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Abstract

The spectrum of transient waves in the mid-latitude atmosphere is explored. There are two

maxima, one at planetary and one at synoptic scale. The very long wave maximum seems to be

Rhines' wavenumber of cascade arrest, i.e. the scale at which a barotropic reverse energy cascade

stops due to the prominence of linear Rossby wave dynamics. The synoptic peak is explained

here by the theory of nonlinear baroclinic adjustment: a balance between quasi-linear energy

extraction from the mean 
ow due to baroclinic instability and a resulting up-scale cascade.

The mechanisms for the two energy maxima appear to operate independently of each other.

Computations with a quasi-geostrophic two-level model in a beta-plane channel corroborate

the nonlinear baroclinic adjustment mechanism. It is demonstrated that the model and hence

the theory, although simple, can simulate the dynamics of the real atmosphere both in the terms

of the transient mid-latitude spectrum and the meridional temperature gradients achieved in

summer and winter.

Nonlinear baroclinic adjustment is shown to agree with Salmon's theory of wave-wave equi-

libration from quasi-geostrophic turbulence. The former goes further, however; it is capable of

explaining not only the equilibrium dynamics but also the mechanistic approach thereto, for

di�erent channel geometries and at di�erent levels of forcing.

The mechanism is shown to be di�erent from both stochastically forced transient growth

and neutralization theories of the atmosphere.

1. Introduction

The behavior of transient eddies in the mid-latitudes yields a bimodal spectrum. This is shown in

Fig. 1 (dashed line), which is the 500mb geopotential height variance for propagating disturbances

in winter. The data is averaged over �ve winters at 50�N, from a study by Fraedrich and B�ottger

(1978). There are two maxima of power: one at the longest (planetary) scale and one in the synoptic

(i.e. baroclinic) range. (Signs of similar behavior are implicit in Figs. 11 and 13 of Kao and Wendell

(1970). See Hoskins and Pearce (1983) for a list of other studies.) Note that this di�ers from the

spectrum of total variance, including propagating and stationary disturbances, which is fairly 
at

from the synoptic peak to the large scales (Rhines 1975; Leith 1972). Various theories have been

proposed to explain the presence of the synoptic peak of transient variance.

The synoptic peak has been identi�ed with baroclinic instability, for observations of the dominant

eddies in the atmosphere have shown them to be of synoptic scale and baroclinic in nature (Charney

1971, p. 1088). The simplest explanation for their dominance would be, of course, linear: the

most unstable wave from a linear analysis of the zonally averaged atmosphere would dominate the
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energy spectrum. Gall (1976) has shown, however, that the most unstable wave is shorter than the

scale of either of the energy peaks. Zonal wavenumbers 12-15 have the highest growth rates, as

calculated from a GCM linearized about the actual mean atmospheric state, whereas the transient

eddies which dominate in the real (nonlinear) atmosphere are wavenumbers 4-7 (Randel and Held

1991). The latter is corroborated by Fig. 1. Thus a linear explanation is unable to account for the

synoptic energy maximum. We note that this includes Stone's (1978) original proposal of \baroclinic

adjustment", in which he reasoned that the most unstable wave would do all of the heat transport

at equilibrium. Such reasoning would yield wavenumber 12 or so as the most energetic wave in the

equilibrated state, but this does not agree with observations.

To reconcile for this discrepancy, a nonlinear up-scale cascade of energy, as presented in the

geostrophic turbulence study of Charney (1971), is often cited. Rhines (1975) proposed that this

cascade would dominate at small scales, whereas linear Rossby wave dynamics would be present

at the largest scales. At the scale where these two mechanisms have roughly the same magnitude,

Rhines said the cascade would stop, with the spectrum decreasing or level at lower wavenumbers.

He o�ered a prediction for this dominant \wavenumber of cascade arrest". In model simulations

here, to be detailed below, Rhines' calculation yields a long wave; indeed, it corresponds roughly to

the energy maximum at the planetary wave scale in Fig. 1. Thus, his argument seems to explain

the planetary scale maximum of transient variance. It does not, however, explain the synoptic peak.

Salmon (1980) united Charney's up-scale cascade with the concept of energy injection at synoptic

scales due to baroclinic instability. He argued for a balance at the short scales between energy

extraction from the mean 
ow and nonlinear transfer toward long scales. Such dynamics could yield

an energy maximum at a synoptic scale that is longer than that of the most unstable wave. This he

reproduced numerically with a fully nonlinear model run to statistical equilibrium. In this way he

diagnosed the dynamics at equilibrium which could support a synoptic energy maximum.

Salmon's theory, however, does not explain why or how a particular wavenumber comes to

dominate. Why does the cascade stop at a synoptic wave and not continue all the way to the longest

scales? In a di�erent climate would the synoptic peak occur at a di�erent wavenumber? Can this

be predicted? Can the wavenumber of maximum heat transfer also be predicted, for a di�erent

climate?

Here we will show that the theory of nonlinear baroclinic adjustment (Cehelsky and Tung 1991;

Welch and Tung 1997) can answer the above questions. We will verify the theory using simulations

from a high resolution two-level quasi-geostrophic baroclinic model in a �-plane channel with a 
at

bottom. Unlike the previous studies, the model now will be run in a parameter regime in which

many zonal waves are linearly unstable, similar to the situation in the real atmosphere.

Of course there are many ways to make the model more realistic: using a spherical geometry,

allowing the static stability to vary, including topography and hence stationary waves, and adding

moisture, to name but a few. Here we use the simplest possible model, which still allows for

baroclinic dry dynamics, in order to investigate most easily the qualitative features of meridional

heat transport.
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Although a two-level model cannot simulate properly the real atmosphere, there is a corre-

spondence between linear stability analysis of a two-level model and tropospheric observations: the

critical gradient in the former corresponds to the cuto� in the atmosphere between shallow waves,

ine�ective at transporting heat, and long deep waves which can e�ciently 
ux heat poleward (Held

1978). Furthermore, it appears that adding more levels in the vertical may not change the quali-

tative results of the model. Pavan (1996) showed in her quasi-geostrophic Boussinesq model that

increasing the layers from 3 to 20 had little e�ect on the main features of the solution. High vertical

resolution was needed for qualitative convergence only when eddy momentum 
ux was crucial, e.g.

in situations with a strong barotropic governor e�ect (James 1987).

We point out that the static stability has been held constant over time in this study. However,

an important process in equilibrating baroclinic 
ows, in addition to the reduction of the horizontal

temperature gradient, is the adjustment of the vertical temperature pro�le via vertical eddy heat


uxes (Gutowski et al. 1989; Zhou and Stone 1993). Here we neglect this e�ect in order to focus on

the interaction of horizontal heat transport and the horizontal temperature pro�le, consistent with

the quasi-geostrophic formulation adopted. In the future our results should be tested with a model

which allows for variation of the static stability. In addition we have used quasi-geostrophic scaling,

which is based on the Rossby number being small: Ro � U=f�L � 1. However, as the driving

increases the advective time scale, L=U , becomes small. The underlying expansion in Ro will not

be valid, and hence neither will be our model output, at very high forcings. These issues are two of

the main limitations of this model.

Two additional theories have been proposed to explain the equilibration of baroclinic 
ows.

Lindzen (1993, 1994) has studied the possibility of neutralization, in which the atmosphere is always

striving for a state which is linearly neutral or stable to perturbations of all wave scales. Can this

be reconciled with the nonlinear baroclinic adjustment theory of Welch and Tung (1997)? At high

enough forcing in that study with only two waves unstable, the longer wave was indeed at marginal

stability at equilibrium, but the shorter wave was linearly unstable. Is this behavior still present in

a realistic simulation with many waves unstable, or does Lindzen's theory apply? This issue will be

investigated.

Also, Farrell and collaborators (Farrell and Ioannou 1994; DelSole and Farrell 1995; Farrell and

Ioannou 1995; DelSole and Farrell 1996) have espoused yet another explanation. In the studies

listed, the authors proposed a stochastically forced, linearized system to explain the dynamics of

baroclinic equilibration in the atmosphere. The di�erence between their mechanism and that of

nonlinear baroclinic adjustment must be pinpointed.

In section 2 the mathematical model is described brie
y. Section 3 shows the model-simulated

transient energy spectrum and compares with it Rhines' prediction of the wavenumber of cascade

arrest. In this section the mechanism of nonlinear baroclinic adjustment also is proposed, and it

is shown that both the spectral peaks of Fig. 1 can be explained. The agreement between this

mechanism and the wave-wave equilibration theory of quasi-geostrophic turbulence is demonstrated.

As a test of the model, its results are compared with observations in section 4. Finally, di�erences

between the proposed theory and those of Lindzen and of Farrell are discussed in section 5, with
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conclusions in section 6.

2. Numerical Model

The numerical model used here is identical to that developed in Welch and Tung (1997) except for

the values of a few parameters, which will be discussed below. The model solves the quasi-geostrophic

equations on a �-plane, including Newtonian cooling to a radiative equilibrium temperature pro�le

and Ekman friction at the Earth's surface. The domain approximates the mid-latitude troposphere:

a channel of 45� width centered on 50�N and extending from the top of the Ekman layer to 200mb.

We assume rigid walls, and a rigid (and 
at) top and bottom. The model is �nite-di�erenced into

two levels1 in the vertical. The non-dimensionalized, leveled equations in pressure coordinates are:

@
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@

@t
r2
�
	3 = ��J(	3;r

2
�
	3)� ��

@	3

@x
+ !4 � !2 (2.2)

@

@t
(	3 �	1) = �

1

2
�J(	1 +	3;	3 �	1)� 2��!2

�2h00
h
	3 �	1 � (	3 �	1)

y

i
(2.3)

where 	 = �=f� is the geostrophic streamfunction and ! = dp=dt is the vertical velocity. Subscripts
1 and 3 indicate the upper and lower levels, 2 the interface, and 0 and 4 the top and bottom of

the model, respectively. r� = �2(@2=@x2) + (@2=@y2) is the non-dimensionalized Laplacian, and a y

identi�es the radiative forcing. For details of the model, see Welch (1996).

Several non-dimensional parameters have been introduced: � is the meridional gradient of the

Coriolis parameter f , �� is a measure of static stability (speci�ed and held constant in our simula-

tions), h00 is the relaxation time scale for the radiative forcing, and � = Ly=Lx is a horizontal aspect

ratio, where Lx and Ly indicate the scale of the domain in the zonal and meridional directions,

respectively.2 Specifying � is equivalent to setting the length scale of the gravest zonal mode allowed
(for a �xed channel width): the larger �, the shorter the fundamental mode's wavelength. Thus, by
varying �, the number of zonal modes which are unstable can be varied.

In this study we are attempting to simulate a case akin to the real atmosphere in which many

waves are unstable and participate in the baroclinic equilibration. We choose the value � = 0:28, for

1In Welch and Tung (1997) we called this same setup a two layer model, because it follows from the original

formulation of Lorenz (1960), which he termed the same. However, both our model and his are actually level models,

for the height at which the variables are to be evaluated is speci�ed. See Pedlosky (1987).
2Note that we let the non-dimensional variable x̂ range over [0; 2�] whereas ŷ only ranges over [0; �]. This is

motivated by the no 
ow side wall boundary conditions and our choice of sinny as the meridional form of the

eigenfunctions. See Welch 1996.
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it corresponds to a channel which circumscribes the Earth, i.e. to the real mid-latitudes.3 Notice

that such a small value of � indeed allows many zonal waves to be linearly unstable. This can be

seen in Fig. 2, which displays the marginal stability (dashed) curve for our choice of parameters.

Finally, we use the value �� = 0:06 for the static stability parameter, which is in the range 0.05-0.09

calculated from tropospheric observations (Welch 1996). (In section 4 we will re�ne this value even

further for winter vs. summer.)

Fig. 2 (dashed curve) shows that there are approximately 14 waves unstable, with the most

unstable being m = 11. This is close to the scale of the most unstable wave in the real atmosphere

(m = 12� 15 from Gall 1976). As we shall see in the model results, this geometry with a \realistic"

forcing of �T y = 90K yields m = 5 as the dominant heat transporting wave at equilibrium, which

is in the range found in observations by Randel and Held (1991). Thus with our chosen parameter

values the model can simulate the key baroclinic wave scales of the current atmosphere.

The solution of the model is the same as in the previous two wave study. A r4
�
-type sub-grid

damping term is added to the vorticity equation at each level to represent the frictional e�ect of

small scales. The dependent variables are expanded in the eigenfunctions of the Laplacian operator

in the horizontal, and an ODE solver based on the Runge-Kutta method is used to calculate the

expansion coe�cients over time. Tests at various resolutions indicate that, for this case of many

waves unstable, 26 modes must be retained in both the meridional and zonal directions to yield a

converged solution. Also, the simulations must be carried out for approximately one year (3000 non-

dimensional time steps) and averaged over the last four months (1000 time steps). All experiments

in the subsequent discussions were run in this way, starting from the wave-free Hadley state, with

all zonal and meridional wavenumbers perturbed with random but small magnitude. For further

details see Welch (1996).

We will measure the modeled climate in several ways. One simple measure is the zonally averaged

temperature di�erence (or \gradient") across the mid-latitudes in the middle troposphere, which we

label �T 2. An expression for this can be derived by zonally averaging the thermodynamic energy

equation (2.3), and using the hydrostatic relation T � �@	=@p, to yield:

@T 2

@t
= ��

@

@y
(v02T

0

2) + 2��!2 + 2h00
�
T y � T 2

�
: (2.4)

At equilibrium, then, the temperature gradient across the channel, �T 2;eq, can be approximated by

(dropping the \2" subscript):

�T eq � �T y +
��

h00
�!2 �

�

2h00
�

@

@y

�
v02T

0

2

�
; (2.5)

where the last term is the di�erential eddy heat 
ux convergence or \heat transport". We will vary

the magnitude of the radiative equilibrium forcing �T y and measure the resultant �T and the heat

3First recognize that Ly is determined by the zonal jet, for the latter acts as a waveguide, con�ning baroclinic

disturbances to a meridional range approximately 30 degrees in latitude. Then from (2.8) of Welch and Tung (1997)

we have mE = 1:08 m, so that the wavenumber in an \Earthly" channel and that in our chosen channel are e�ectively

the same. This con�rms the realism of our channel.

5



transport by various waves at equilibrium.4 The contribution by the vertical velocity is small in all

cases we studied.

3. Explaining the Transient Energy Spectrum

In addition to the observed transient variance of geopotential height, Fig. 1 shows the energy

spectrum generated by the model at �T y = 90K, in simulation of winter. For easier comparison

with observations, only the �rst ten wavenumbers are included.5 Like the observed geopotential

data, the model energy has two local maxima: one at the planetary scale and one at synoptic. The

peak at m = 1 is larger in the simulated results (relative to the synoptic scale peak). This could be

because the observed data is variance of the geopotential height only, whereas the model is tracking

the perturbation energy, including kinetic energy and quasi-geostrophic potential energy, the last

of which is proportional to geopotential height variance. (See Appendix for detail of the energy

calculation.) The overall shapes of the curves are strikingly close, in spite of this di�erence, an

indication that the model seems to be replicating the situation in the real atmosphere. Spectra at

higher and lower forcings (not shown) have similar shape, with the synoptic peak shifting to lower

wavenumbers for higher forcing.

We note that for geostrophic turbulence arguments to apply here, the model must include enough

unstable waves to yield the nonlinear triad interactions expected in a turbulent regime. One way to

investigate this is to look for a so-called \enstrophy-
ux subrange" of two-dimensional turbulence

(Holloway 1986). In such a spectral region, the 
ux of energy from wavenumber to wavenumber is

zero while the 
ux of enstrophy is constant. From dimensional analysis and energetics arguments,

these constraints imply that the perturbation energy should obey a formula of the form:

E0

m � m�� (3.1)

for some constant � > 0, regardless of the level of forcing (Pedlosky 1987). In Fig. 3 we have plotted

the perturbation energy E0 vs. zonal wavenumber for three di�erent forcings in our model. By

using a log-log plot, we can easily identify an enstrophy-
ux subrange in the wavenumbers m � 8,

for which the spectra have slope � � 3:5. This value is close to that predicted (� = 3) for quasi-

geostrophic turbulence in the shortest wave scales (Charney 1971). The fact that it is slightly larger

in magnitude might be due to the fact that the beta e�ect has some bearing on the smaller scales

(Pedlosky 1987, pp. 252-253.) Here we simply note that there does seem to be an enstrophy-
ux

subrange in our energy spectra and hence the signs of 
uid turbulence in the largest wavenumbers.

4As in Welch and Tung (1997), all quantities are projected onto the cos y mode, which gives a good and easy

approximation to the full value.
5The scale of the geopotential variance on Fraedrich and Bottger's (1978) Fig. 4 lower left is inconsistent with

their Fig. 2 bottom row. Thus we do not include their scale in our Fig. 1 but only compare the shapes of the two

curves.
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a. Rhines' Wavenumber

Rhines (1975) developed a prediction of the wave scale which would dominate in a turbulent 
ow

subject to Rossby-wave dynamics, which is relevant to our present parameter regime. He reasoned

that nonlinear triad interactions amongst short waves would result in a reverse cascade of energy

up-scale (Charney 1971), but that such interactions would diminish at the large scales, which are

dominated by the linear dynamics of Rossby waves due to the large Coriolis force. Thus the up-

scale cascade would terminate at some wavenumber for which the Coriolis force and the nonlinear

terms have the same magnitude. Rhines calculated this wavenumber of cascade arrest as k� �

(�=2Urms)
1=2

, which can be expressed non-dimensionally for our study as:

m� �

r
�

2�Urms

: (3.2)

Here Urms is the non-dimensional magnitude of the root mean square (\rms") eddy velocity. We

have applied the above formula to our model to see if this prediction accords with our results. Table

1 lists Urms for a range of forcings and the resultant Rhines wavenumber, m� , calculated using (3.2).

The rms velocity is a time-average at equilibrium, averaged over the channel and over the two levels;

thus it is a measure of the barotropic energy in the channel, as in the study by Haidvogel and Held

(1980). For comparison, the table includes the wavenumbers of the long wave energy maximum,

(mEmax)long, and of the synoptic energy maximum, (mEmax)syn, from model output (as in the solid

curve of Fig. 1).

�T y Urms m� (mmaxE)long (mmaxE)syn mmax�

20 0.039 3.0 2 10 10

50 0.098 1.9 1 7 6

80 0.140 1.6 1 5 6

110 0.180 1.4 1 5 5

140 0.217 1.3 2 4 6

Table 1: Rhines wavenumber, m� , for various forcings as calculated from the root mean square eddy

velocity, Urms, according to (3.2). The two waves at which the transient energy is a local maximum

are shown as (mmaxE)long for a long wave and (mmaxE)syn for a synoptic wave. The wavenumber of

dominant heat transport is indicated by mmax�. All calculations are at equilibrium.

It can be seen that Rhines' calculation does approximately predict the wavenumber of the long

scale energy maximum. This is found at other forcings as well. An energetics analysis corroborates

Rhines' idea, as displayed in Fig. 8. This �gure is the case �T y = 90K, for which we can interpolate

from Table 1 that m� � 1� 2. The dashed line in the �gure is the nonlinear gain or loss of energy

by each wave. There is a strong nonlinear transfer of energy from short to long waves, peaking at

m = 1. Thus a very long wave does seem to accumulate energy due to a cascade caused by nonlinear

interactions of short waves. (This �gure will be discussed further below.)

Table 1 demonstrates, however, that Rhines' argument does not explain the presence of a synoptic

scale energy peak, because it predicts a wave scale which is much longer. We note that the derivation
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of m� assumed a barotropic 
uid with no forcing and no viscosity; Rhines' nonlinear transfer does

not depend on the degree of baroclinicity of the 
uid system. Now, in our case baroclinic instability

determines both the amount of energy injected into the eddies and the scale of such energy injection.

Since Rhines' upscale cascade does not depend on baroclinic stability per se (hence it should work

for the baroclinic atmosphere as well) it should explain how that injected energy is distributed

among di�erent scales. It is surprising, then, that Rhines' mechanism does not determine the

synoptic energy peak. The processes which do select this shorter scale peak must directly involve

the baroclinicity of the system.

Also shown in the table is the wavenumber of the dominant heat transporting wave at equilibrium,

mmax� (determined from Fig. 6 below). The scale of this wave is always close to that of the synoptic

scale energy maximum. Thus the explanation for the selection of the synoptic energy maximum may

be tied to the explanation for the dominance of the main heat-transporting wave. We propose the

mechanism of nonlinear baroclinic adjustment to explain the latter, and hence the former.

b. Nonlinear Baroclinic Adjustment

The theory of nonlinear baroclinic adjustment was presented in the study of Cehelsky and Tung

(1991) and elaborated by Welch and Tung (1997). Here we will review the concept, corroborating it

with model simulations, and we show how it can explain the synoptic peak in the energy spectrum.

Nonlinear baroclinic adjustment is motivated by the recognition of existence of an \atmospheric

thermostat". There seems to be a mechanism which maintains the mid-latitude temperature gradient

in the middle troposphere at a fairly constant value, even while the forced radiative equilibrium

temperature gradient varies considerably with the seasons (Stone 1978). The theory posits that,

given a certain forcing, there is a certain amount of heat which the sum of all baroclinically unstable

waves attempt to transport poleward. The amount of heat increases linearly with the forcing, so

that the resultant temperature gradient attains its robust value.

Both of these features are found in our model simulations, as shown in Fig. 4: the solid line rises

linearly with forcing while the crosses are fairly constant. Note that the theory does not assume

that the heat is transported by the most unstable wave alone, which was Stone's (1978) original

proposal of linear baroclinic adjustment. He argued that no other waves would participate because

they would be linearly stabilized by the action of the most unstable wave, which would reduce the


ow to the minimum critical shear or temperature gradient. This, however, would yield the most

unstable wave (m � 12 � 15) as the dominant heat transporter in the real atmosphere, whereas

observations show it to be m = 4� 7 (Randel and Held 1991). In the theory of nonlinear baroclinic

adjustment, the heat transport is spread over many scales, and the wave which ends up dominating

this process at equilibrium is longer than that most unstable.

The rule which determines how heat is transported by the various wavelengths is based on

the concept of a nonlinear threshold for each wave, above which it can no longer grow. At this
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limiting magnitude, the wave will break and saturate, shedding excess energy to other scales. This

is demonstrated in Fig. 5 with a model run at �T y = 120K. Each frame shows contours of upper

layer PV (\Q") vs. x and y at a certain point in time in the evolution to equilibrium, with solid

(dotted) contours indicating total PV greater (less) than the average planetary contribution, f�.
The run is started from the (perturbed) Hadley solution, which at this forcing is supercritical to

wavenumbers 1-14 (Fig. 2, dashed curve). Early on at 1.2 days, the most unstable wave (wavenumber

11) is the primary perturbation to the PV contours, as can be seen from the number of peaks in

the perturbed f�-contour in panel a. This wave does not maintain dominance, however. As the

evolution proceeds, the dominant wave observed becomes longer and longer: from m = 11 initially

to m = 10 (not shown) to m � 9 at 2.3 days (panel b) to m � 8 at 3.5 days (panel c), etc. Finally

at equilibrium, it is m � 6 which is dominant, as shown at 92.6 days in panel d. This agrees with

the data of Fig. 6 below.

Dominance shifts to a longer scale when the PV contours of the currently dominating wave curl

up such that regions of negative PV gradient are created. Initially the gradients are dominated by �
and hence are everywhere positive, as in panel a. Waves then begin to grow, distorting the contours.

If a wave becomes very large, long thin �ngers of PV start to form, as in panel b for wavenumber 9.

Eventually these �ngers begin to curl over onto themselves, creating regions of negative PV gradient;

for example, see the top left section of panel b or the top of panel c. Where this occurs, small scale

instabilities begin to grow. Panel c shows this, and the PV �ngers that curl over are being \pinched

o�" by instabilities which have arisen on the side(s). Small \blobs" of PV thus are created, and

these are in turn broken up, as they have negative PV gradients due to their closed shape. The

blobs become smaller and smaller until they are dissipated by (sub-grid) friction. In this way, further

growth of wavenumber 8 in panel c is prevented. The next longer wave begins to emerge in the PV

contours as it grows larger than the breaking wave.

This idea is consistent with the criterion for instability given by the Charney-Stern Theorem: if

the background potential vorticity gradient is zero or negative somewhere in the 
uid, then the 
uid

may be unstable to small scale secondary perturbations (Charney and Stern 1962). That theorem

was derived for the case of a zonally uniform 
ow, and hence the background 
ow was just the

zonal mean. Here we are concerned with the stability of a zonal mean 
ow plus a heat transporting

wave or waves. These waves are of large scale, however; from the point of view of small-scale

secondary perturbations, such planetary or synoptic waves vary so slowly in the zonal direction as

to appear locally constant. Thus we generalize Charney and Stern's idea by applying it to the total

background 
ow, including zonal mean and wavy contributions. We claim that when the total PV

gradient Qy = Q
y
+ Q0

y
becomes negative, the 
ow becomes potentially unstable. The dominant

wave then breaks, shedding blobs of PV, and it cannot grow further. This was described above by

the panels of Fig. 5.

This limit on the total PV gradient is in fact a limit on the wavy part, for the zonal mean gradient

has a roughly constant (positive) value independent of forcing. To demonstrate this, consider the
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non-dimensional PV on each level, de�ned by:

Qj � 1 + �
�
y �

�

2

�
+r2

�
	j +

j � 2

2��
(	1 �	3) ; j = 1; 3 (3.3)

where the \1" is a non-dimensionalized f�. The equilibrated zonal average can be approximated:

Qj � 1 + �
�
y �

�

2

�
+ 
jT 2;dim0l(y); j = 1; 3 (3.4)

where the relative vorticity is small compared to the planetary, as con�rmed by model output, and

hence has been neglected. The 
j are non-dimensionalizing constants. (Note that 
1 < 0.) The

zonal mean meridional PV gradient on the upper level is then:

Q1;y =
@Q1

@y
� � + 
1

�
@T 2

@y

�
dim0l

: (3.5)

We know that the cross-channel temperature gradient, �T 2, is robust at equilibrium from Fig. 4.

In addition, the temperature approximately retains its forced cos y pro�le throughout the evolution
(not shown). These two facts combined mean that @T 2=@y (at any y) is also fairly constant with

forcing at equilibrium. Hence from (3.5) it must follow that the zonal mean PV gradient on the

upper level retains roughly the same value regardless of forcing. (The same is true in the lower

level.)

Now the wavy component of PV (Q0

y;m
) oscillates in sign by de�nition. Thus the total PV

gradient will be negative when the magnitude of the wavy component becomes larger than Qy. This

puts a limit on how large the wavy PV gradient can be before it will render the 
ow unstable by

creating regions of negative total Qy.

Finally, the size of the wavy PV gradient can be related to the streamfunction magnitude, and

through that to the amount of the heat 
ux. As derived in Welch and Tung (1997), we have:

<
��Q0

1;y

��
m
> � m3=2

p
< j�mj >: (3.6)

Here �m is zonal average eddy heat 
ux convergence by wave m. The vertical lines indicate abso-

lute values, and the angle brackets a meridional average. This relation shows that the same heat

transported by a longer wave (smaller m) will yield a lower wavy PV gradient than if transported

by a shorter wave (larger m). According to the generalized Charney-Stern theorem, then, we expect

shorter waves to yield larger wavy PV gradients and render the 
ow unstable, i.e. to reach their

nonlinear saturation level, at lower forcings (i.e. lower heat 
uxes) than will longer waves.

With these thresholds in mind, let us return to the question of equilibration. For a given forcing,

Fig. 4 shows the total amount of heat which must be transported to reach the robust equilibrium.

If this exceeds the threshold of the most unstable wave (as it often does by a wide margin), then

that wave will break and the excess heat will be taken up by the next longer wave, because it has

a higher threshold. If this next longer wave reaches its threshold, then it will break and shed its
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energy. This process will continue until the total heat that must be transported has been accounted

for, and thus the heat is spread over a spectrum of baroclinic waves. (Notice that relationship (3.6)

above gives another argument for the up-scale cascade of Charney (1971). Energy cannot cascade to

a shorter scale, even if that scale is linearly unstable, for it has a nonlinear threshold which is even

smaller than that of the saturating wave.) Fig. 6 shows the simulated equilibrium heat transport

by each of the most active waves over a range of forcings. At all but the lowest forcings there is

signi�cant contribution by more than just the most unstable wave (m = 11, from Fig. 2). Fig. 6

also demonstrates the presence of nonlinear thresholds. At 100 � �T y � 150K, wavenumbers 8-11

each have a heat transport that does not rise much with the forcing, indicating that these scales have

reached saturation and have passed energy to the longer scale wavenumbers 4-7, which dominate at

these forcings. Furthermore, the saturation level for the shorter waves are lower than for the longer

waves: (�11)satn < (�10)satn < (�9)satn < (�8)satn, which corroborates the relation (3.6).

When an unstable wave reaches its saturation level, it is \nonlinearly stabilized" by sending

energy to other scales. The longest wave to transport heat, however, will not have reached its

threshold; hence it will not be stabilized nonlinearly at equilibrium. Rather, it stabilizes itself:

through its heat transport, it reduces the zonal mean temperature gradient to a level at which it

is linearly neutral, in the manner Stone envisioned for the most unstable wave. This is veri�ed in

Fig. 4. The squares mark the critical temperature gradient (from a linear stability analysis) of

the dominant heat transporting wave at equilibrium for each forcing. The equilibrated temperature

gradient falls near to the squares in each case, indicating that indeed the 
ow has been made

approximately neutral with respect to the dominant wave. In the process, all longer waves have

been rendered linearly stable. This can be seen from the marginal stability curve for the equilibrated


ow at �T y = 90K (solid line) in Fig. 2. Wavenumber 5 is the longest wave to transport heat in

this case, and it reduces �T down to near its critical gradient, �Tcr;5. This is lower than the critical
gradient for longer waves, and thus the waves m = 1� 4 are linearly stabilized at equilibrium.

It is this last wave, m = 5 for the example above, which acts as the atmospheric thermostat. It is

the 
exible component of the system, determining the equilibrium temperature gradient essentially

by itself via a quasi-linear mechanism. In most cases this wave does the bulk of the heat transport

and thus we call it the dominant heat transporting wave.6 For all but the smallest forcings, this

wave will be longer than the most unstable wave, the latter having been nonlinearly saturated.

The reason that the cascade does not continue further up-scale is that all the necessary heat

transport has been borne by the shorter waves. This is a crucial di�erence between the synoptic peak

achieved by nonlinear baroclinic adjustment and the planetary peak from the Rhines' mechanism

of up-scale (barotropic) energy cascade. In the former, there appears to be an "objective": to

transport just enough heat to maintain the atmospheric "thermostat". When that objective is

achieved, no further up-scale cascade is needed, and hence it stops at the scale of the dominant heat

transporting wave. The dominant wave then reduces the temperature gradient such that longer

waves are linearly stabilized and do not participate in the dynamics. This equilibration process

6Depending on the level of forcing, this wave could actually be transporting less heat than its next shorter neighbor

(which has saturated). However, it is still the 
exible wave in the system, thus determining the dynamics, and in this

sense it is still dominant.
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depends on the radiative driving. For higher forcing, more heat 
ux will be required and hence

more waves needed to transport heat to achieve equilibrium. The cascade will continue until a lower

wavenumber is selected as dominant. This can be seen in Fig. 6: the wave which transports the

most heat shifts to a longer and longer scale as the forcing �T y is raised.

Our theory is summarized in the schematic diagram of Fig. 7. Note that what determines when

the temperature gradient shifts to a new regime is not the linear critical gradients of the waves,

but rather their nonlinear saturation levels. Also, the schematic has an exaggerated ordinate for

clarity; in the model atmosphere, the critical gradients of the various waves are very tightly packed.

This is demonstrated for the equilibrated 
ow at �T y = 90K in Fig. 2 by the 
atness of the curve

over many wavenumbers; the same shape is found at other forcings (not shown). Thus the levels of

equilibration for the di�erent regimes of Fig. 7 are actually very close in magnitude, producing a

relatively constant temperature gradient over a range of forcings, as found in observations (and in

Fig. 4).

We have used the theory of nonlinear baroclinic adjustment to explain the selection of the

dominant heat transporting mode. This argument can also be used to explain the existence of

a dominant synoptic energy mode, for the two scales are always close, as shown in Table 1. The

energy cascades up-scale to a wavenumber that is lower than that most unstable, but the cascade

does not continue to the longest scales as in the theory of Rhines (1975). It stops roughly at the

dominant heat transporting wave. Now, there is indeed a di�erence between the dominant heat

transporting mode and the (synoptic scale) mode with maximum perturbation energy. First, the

wave of maximum energy is not necessarily the wave of maximum energy extraction from the mean


ow. Model simulations do show them to be close, however (not shown). The wave of maximum

energy often is just slightly longer than that of highest extraction, seemingly a byproduct of the

continual cascade of energy to longer waves. Further, the wave of maximum energy extraction is

not the same as the wave of maximum heat transport. However, both are quasi-linear quantities,

measuring interaction between a wave and the mean 
ow, and model simulations do show that

these two scales are also close. Thus one would expect that the (synoptic) wavelength of maximum

energy and that of maximum heat transport would be close, but not always the same. This closeness

implies that nonlinear baroclinic adjustment is the relevant mechanism to explain the occurrence of

a synoptic scale peak in the energy spectrum.

An issue might be raised as to the relevance of the two-level model's energy spectrum to the

real atmosphere. Due to its vertical simplicity, a two-level model has a critical temperature gradient

separating stable and unstable waves, so that the longest waves are often stable. In contrast, in

the continuous atmosphere there is no distinct cut-o� and all waves are unstable. While the long

waves have smaller growth rates than do the synoptic scales (Green 1960; Kuo 1973; Gall 1976),

this does not necessarily prevent the long waves from achieving the largest energy (Schneider 1981).

Thus, one might ask the question: Is the (solid line) energy spectrum of Fig. 1 wrong, because the

longest waves in the two-level model are restricted from growing as much as they would in the real

atmosphere?

This issue is not of consequence here, however. First, we showed above that the maximum of

12



energy in the longest scale wave is due to a nonlinear cascade and not to the baroclinic instability

of the 
uid. The degree of instability (or stability) of the longest waves does not matter in the

development of the argument; indeed, Rhines derived his wavenumber of cascade arrest based on a

barotropic 
uid. Furthermore, we have seen that the energy spectrum generated by our two-level

model is similar to that in the real atmosphere. In the dashed line observations of Fig. 1 there is

a local maximum of transient variance at the longest wave, on the same order of magnitude as the

maximum at synoptic scales. In our model here there is a similar situation, even without the longest

waves being unstable. Therefore, the vertical simplicity of the two-level model does not seem to

compromise its ability to simulate the tropospheric energy spectrum.

c. Relation to Quasi-Geostrophic Turbulence

Our nonlinear baroclinic adjustment theory accords with the wave-wave equilibration theory of

Salmon (1980) in his study of quasi-geostrophic turbulence. This can be seen in Fig. 8, which shows

the perturbation energy growth, and components thereof, for each zonal mode at equilibrium for

�T y = 90K. (Calculations follow the method of Whitaker and Barcilon (1995); see Appendix.) The

solid line represents quasi-linear extraction of energy from the mean 
ow, the dashed is nonlinear

energy transfer between waves, and the dot-dashed line is the total of the linear processes: Ekman

friction, sub-grid damping, and Newtonian cooling. Note that the components of energy change sum

to approximately zero in our time-average, as indicated by the thin solid line, proof that the system

is indeed at equilibrium.

The �gure shows that there is nonlinear transfer of energy out of wavenumbers 5-12, while

wavenumbers 1-4 gain energy nonlinearly. That is, the most unstable waves lose energy to longer,

less unstable waves. This is due to the fact that these shorter heat transporting waves have reached

their saturation levels and are breaking, as described above, and their energy is taken up always by

waves of longer scale due to the relation (3.6). Fig. 8 also shows that the longer waves are losing

energy to dissipation.7 Because the most unstable waves continually lose energy nonlinearly, they

can be maintained in a state in which they are linearly unstable. This is con�rmed by the marginal

stability curve at equilibrium for the case �T y = 90K in Fig. 2 (solid line). The mean 
ow is

supercritical to the most unstable waves at equilibrium.

The above energetics �t exactly with Salmon's wave-wave equilibration theory, which he devel-

oped to explain equilibration in a 
uid with a forced mean baroclinic state, including Ekman friction

at the Earth's surface (Salmon 1980). An equilibrium is achieved in which the most unstable waves

gain energy quasi-linearly from the forcing (i.e. from the mean 
ow) and lose it nonlinearly to longer,

less unstable waves on which dissipation acts. With such an energy balance, an equilibrium which

is \supercritical" relative to the most unstable waves is possible.

It is now apparent that Salmon's turbulence theory can apply to the two wave case of Welch

7We note that our results are very similar to those of Whitaker and Barcilon (1995); compare to their Figs. 7 and

9.
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and Tung (1997) (i.e. � = 1:3) as well. The dynamics for that case are exactly the same as in Fig.

8, except that all of the behavior is compressed into the two available modes and hence appears

slightly di�erent. In the two wave case, the single long mode must account for the dynamics of all

the long waves in the theory above, and the single short mode must account for all the short waves,

as we now show.

Consider the wavenumbers of the many wave case in Fig. 8 divided into the groups m = 1 � 5

and m = 6� 10.8 (We neglect wavenumbers m > 10 because they contribute little.) The energetics

can be summarized in three points. First, modes 1� 5 have a net quasi-linear gain of energy from

the mean 
ow, but this gain is smaller than that of modes 6� 10. Second, modes 1� 5 experience

a net increase in energy due to nonlinear transfer, while the shorter wave group in net loses energy

nonlinearly. Finally, the loss to dissipation is greater for m = 1� 5 than for m = 6� 10. In the two

wave study, the roles of these two wave groups m = 1 � 5 and m = 6 � 10 are played by the long

mode m1 and the short mode m2, respectively. Compare, for example, Fig. 6T in Welch and Tung

(1997) with the wave groups of Fig. 8 here.

Thus the dynamics with two waves unstable seem to be just a compressed version of the situation

in the many wave case.9 With a slight adaptation, Salmon's wave-wave equilibration theory indeed

can explain the energetics in the part of parameter space with few waves unstable. This removes the

gap between his theory from quasi-geostrophic turbulence and the nonlinear baroclinic adjustment

mechanism presented here.

4. Comparison of Winter vs. Summer and vs. Observations

As a test of the relevance of the model, the results have been compared with observations of the

real atmosphere. First, recognizing that the static stability varies between the seasons, more speci�c

values of �� have been calculated for winter and summer separately, using data from Peixoto and

Oort (1992). From their Fig. 7.5, and with � = �4e
�z=H with H � 7km and �4 � 1:275kg/m3 from

Wallace and Hobbs (1977), we determine the following values for (non-dimensionalized) ��:

(��)winter � 0:085

(��)summer
� 0:077 (4.1)

We also choose the magnitude of forcing for each season separately, with�
�T y

�
winter

� 84K�
�T y

�
summer

� 56K (4.2)

8The groups could contain slightly di�erent waves with the same e�ect, because the waves are \tightly packed"

for this geometry. This is due to the smallness of �, which causes the e�ective wavenumbers m� of the waves to be

close, and their critical gradients similar in magnitude (see Fig. 2). Hence the waves have similar behavior and can

substitute for each other. This was not the case with only two waves unstable because of the relatively large � = 1:3.
9Recall that in the two wave study the long mode corresponds to wavenumber 5 on the Earth (mE = 5), and the

short wave to mE = 10. Hence the grouping of waves above is even more compelling.
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See Peixoto and Oort (1992), Fig. 6.14d.

Results are shown as crosses in Fig. 9. Notice �rst that the equilibrated temperature gradients

are much smaller than the radiative equilibrium Hadley solution, agreeing with observations. Also

note that �T eq;wtr is slightly larger than �T eq;sum, which meets with our expectations.

Included in the �gure are observed values of the temperature gradient in mid-channel, i.e.

�2@T obs0d=@ŷ at ŷ = �=2, in winter and summer, taken from Peixoto and Oort (1992) Fig. 7.5.

Fig. 9 shows that the results of the model are strikingly close to these observations. The model has

approximated well the large reduction of the temperature gradient from the radiative equilibrium

value. Moreover, the model results mimic the slight rise in equilibrium gradient from summer to

winter. Thus we have some evidence that our model, albeit a simple two-level quasi-geostrophic

model in a beta-plane channel, as well as the nonlinear baroclinic adjustment mechanism which it

demonstrates, are relevant to equilibration in the real atmosphere.

5. Relation to Other Theories

The neutralization proposal by Lindzen (1993, 1994) is clearly di�erent from our theory, because

the former requires all waves to be linearly stable at equilibrium. Nonlinear baroclinic adjustment

proposes that waves can be stabilized by di�erent methods, in particular nonlinearly; not all waves

must be linearly stabilized in order to achieve an equilibrium. This is evident in the marginal stability

curve at equilibrium of Fig. 2 (dashed line); only the long waves have been linearly neutralized, while

the short waves remain linearly unstable even at equilibrium. This was also found in the two wave

study of Welch and Tung (1997), and thus appears to be true throughout parameter space.

Finally, we note that our nonlinear baroclinic adjustment theory, which is based on the presence

of normal modes, di�ers from the proposals of Farrell and collaborators (Farrell and Ioannou 1994;

DelSole and Farrell 1995; Farrell and Ioannou 1995; DelSole and Farrell 1996). Those studies used

linearized quasi-geostrophic equations, showing how the non-normality of the linear operator can

lead to transient growth of non-modal waves. Starting with a single initial value problem, Farrell

(1989) demonstrated that an optimal perturbation in such a system can mimic the development of

a single mid-latitude cyclone. The combined e�ects of many cyclones, i.e. the e�ect of baroclinic

instability on climate, then can be simulated by continuously forcing the linearized system. This is

done by modeling the omitted nonlinear interactions as a stochastic forcing in all wavelengths (plus

a linear dissipation). Using this technique in the aforementioned works, the above authors were able

to generate the eddy variance, i.e. heat and momentum 
uxes (amongst other features), observed

on synoptic scales in the real atmosphere. Therefore, they argued, it is transient growth due to

non-normality of the linearized operator which causes baroclinic equilibration.

Here we do not make any assumption concerning the modal structure of the solution. Our

calculations were done by stepping the fully nonlinear equations forward in time, allowing many

waves to interact with each other and with the mean 
ow. Thus both normal modes and non-modal
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waves are allowed. The fact that the results here can be explained better with only normal mode

thinking may be an issue of the function of nonlinearities, as we now discuss.

In a linearized problem for which the operator possesses normal modes but is non-normal, tran-

sient growth at small times gives way to normal mode (exponential) growth or decay at later times.

This has been demonstrated by Farrell (1982) for the most unstable wave in the Eady problem. (See

his Fig. 4.) Farrell and colleagues' non-normal linear theory of statistical baroclinic equilibration

assumes that the system never proceeds past the transient stage to see the e�ects of growing (or

decaying) normal modes. Energy is scattered by nonlinearities (parameterized as stochastic forcing),

preventing evolution to an equilibrium state. On the other hand, our calculation of nonlinear baro-

clinic adjustment allows for short-term transiency, but it does not require that the system remain

in this linear phase. The 
ow evolves past into a nonlinear regime, wherein the amplitudes of the

normal modes are kept in check by nonlinear interactions among waves. In our case the discussion is

particularly simple because the non-normal growth does not alter the mean 
ow signi�cantly; hence

normal modes of the original wave-free state are similar to those of the �nal state, and we e�ectively

can follow the same normal mode through from initial linear instability to equilibration.

The key di�erence between the non-normal theory and ours, then, is the nonlinear interactions

and the time scales over which they are presumed to have impact. Farrell and colleagues assume

that nonlinearities act rapidly and catastrophically to scatter energy and interrupt the evolution to

equilibrium. In our work here, we have made no such assumption, allowing the nonlinear interactions

to occur at whatever pace the governing equations dictate. A more detailed inspection of the observed

wave-wave (and wave-mean) interactions in the real atmosphere, and a comparison thereof with our

equilibrium dynamics and with the stochastic forcing suggested by Farrell, could shed more light on

this issue.

6. Summary and Conclusions

We have shown that the two maxima of energy in the transient spectrum of the mid-latitudes

can be explained by two di�erent theories. The long wave maximum is due to barotropic up-scale

energy transfer and the cessation thereof at scales where linear Rossby wave dynamics take over, as

proposed by Rhines (1975). The synoptic scale maximum is related to the amount of heat that needs

to be transported at a given radiative forcing, as determined by the theory of nonlinear baroclinic

adjustment. In the current climate this scale would have been the linearly most unstable baroclinic

wave, except that that wave is unable (without reaching its saturation limit) to transport the large

amount of heat required to neutralize the atmosphere; hence that most unstable wave breaks. The

remaining heat is then transported by the next longer wave, and so on. By calculating the total

amount of heat that must be tranported by all the waves and the saturation thresholds of each, one

can then estimate the synoptic wave spectrum. Such an estimate is found to be near that of the

observed spectrum. Note that the presence of baroclinic instability does not appear to interrupt the

Rhines wavenumber cascade, nor does that cascade signi�cantly a�ect the selection of the dominant

heat transporting wave.
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Combined with the results of Welch and Tung (1997), the nonlinear baroclinic adjustment mecha-

nism has been shown to work throughout parameter space, explaining the equilibration of baroclinic


ows with any number of waves unstable and at all forcings. This mechanism can account for the

observed 
exibility of meridional eddy heat transport in the atmosphere. An important part of

the theory is that waves can be stabilized by di�erent methods, linear and nonlinear, and that not

all waves must be linearly stabilized in order to achieve an equilibrium. This is di�erent from the

neutralization theory proposed by Lindzen.

Finally, we have identi�ed the similarity between the nonlinear baroclinic adjustment mechanism

and the wave-wave equilibration theory of geostrophic turbulence. This latter theory applies to the

subset of cases in which many waves are unstable and, with a slight reinterpretation, it can be seen

to operate in the few-wave case as well. Wave-wave equilibration describes the overall dynamics

of a baroclinic 
uid state at equilibrium. Nonlinear baroclinic adjustment, on the other hand, also

gives the dynamic mechanism for each wave and explains how the waves interact over time to yield

a �nal equilibrium state. Its di�erence from Farrell's ideas of stochastically forced transient growth

has been shown to lie in the time scale assumed for nonlinear interactions.

Although the model used here is quite simple, with (for example) quasi-geostrophic scaling and

a �xed value of static stability, it seems able to represent qualitatively the observed dynamics of

poleward atmospheric heat transport. It can simulate approximately the transient energy spectrum

and the zonal mean meridional temperature gradient in winter vs. summer. Thus the mechanism

proposed seems promising, but certainly testing it with more sophisticated models is an important

next step.
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Appendix

Energetics Calculation

To analyze the dynamics of our simulations, both at equilibrium and during the evolution, we

have used an energetics analysis from the work of Whitaker and Barcilon (1995). Here we will derive

the energy equation for our particular model. All quantities are non-dimensional unless otherwise

indicated.

First we reformulate the vorticity and thermodynamic energy equations (2.1) - (2.3) into two
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equations for the conservation of potential vorticity (\PV") at each level. Solving the thermodynamic

equation for !2 and substituting into the upper vorticity equation yields:
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where we have used the fact that J(	1;	1) = 0. The above equation can be rewritten as:
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where the upper and lower level potential vorticities, Q1 and Q3, are de�ned by:
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(Note: the \1" in (A4) is a non-dimensionalized f�.) Similarly we can develop a PV equation for

the lower level:
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For ease let us abbreviate the forcing terms by de�ning:
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This allows the PV equations to be written:
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Now, divide each term in (A7) into a zonally and time averaged part, indicated by an overbar,

and a perturbation to the time-zonal mean, indicated by an apostrophe, i.e. g = g + g0, where
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for any function g(x; y; t). Here � is the time averaging period, taken to be approximately four

months (1000 time steps), which is much longer than several typical baroclinic life cycles (4-6 days).

After dividing each term thus, (A7) becomes:
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where several terms have dropped out due to the de�nition (A8). This is the same as equation (A.1)

in Whitaker and Barcilon (1995).

We can derive an energy equation for this 
uid system by multiplying (A9) by �	0

j
and manip-

ulating the result, to yield:
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where E0 is the perturbation energy (to the zonal and time mean 
ow), de�ned by:
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Note that E0 includes the kinetic energy at both levels plus the potential energy due to the baroclinic

shear.

We will call the term in the energy equation (A10) within square brackets the \nonlinear" term,

or N . (Its last two time derivatives are actually from the left hand side of the PV equations (A9) and

thus do not really contain nonlinear dynamics.) We can split N into a part that represents quasi-

linear interaction of a wave with the mean 
ow and a part that represents wave-wave interactions,

i.e. N = Nq +Nw, where:
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X
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and Nq is the remainder. (This will make sense when we take the zonal average, below.) Thus the
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perturbation energy equation (A10) can be written:
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; j = 1; 3 (A13)

Finally, we take the horizontal average of the above equation, where:

g �
1

2�

Z 2�

0

1

�

Z
�

0

g dy dx (A14)

for any function g(x; y; t).10 Due to boundary conditions, including periodicity in x, all but one term
of Nq equal zero and thus we have:

@E0

@t
= G+Nw �	0

j
Dj �	0

j
D0

j
; (A15)

where

G � ��
X
j

v0
j
Q0

j
uj : (A16)

G is is the \generation" term of Whitaker and Barcilon (1995), representing the amount of energy

generated in the waves by quasi-linear extraction from the mean 
ow.11

Now equation (A15) can be divided into contributions from each zonal wave. For example, terms

which are O(	
0
2), such as G and those involving Dj , involve products of wavenumbers +m and �m,

summed up over all m. Rigorously speaking, this energy equation is only valid for the total of all

zonal modes; it is not true for each wavenumber m individually. However, we tested our model and

determined experimentally that (A15) is approximately true separately for each zonal wave.

Therefore, we have used the perturbation energy equation (A15), separated into zonal wavenum-

bers m = 0 �M , to calculate the various terms shown in Fig. 8. The quasi-linear extraction or

wave-mean interaction term is equal to G, the nonlinear transfer or wave-wave interaction term is

Nw, and the linear (dissipation plus forcing) term is �	0

j
Dj �	0

j
D0

j
. We have performed the cal-

culation at equilibrium, time averaged in our usual way, and thus the derivative term with respect

to time should be roughly zero. (This was shown to be true by the thin solid line in Fig. 8.)

The �gures involving the energy in each mode, i.e. Figs. 3 and 1 (solid line), have been plotted

using the de�nition (A11), after horizontally averaging and separating by zonal mode, and performing

a time average at equilibrium.

10Note that the single bar is a zonal and time mean, while the double bar is a zonal mean plus a meridional mean.

Thus a double bar over a zonal and time mean term does not remove the single bar representing the latter.
11Note that there is a minus sign missing in front of this term in equations (2.3), (2.5) and (A.6) in Whitaker and

Barcilon (1995). De�ned without the minus sign of (A16), this term would represent the amount of energy 
owing to

the mean 
ow from the eddies.
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Note: to avoid lengthy calculations in our model, we did not determine the nonlinear wave-wave

term Nw directly. Instead, we calculated every other term in (A15), including the time rate of

change (which is no more expensive than the others), and then solved for Nw by subtraction. In

addition, we used Fast Fourier Transforms to calculate the other O(	
0
2) terms.
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