fV+Pcosp =fV—Vy)=fV,, (510)

only the ageostrophic part of the diabatic meridional
circulation is effective in accelerating the mean zonal
flow; this is presumably smaller than the acceleration
due to the total meridional flow. With only a slight
deviation from the one proposed by Gallimore and
Johnson (1981b), we suggest the parameterization
that V, is proportional to V; i.e.,

P = fk(y, O)V/cos®. (5.11)

In extratropical regions in the lower atmosphere,
there is some indication (see Gallimore and Johnson,
1981a,b) that V is close to V,, and hence k should be
close to one, while in the tropics, k& should be small.
k should also decrease somewhat with increasing al-
titude in the upper stratosphere and mesosphere, to
accommodate the increasing importance of eddy
damping (M + F) due to breaking gravity waves
mentioned earlier. With (5.11), the zonal momentum
equation becomes ’

9 - -0 (1 __) d (1 -_)
—U0+—|=-0OV)+=|—-0OW
at 3y \py - 96 \pq

— fll = k(y, O)1V/cosp = M+ F. (5.12)

The large acceleration of the Coriolis torque is now
diminished by a factor [1 — k(y, 6)]. Through such
a simple parameterization, the pressure torque is al-
lowed to play a direct role in counteracting the Co-
riolis torque, thus helping to maintain the zonal mean
flow at reasonable (observed) values.

6. Conclusion

We have endeavored in this paper to formulate a
self-consistent zonally averaged model of transports
of minor constituent gases in the stratosphere. This
is done by adopting the procedure of small-amplitude
perturbation expansion, the adequacy of which is yet
to be assessed for the real atmosphere.

The use of isentropic coordinates does not, by it-
self, simplify the species transport equation. It does,
however, provide a framework for assessing the im-
portance of various terms in that equation. It clearly
separates the long-term systematic diabatic process
of mean advection from the process of transient eddy
dispersion. If the eddy dispersion process in the strato-
sphere can be assumed to be quasi-adiabatic, then it
can be shown that the dispersion occurs predomi-
nantly in one direction—along the isentropes. The
number -of eddy transport terms is thus reduced by
a factor of four. The resulting transport equation for
a tracer with mean mass mixing ratio X is then of the
simple form

4. 4, . 3, 0 J -

The mean diabatic mass circulation (Vp, Wp) is
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directly related to the mean diabatic heating rate §:

WD = q/I‘(O)’
q 9 -
—Vp=——W,.
ay o0 P

The streamfunction for this mean circulation deter-
mines the mean path along which the tracer is ad-
vected, and plays the role of the ““mixing path” in the
mixing-length theory of Reed and German (1965)
with the following important differences:

1) While in Reed and German’s formulation the
mixing path is fixed by the relative magnitudes of the
four ad hoc diffusion coefficients, the mean advection
path in the present formulation is directly determined
by the radiative heating and cooling of the atmo-
sphere. This relationship between radiation and dy-
namics of transport allows some degree of interactive
feedback for the radiatively active minor species, stich
as ozone and carbon dioxide, whose distribution in
the stratosphere determines the distribution of radia-
tive heating and cooling which drive the diabatic cir-
culation that initially affects the species distribution.

2) Instead of mixing along the “mixing path,” the
presence of transient eddies disperses (“mixes”) the
tracer, predominantly along the isentropes, which
slope less steeply poleward and downward than the
advection path in the lower stratosphere.

The dispersion term is quantitatively important
near the polar regions, where the streamlines are
much steeper than the isentropes. Away from the
poles, the eddy dispersion term is less effective be-
cause the gradients on the isentropic surfaces of the
species concentration created by the mean advection
are small. Though this term can be neglected in crude
models of tracer transport, without causing a quali-
tative error (the same cannot be said for the tradi-
tional mixing-length model), its effect should be in-
cluded in a quantitative model. For this purpose, a
parameterization of D,, is needed. Because the large
and systematic effects of eddy transport that are pres-
ent in height or pressure coordinates have been re-
moved in the present isentropic coordinate formu-
lation, there is some reason to believe that D,, is due
mostly to incoherent irreversible progesses and, as
such, is suitable for a “‘turbulence” type of parame-
terization.
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APPENDIX A
Dynamical Equations in Isentropic Coordinates

A brief listing of the dynamical equations in is-
entropic coordinates is given here. The reader is re-
ferred to Holton (1972), Kasahara (1974) and Dutton
(1976) for more details.

The first law of thermodynamics is

d Q
ZInf ==
i In T (Al)
which can be rewritten as
. f
=20 (A2)

where 0 = (d/dt)f is the vertical “velocity”. The hor-
izontal momentum equations are:

d
Eu—fv——g)—cfb, (A3)
d 1 4
—v+fu=————2.
dtv fu cos® dy ® (Ad)

The Montgomery streamfunction & is related to the
pressure through the hydrostatic relation

9 p )" ‘
— ¢ = —].
a6 cp(po()

The pressure is related to the temperature via the
definition
-r(5)
- \p

and so (A5) can also be written as
' 3
=60,
T 90

The equation for conservation of mass is

(AS)

(A6)

d a a 0 .
— py+— + — (pgv cos?) + — (psb) = 0, (A7
5Pt 5y () ay (pav cos?) + = (pef)) (A7)
where p, = pdz/d6 is the “density” in isentropic co-
ordinates. The hydrostatic relation can also be written
in terms of p, as

d

_%p'

This provides an equation relating py and p. There

8ps = (A8)
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are now seven equations, (A2)-(A8), for seven un-
knowns, u, v, 8, ps, p, T and .

In Section 2, the “density”-weighted quantities
have been defined:

U=pu, V=ppwcosP, W=ph (A9)

In terms of these, the equation for conservation of
mass can be rewritten
o a d d
—pp+—U+—=V+—=W=0.
aP oax” Tay” T o8
The energy equation is expressed in terms of W and
q=pQ as

(A10)

W= g/T, (All)

where 730
== (A12)

8 oz

is the static stability parameter.

APPENDIX B

Some Approximations on Static Stability
and Density

The static stability parameter is defined as

T d oT g
=——f0=—+= B1
r 6 9z 6 9z ¢ (BD)

The zonally averaged T is
r= (a_z) +&, (B2)
oz ¢

_ &Y

I"EI‘—I‘=(—6—). (B3)
dz

In the stratosphere, the mean vertical temperature
gradient (37/9z) is ~2 K per kilometer, while the
constant g/c,, the so-called adiabatic lapse rate, is
~10 K per kilometer. The quantity I' is thus seen
to be dominated by a large part that does not vary.
This seems to justify the approximation of replacing
[(6/0z)T] by a background equilibrium value,
[(8/82)T]., or even a meridionally averaged back-
ground value [(5/\65)T]e. The more drastic approxi-
mation of replacing I' by the adiabatic lapse rate
g/c, has sometimes been used for the stratosphere,
though this will not be done here.

Again, because the adiabatic lapse rate g/c, in T
is large, the perturbation static stability IV is much
smaller than the mean static stability I in the strato-
sphere, as only rarely can a disturbance create more
than a couple degrees of temperature change per ki-
lometer. This observation, however, does not justify
the neglect of I" in the perturbation energy equation
despite the fact that this is a common practice in
dynamic meteorology. Starting with the exact equa-
tion (All),

WT =g, (B4)
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taking the zonal average of (B4) yiélds

WT + WT =4. (B5)
The perturbation equation is obtained by subtracting

(B5) from (B4) and retaining leading orders in per-
turbation amplitude

WT+WI'=gq'" (B6)
Note that if IV were neglected in T, the second term
in (B6) would not have appeared. In a formal asymp-
totic expansion, the second term in Eq. (B6) should
~ be of the same order as the first and there is no a

priori reason for neglecting it.
Eq. (B6) implies that W' is composed of two parts:

W= Wi+ W, (B7)
a diabatic vertical perturbation flow gwen by
’ /r

b= (B8)
and an adiabatic part arising from perturbations in
the static stability parameter:

W =—-WDT. (B9)
The perturbation vertical vélocity in isentropic co-
~ordinates is in general nonzero unless the atmosphere
is strictly adiabatic, i.e., g’ = 0 and 4 = 0.

Returning to the mean equation (B5), we now want
to show that the term W'I" can be neglected com-
pared to WT. The ratio of these two terms is

G - ) - ()C7)
-of(5%)- (FF)). @o

where the definitions (B7), (B8) and (B9) have been
used. As [I'/T'| is small, the second term on the rhs
of (B10) is much smaller than unity, while the same
is true for the first term unless |g’/g] is larger than
order one. Assuming this is not so, in order to be
consistent with our perturbation procedure, we con-
clude that the ratio in (B10) is small and so the mean
energy equation can be approximated by

= g/T. (B11)
Eq. (2.9) is then obtained with the further approxi-
mation mentioned previously:

'~ T0.

(B12)

a. Some comments on the density ﬁeZa‘ in isentropic
coordinates

Unlike the “density” field in pressure coordinates
82 '

=Py
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which in a hydrostatic atmosphere is a constant
(—g™h), the “density” field pg defined in (2.5) is more
variable. However, there is some reason to believe
that p, is much less variable than its counterpart p in
height coordinates. We will attempt to show here that
the fluctuations in p, can approximately be ignored
as far as the tracer transport is concerned. First we
will argue that the time rate ‘of change of mean den-
sity, (8/d1)p,, is so small that V7 is negligible compared
to Vp under normal conditions; consequently only
the diabatic circulation enters into the mean transport

of species.
Under the hydrostatic approximation, one has
1 6
=—=- 1
Po 267 (B13)
Therefore, from (2.18)
0, 0. _ 409
3 Vr= P 4 asz (B14)
On the other hand, (2. 14) and (2.17) imply
' g
Vp=—— I“O’ B15
ay D (CI/ ). (B15)

From Fig. 3, one can infer that the changes in the
mean diabatic heating rate in the lower stratosphere
are such that gg/T®@ varies by ~10 mb per day over
a layer of roughly A8 ~ 20 K. Since the zonally.av-
eraged pressure field p seldom changes by such a large
magnitude, especially in the stratosphere, it appears
that one always has

I— (89/T)} . (B16) -

60 8[

This, together with the boundary condition Vr = V)
= 0 at y = q, then implies that

9 a > 5
% v, < VD and |V <|Vpl. (B17)

(B17) permits the great simpl,iﬁcation of using the
divergence-free continuity equation for the determi-
nation of the meridional mean circulation, yielding

directly

17% VD}

- - B18
WM WD ( )

'

It should be emphasized that without approximation
(B17), the use of isentropic coordinates loses the ad-
vantage of being more direct than the formulation in
pressure coordinates in the calculation of meridional
circulation. This is because the quantity (8/9f)p, in
the continuity equation is not directly determinable
from the radiative heating rates. If its contribution
cannot be neglected, its calculation would have in-
volved the simultaneous solution of a coupled system
of equations.
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From the definitions for I" and p,, it can be shown
that
pe = pT/(O1),
which, for an ideal gas, is
i
6RT "
Using the hydrostatic relation (B13), we then have
g

3
0S54 L
w? T Re? =0

In a “log 6” coordinate,
0
l -—_
“(00) :

(B20) can be “solved” to yield

D=Do exp{—J; % dz”} .

(B19) then implies that the “density” p, also decreases
with increasing potential temperature in a stable at-
mosphere with ' > 0:

T0, Z .
o= ool ) exol- [ ]

For the background reference “density” p,?, we re-
place T by T'@ to get

© = , © )
Po - pﬁo F(0)0 exp - RF(O) d (B23)

An approximate expression for p,® can be obtained
if T© is treated as a constant (e.g., ~g/c,). In this

case
0 )—[g/(RI“"’)—l]

0
06 ~ g <0)(_
8o

Pe = (B19)

(B20)

fi

z

(B21)

(B22)

(B24)

.A very simple expression for the background “den-
sity” can be obtained as

p —9/2
pO(O)/pﬂo(O) = (b—) s
0

where we have taken T'© to be g/<y, and k = R/c, to
be 2/7. Slmllarly, the background pressure is given

by
. 0 —1/x ( 0 )—7/2
0}/, (0) — | .
PVIDo (00) o

Note that (B26) is approximate (It is exact only for
an isothermal atmosphere), while (2.21) for p/6) is
an exact definition.

(B25)

(B26)

b. On the horizontal advection caused by density per-
turbation

We compare here the contribution to the advective
transport by the density perturbation to the mean
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advection. ReferrmLto Eq. (3.7), we wish to show
that the term (8/3¢)pjn’ is small compared to ¥V, for
perturbations caused either by quasi-geostrophic
waves or by gravity waves. The estimates are very
rough, but they should be sufficient for our purpose.

The perturbation continuity equation can be ob-
tained by linearizing Eq. (A7)'

9

a
(:z +u —)p, + p,[a u + — (v cos¢)]

+ 55 (0ps) = 0. (B27)

-The last term on the lhs of Eq. (B27) is small for

quasi-adiabatic waves. The second term, in brackets,
represents the horizontal divergence, and is therefore
also small for quasi-geostrophic waves. More specif-
ically, to the lowest order in Rossby number Ro, the
second term is zero. Thus we have from (B27),

pa/ps = O(Ro) (B28)
for quasi-geostrophic waves.

Assessing the approximate orders of magnitude,
we have

J — d _
Y pon’ = O(Robg a n’) = O(RoV") € O(RoVp).

It therefore appears that

a— :
; — 0/ Vp < O(RO), (B29)

0
which is small for quasi-geostrophic waves.

For gravity waves, the horizontal convergence term
is no longer small. However, the density perturbation’
py usually tends to be 90° out of phase with the me-
ridional displacement 7/, with the result that the cor-
relation pyn’ is probably small. To see this, we note
that the perturbation horizontal velocities are related
to the perturbation Montgomery streamfunction ap-
proximately by

d d 3
— ' =——@, B30
(at +a ax)” ax (B30)
3 d 3
tu—p'=—-——37. 1
(3[ u ax) ay e (B31)

(Due to the presumably smaller horizontal scale of
the gravity waves, the spherical geometry and hori-
zontal shear of the zonal flow are neglected) There-
fore,

Geeae3)
o “axNax® "oy

(& )
= (6x<p+62q> (B32)

and so for quasi-adiabatic waves,
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—N\=+a +—jo. B
ﬁ( ax)”” ax? ay? (B33)
Using (B31) and the definition for %, one has
\ 9 a Y 3
ta—|g=-—@ B34
(az ) L (B34)
and so (B33) becomes
(o ed) Sl 2N o)
ot u 8y o \ax? a Yo ™
Hence,
10 & 8 )
—_— - + i /‘ B
ps OV o= (6)x2 ay? K (B35)
Therefore for gravity waves of the form
function(t, 8) - e+, (B36)

Eq (B35) implies that pg'is 90° out of phase with
7. Hence,

o ~ O. (B37)

Note that this result holds for transient, growing as
well as periodic waves. We have not had to assume
that the gravity waves are of the form e *~co+ily,

1
APPENDIX C

Diagnostic Calculation of the Diabatic Circulation

For a nondivergent circulation (Vp, Wp), there ex-
ists a streamfunction ¥ such that

d - _
- % Yo : Vo, (C1)
0 - _
8_ Yp=Wp. (C2)
y
Since in the isentropic coordinate system one has
Wy = g/, (C3)
the streamfunction is fbund from (C2) to be
- v
W= [ aroa, (C4)

. where the y-integration is to be performed on surfaces
of constant potential temperature.

A conservative tracer advected by the meridional
. circulation (VD, W) satisfies

X+VD—;X+ WD X 0. (C5)

It is easy to verify that the steady-state solution to

Eq. (C5) is o
X = Fyp). (Ce)

Th_erefore the isopleths of X are the same as the iso-
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pleths of Y. In other words, lines of constant ¥, are
also the lines of constant X.

For a diagnostic study, we také the radiative heat-
ing rates calculated by Dopplick (1979) and deduce
W)p and ¢, in the following manner. Since the pub-
lished values are for the seasonal average of (J, these
will be used here, though Dopplick also provides tab-.
ulated monthly values of O on request. To calculate
W), the vertical diabatic mass flow rate, the heating
rate per unit volume is needed. Since this is not avail-
able, the approximate expression g = pQ is used. This
quantity is then estimated by first calculating p using
the ideal gas law .

» =p/RT,

with the zonally averaged temperature field T taken
from Fig. 4 of Dopplick (1972) at each pressure level.
With Q provided by Dopplick, the quantity 4 is de-
duced at each pressure level The static stability pa-
rameter

is calculated here using the temperature data men-
tioned above and height z deduced approxnmately
from the pressure. The ratio

Wp = G/

- is depicted in Fig. 3 as a function of pressu‘rc and

latitude. The pressure coordinate is used here because
that is the coordinate in which Dopplick’s data are
expressed.

To deduce the streamfunction ¥, one needs to re-
express W}, in isentropic coordinates. This conversion
cannot be done exactly with Dopplick’s data. The
approximate procedure adopted here is to use the
temperature data from Fig. 4 of Dopplick (1972) and
calculate the potential temperature as

0 ~T (EO—O) . l
D
With 4 thus calculated, we obtain values of W) at

various constant potential temperature surfaces, and
¥p is then obtained from

~ 1
bola= | @y cowde,

with the integration performed using the trapezoidal
rule. The main uncertainty in the streamfunction
obtained from Dopplick’s data occurs near the tro-
popause where large vertical gradients exist. Due to
the lack of resolution in this region it is almost im-
possible to decide whether a given constant stream-
line should continue northward or southward. These
uncertain lines are indicated in Fig. 4 with dashed
lines. A second difficulty is encountered near the
south pole, where the boundary condition ¥, = 0
cannot be satisfied. This is a problem .common to all
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analyses dealing with imperfect data, whether in
pressure or isentropic coordinates. To overcome this
problem, Dunkerton (1978) chose to alter the data

at other latitudes slightly to make ¥V, = 0 at both-

poles. No such alteration to Dopplick’s values is done
here. We simply recognize the fact that the calculated
value for the streamfunction is unreliable near the
south pole due to the fact that any error in the data
accumulates in the integral. Only the north polar
boundary condition is enforced by starting the inte-
gration for the streamfunction from ¢ = /2.

Dopplick (1972, 1979) provided no information
above 10 mb. From Murgatroyd and Singleton
(1961), it is known that the diabatic circulation in the
upper stratosphere and mesosphere consists of a sin-
gle cell with rising motion in the south polar region
and sinking motion in the north. This feature is in-
dicated in Fig. 3 with heavy dashed lines. It is obvious
that these two sets of data are incompatible with each
other. Nevertheless, the qualitative nature of the
physical situation seems to be clear: the two-cell struc-
ture of the diabatic circulation in the lower strato-
sphere changing into a single-cell structure appears
to be correct and consistent with other tracer studies
(see Dunkerton, 1978).

A main deficiency in this diagnostic study is rec-
ognized as the lack of radiation data g calculated and
presented in isentropic coordinates. Hopefully this
situation will change as the isentropic coordinate sys-
tem becomes more commonly used.

APPENDIX D
The Zonally-Averaged Species Transport Equation
To find X' we linearize Eq. (2.1) about a mean
zonal state to yield

3 _a 0
—+a— )X +v'cos¥—X
(az ”ax) o5 5y

d
+0=X"=9,
a0
where the meridional advection of X' has been ne-
glected compared to the zonal advection of the same
quantity. With the following definition of displace-
ment fields:

(D1)

d d
— 4+ #—|n=v'cos? D2
(8t_u6x) v eos (B2)

" ] 9
—tu—)o=¢ D3
(6t+u6x)¢ %, (D3)

d d
—+a—|’=5 D4
Gr ez = @
Eq. (D1) can be solved approximately; the result is
"= 9 —X-¢ —X + 7. (D5)

éy
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In arriving at (D5) from (D1), we have made the
assumption that the time variation of the mean con-
centration can be taken to be much slower than the
time variation of the perturbation quantities and so
the mean concentration has been taken to be quasi-
steady when the perturbation quantmes are calcu-
lated.

For conservative tracers, (D5) reduces to the form
assumed by the mixing-length theory (see Reed and
German, 1965; Green, 1970), though the definition
of the displacement fields is slightly different. Similar
results have previously been obtained by Plumb
(1979), Matsuno (1980), Holton (1980, 1981) and
Danielsen (1981).

Using (D5), we find the flux terms to be expressible
as

— ) 0 5

VX' = ~pKn X = puKya o X+ V', (D6)
ry — 9 5 - 9 - ’

w'X'= _pgKgy 5} X - pgKgg 50‘ X+ W' (D7)

In (D6) and (D7), the coefficients are defined as
1

Kyy = V'ﬂ’, K00 =

(D8)

Ky=—=V'¢, Ky=

To express the K’s in terms of the displacements
7 and ¢’ only, we note that

= (pev COSP) = pgt’ cos® + D cosPpy . (D9)
Therefore,
_l V' = (6 + u—a—)n + vcos‘P—‘ (D10)
Pe al a Po

From the continuity equation, one can show that
4/ e is of the magnitude (8/3y)n’; therefore, the last
term in (D10) is of the magnitude of the meridional
advection of % and should be dropped when com-
pared to the zonal advection retained in the first term
on the rhs of (D10). This is to be consistent with the
degree of approximation in (D1). Therefore we have

1 i} 9 )
—V'=~\—+ia— Dll
P (az Toxl (D1D)
and similarly,
1 d a
—We|—+ia—]¢. D12
Pe W (Bt “ 6X)¢ ( )

Using these two expressions, one then has, from (D8)

a L a Yy
Kyy=at Yan'n, Kaf):‘at Y2¢'d i3
_0 s 1-m | -5 ®19
K, = atnd) - nW K0y=5011W
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Substituting these back into Eq. (3.2), one then ob-

tains the transport equation
g+ (7= g0) gy (-
‘aay (” oKy aa X) aay (” "K”;o )
55 25 0) - 5 (o 2) =58

0 — — — -
+ F Qe ] —_— 1 - ¢ —_ 7
S’ 5, 7). %79~ < () = S

7 a vV
Pa¢)

(6 +u i)pga" - — (V'o") - — (W’a’) (D14)
ot 9
The eddy transports in (D14) consist of both the pro-
cesses of advection and “diffusion”. Separating out
a nondivergent eddy-induced mean advective trans-
port, one can rewrite (D14) in the form adopted in
Eq. (3.4). _

The source terms of the rhs of Eq. (D14) can be
expressed in a slightly different form with the use of
the perturbation continuity equation:

(s
ot Po

a - r _i - ’
a~x(pau )+ 3y (pev’ cOSP)
+ —‘9—(‘ @) =0. (D15)
30 Po . 710)

Defining the meridional and vertical displacements
.as before and the zonal displacement ¢ according to

d 0 d 3
—Je=u+| = — 1
(ax“‘a)g u [ay”"+aeu¢] (B16)
one then obtains from (D15) the following solution
for pj:

vp [ (pa£)+ (pm)

Thus the right-hand side of Eq. (D14) becomes

pgS (a + ué‘?—) ;,d—i(V—'oJ) —f—(W'af)

+p9[£’—~S’+¢ S’+¢ ]

—f;[powr G d) + = (ma)] (D18)

This form will be useful for comparing with Lagran-
gian means.

APPENDIX E
Quasi-Adiabatic Eddies

Atmospheric wave motions are in general nonadi-
abatic. We shall divide the disturbance field into two
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categories according to the origin of diabatic forcing:

1) Waves forced in situ in the stratosphere,

2) Waves remotely forced (mainly in the tropo-
sphere) that propagate into the region under consid-
eration.

a. Locally forced waves

The zonally asymmetric wave field forced in situ
in the stratosphere and mesosphere has its origin
mainly in the daily cycle of solar insolation princi-
pally in the semi-diurnal mode. These harmonic
waves can be written approximately in the form

W = RelA(y, 6)e 1), E1)

where s is the zonal wavenumber and w is the fre-
quency. Waves of this form do not contribute to
“diffusion” despite their relatively high frequency,
even though the “diffusion” terms derived in the last
section are all in the form of explicit time derivatives.
This is because time derivatives of zonal means of
harmonic waves vanish. (Though the cross correla-
tions between, for example, the semi-diurnal and
diurnal modes, can still contribute to the “diffusion”
coefficients, these terms are presumably small in am-
plitude, because the diurnal mode is weaker than the
semi-diurnal mode in the stratosphere.) Their con-
tribution to the transport of tracer is mainly advective
in nature, through the flux term ;W . However,
owing to the small amplitude of thermal tides in the
stratosphere, these eddy advection terms appear to
be negligible compared to the mean diabatic advec-
tion, though the effect of tides may become significant
in the mesosphere.

b. \The remotely forced waves

‘The remotely forced planetary and gravity waves,
on the other hand, can have significant amplitudes
in the stratosphere because of their large energy
source in the troposphere and their amplitude in-
crease with decreasing density in their upward prop-
agation. Away from their sources of forcing (e.g., to-
pography, latent heat release from cumulus clouds),
their upward propagation can be described reason-
ably well by almost-adiabatic processes [see e.g., Mat-
suno (1970) for planetary waves]. The waves are con-
sidered diabatic if they can exchange appreciable heat
with the medium as they propagate through it.

Let At be the residence time, i.e., the length of time
a wave spends in the region of the atmosphere of
interest. The photochemically active layer of the at-
mosphere is ~30 km thick (between 25 km and 55
km in altitude). Thus for the problem at hand we
have

30 km) ’ (E2)

Ce

Ale(
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where ¢, is the vertical group velocity of the wave
under consideration. Though there is still some un-
certainty, a reasonable measure of a wave’s diabaticity
appears to be the fractional change of the wave’s po-
tential temperature due to diabatic processes. This
quantity will be estimated as

|A8/6] = O(BAL/6). (E3)

Since # is usually of the same order as = Q/T, we
have

|A6/8] = O(QAL/T). (E4)

Using Dopplick’s (1979) data, below 30 km the mean
diabatic heating rate Q during winter is on the order
of 1 K day™! and the mean temperature 7T is
~220 K. Therefore, (E4) implies that

|A6/6] = O(AL/220 days). (ES)

The residence time calculated using (E2) is generally
" approximately two weeks for the stationary planetary
waves, and less than two days for gravity waves. [Ex-
ceptions to (E6) may occur, especially for waves that
encounter critical levels in the atmosphere. We will
assume, however, that most of the wave energy of
tropospheric origin lies in low frequencies and so
most of the disturbances do not have a critical level
in the stratosphere.] Therefore it appears that

|A6/6] < 1. (E6)

Accordingly, we shall assume that the eddies are ap-
proximately adiabatic as far as long-term transport
is concerned. (A more careful analysis, which is not
- done here, should involve a comparison of various
terms in the transport equation to ascertain if the
transport terms arising from vertical displacements
are actually small.)

Maximum advantage of this quasi-adiabatic prop-

erty of the waves can be taken, if one. adopts the -

isentropic coordinate system in tracer transport cal-
culations. As a wave propagates through the strato-
sphere, the isentropes are displaced up and down rel-
ative to a fixed height. [For planetary-scale distur-
bances, the isentrope displacement often occurs in
a seesaw pattern (Hsu, 1981).] Since the potential
temperature of the fluid is not appreciably affected
by the passage of a wave, a fluid particle stays close
to its original isentropic surface during the eddy
event, even though that surface is itself being dis-
placed up and down by the wave. In isentropic co-
ordinates, this observation implies that the distur-
bance does not induce a “vertical” displacement.
Hence, :

W =0, ¢ =0. (E7)

There are, however, some eddy displacements along
the isentropic surfaces induced by the upward-prop-
agating wave. This is probably due mainly to the
buoyancy effect acting on fluid particles on a dis-
placed isentropic surface. As a part of an isentrope

‘
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bulges downward in response to the wave distur-
bance, the fluid particles on that part of the surface
acquire-a positive buoyancy because they have come
from a higher altitude, where the density is lower.
These fluid particles will have an initial tendency to
move upward. They do so by moving up the slope
along the same isentropic surface. The restoring
forces (e.g., gravity, B-effect) will then set up an os-
cillation along that surface. It is through such a mech-
anism that ‘quasi-adiabatic waves forced in the tro-
posphere propagate to the stratosphere. Unlike other.
coordinate systems, the wave displacement of such
a disturbance in isentropic coordinates occurs in one
direction (horizontal) only.

APPENDIX F
List of Symbols

p pressure .

p. radiative equilibrium pressure [=poo(7./0)"/*]

q diabatic heating rate per unit volume divided
by ¢,

u eastward velocity

v northward velocity

w  vertical velocity [=dz/dr]

y  northward horizontal coordinate [=a sin® on
a sphere with radius a and latitude ¥]

x  eastward horizontal coordinate [dx = a
X cosPd A on a sphere where A is
longitude] '

z height
9 u 0

Do =5t Zcose o

H  the scale height of the atmosphere {=RT,/g]

Q  diabatic heating rate per unit mass divided by
¢, (K per day)

S net rate of production of X, source per unit
mass

T  temperature

T. background radiative equilibrium temperature

T, meridional average of T,, function of vertical

coordinate only: T, = T(#); in practice,
usually taken to be the zonal and
meridional average of the observed
temperature field

U  peu (eastward mass flow rate in isentropic
coordinates)

V' pgv cos® (northward mass flow rate in
isentropic coordinates)

W  psf (upward mass flow rate in isentropic
coordinates)

Ve advective northward mass flow induced by
the zonal eddies

Wy advective vertical mass flow induced by the
zonal eddies

Wp =g/1®

v = 2w
D =_a00 pdy
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% f "8
T = o pedy
X  species concentration per unit mass of air,

also called mass mixing ratio
0 potential temperature [ T(poo/p)", where poo
) = 1000 mb]
] =df/dt (‘“vertical velocity” in an isentropic
coordinate system)
K R/c, where R is gas constant, ¢, is specific
~ heat at constant pressure
) density of air, mass per unit volume dxdydz
ps  mass of air per unit “volume” dxdydf
[=pdz/36] '
background radiative equilibrium “density”
in isentropic coordinates [=p,/(RT®);
also = —g 'dp./99 in a hydrostatic
atmosphere] '
7 northward displacement field
¢ vertical displacement field
¢  eastward displacement field
¢  source “displacement” defined from
Dy’ = S’ .
static stability parameter

[T % i)

pe®

T

8,0z 9z ¢

%r foz, , )d)\]

() deviation from the zonal mean [=( ) — ()]

(") zonal average ‘[=
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