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Is the subdominant part of the energy spectrum due to downsca le energy
cascade hidden in quasi-geostrophic turbulence?

Eleftherios Gkioulekas∗ and Ka Kit Tung†

Department of Applied Mathematics, University of Washington, Seattle, WA, United States

In systems governing two-dimensional turbulence, surfacequasi-geostrophic turbulence, (more generallyα-
turbulence), two-layer quasi-geostrophic turbulence, etc., there often exist two conservative quadratic quantities,
one “energy”-like and one “enstrophy”-like. In a finite inertial range there are in general two spectral fluxes, one
associated with each conserved quantity. We derive here an inequality comparing the relative magnitudes of the
“energy” and “enstrophy” fluxes for finite or infinitesimal dissipations, and for hyper or hypo viscosities. When
this inequality is satisfied, as is the case of 2D turbulence,where the energy flux contribution to the energy spec-
trum is small, the subdominant part will be effectively hidden. In sQG turbulence, it is shown that the opposite
is true: the downscale energy flux becomes the dominant contribution to the energy spectrum. A combination
of these two behaviors appears to be the case in 2-layer QG turbulence, depending on the baroclinicity of the
system.

1. INTRODUCTION

The characteristic feature of two-dimensional turbulenceis
that there are two conserved quantities, kinetic energy and
enstrophy. This led Kraichnan (1967), Leith (1968), and
Batchelor (1969) to conjecture that there will exist two inertial
ranges, one located upscale of the spectral region of injection
and another on the downscale side of injection. In the up-
scale side, it is assumed that there is only an upscale flux of
energy, and no flux of enstrophy. On the downscale side, like-
wise, there is only a downscale flux of enstrophy, and no flux
of energy. One then uses a dimensional analysis argument to
calculate the energy spectrumE(k) where it is assumed that
in each inertial range it depends only on the corresponding
single flux and the wavenumberk. The same type of argu-
ment was used in the energy cascade of three-dimensional tur-
bulence (Batchelor, 1947; Kolmogorov, 1941a,b). Although
three-dimensional turbulence also has two conserved quanti-
ties, energy and helicity, one has the option to inject energy
without injecting helicity. In two-dimensional turbulence it is
not possible to inject energy without injecting enstrophy and
vice versa, because the two quantities are related

Initial efforts to simulate the enstrophy cascade yielded
confusing reports of various numerical slopes. Consequently,
alternative theories have been proposed over the past 30 years
to explain them (Moffatt, 1986; Polyakov, 1993; Saffman,
1971). Recently, in carefully set up experiments, it was
shown that it is possible to obtain the enstrophy cascade
in agreement with the KLB theory (Ishihira and Kaneda,
2001; Lindborg and Alvelius, 2000; Pasquero and Falkovich,
2002). A numerical simulation with very good diagnos-
tics has shown that the inverse energy cascade can be ob-
tained accordingly (Boffetta et al., 2000). There are also
however many papers that question the universality of
these results (Danilov, 2005; Danilov and Gurarie, 2001a,b;
Tran and Bowman, 2003, 2004). A review can be found in
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Tabeling (2002) and Gkioulekas and Tung (2005c).

Further confusion has resulted from efforts to explain the
observed energy spectrum of the atmosphere with the KLB
theory. Observations show that there is a robust energy spec-
trum with slope−3 which transitions at large wavenum-
bers into slope−5/3 (Gage, 1979; Gage and Nastrom, 1986;
Nastrom and Gage, 1984; Nastrom et al., 1984). In the KLB
theory, on the other hand, one expects that at small wavenum-
bers the energy spectrum will have slope−5/3 from the in-
verse energy cascade, which will then transition at the forc-
ing wavenumber, into a−3 slope from the direct enstrophy
cascade. The apparent contradiction between these two pre-
dictions has led to various explanations and debate (Dewan,
1979; Lilly, 1989; Lindborg, 1999; VanZadt, 1982).

It was conjectured by Tung and Orlando (2003a) that the
observed atmospheric energy spectrum results from the down-
scale cascade of enstrophy and energy injected at the large
scales by baroclinic instability and dissipated at the smallest
length scales. Ifηuv is the downscale enstrophy flux andεuv

is the downscale energy flux, it was suggested that they would
coexist on the downscale side of injection and that their sepa-
rate contributions to the energy spectrum would give the latter
a compound spectral shape, with a−3 slope transitioning to
a shallower−5/3 slope as the wavenumber increases. The
transition from−3 slope to−5/3 slope occurs at the tran-
sition wavenumberkt with order of magnitude estimated by
kt ≈

√

ηuv/εuv.

General Circulation models have been shown to be
capable of reproducing the Nastrom-Gage spectrum in
agreement with observations (Koshyk and Hamilton, 2001;
Koshyk et al., 1999; Skamarock, 2004). Although the nature
of the nonlinear interactions which give rise to the down-
scale energy flux changes from quasi-geostrophic to stratified
three-dimensional in the mesoscales, as far as the energy spec-
trumE(k) is concerned it is the existence of a downscale en-
ergy flux which gives rise to thek−5/3 slope, regardless of
the character of the motion. The recent interest, typified by
Lindborg (2005), in understanding thek−5/3 slope in terms
of three-dimensional stratified turbulence is justified, since it
is necessary to account for length scales less than 100km in
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wavelength where the quasi-geostrophic assumption fails.It
is the view of the authors that it is equally important to under-
stand why the quasi-geostrophic model is capable of support-
ing a downscale energy cascade withk−5/3 scaling, because
one also has to account for the existence ofk−5/3 scaling at
length scales ranging from 700km to 100km where the quasi-
geostrophic assumption is presumably valid.

Tung and Orlando (2003a) have demonstrated numerically
that a two-layer quasi-geostrophic channel model with ther-
mal forcing, Ekman damping, and hyperdiffusion can also
reproduce this compound spectrum. The resolution of these
simulations goes down to 100km in wavelength. The diag-
nostic shown in figure 7 of (Tung and Orlando, 2003a), shows
both the constant downscale energy and enstrophy fluxes co-
existing in the same inertial range. Recent measurements and
data analysis by Cho and Lindborg (2001) have confirmed the
existence of a downscale energy flux and estimateηuv ≈
2 × 10−15s−3 and εuv ≈ 6 × 10−11km2s−3. From these
estimates we find the mean value of the transition scalekt =
√

ηuv/εuv ≈ 0.57×10−2km−1 andλt = 2π/kt ≈ 1×103km
which has the correct order of magnitude.

This theory of a combined downscale enstrophy cascade
and downscale energy cascade is contrary to the widely ac-
cepted misconception that the argument by Fjørtøft (1953)
forbids a downscale energy flux in two-dimensional tur-
bulence altogether, and through the isomorphism theorem
of Charney (1971) also in quasi-geostrophic turbulence.
Various aspects of this misconception have been clarified
by Merilees and Warn (1975), Tung and Welch (2001) and
Gkioulekas and Tung (2005a).

As has been pointed out by previous authors (Borue, 1994;
Eyink, 1996), as long as the dissipation terms at large-scale
and small scales have finite viscosity coefficients and the in-
ertial ranges exist, the downscale enstrophy flux will be ac-
companied by a small downscale energy flux, and the upscale
energy flux will be accompanied by a small upscale enstrophy
flux. Dimensional analysis arguments are premised on the as-
sumption that these additional fluxes can be ignored, conse-
quently the energy spectrum predictions obtained by such ar-
guments are valid only to leading order. While ignoring sub-
leading effects can be justified for strictly two-dimensional
turbulence, we will argue in this paper that for models of
quasi-geostrophic turbulence, such as the two-layer model,
the subleading contributions can be important in the inertial
range and cannot be safely ignored. Predicting the form of
these subleading corrections requires a subtle mathematical
argument, given by Gkioulekas and Tung (2005b), that goes
beyond dimensional analysis.

In particular, Gkioulekas and Tung (2005b) have argued
that the subleading fluxes are associated with a subleading
downscale energy cascade and a subleading inverse enstrophy
cascade that contributelinearly to the total energy spectrum
in addition to the dominant contributions. The two contribu-
tions are homogeneous solutions of the underlying statistical
theory, which is in factlinear. Furthermore, the two homoge-
neous solutions are independent of each other, so the down-
scale energy cascade is independent of the downscale enstro-
phy flux ηuv and the downscale enstrophy cascade is inde-

pendent of the downscale energy fluxεuv. As a result, in the
downscale inertial range, the total energy spectrumE(k) has
the following three contributions:

E(k) = E(ε)
uv (k) + E(η)

uv (k) + E(p)
uv (k), ∀kℓ0 ≫ 1, (1)

whereE(ε)
uv (k),E(η)

uv (k) are the contributions of the downscale
energy and enstrophy cascade, given by

E(ε)
uv (k) = auvε

2/3
uv k

−5/3
D

(ε)
uv (kℓ(ε)uv )

E(η)
uv (k) = buvη

2/3
uv k

−3[χ+ ln(kℓ0)]
−1/3

D
(η)
uv (kℓ(η)

uv ),
(2)

with D
(ε)
uv and D

(η)
uv describing the dissipative corrections.

Here we use the logarithmic correction of Kraichnan (1971),
adjusted by the constantχ of Bowman (1996) for the con-
tribution of the enstrophy cascade. We have also assumed
without explicit justification that we may ignore the possibil-
ity of intermittency corrections to the subleading downscale
energy cascade. For the downscale enstrophy cascade inter-
mittency corrections have been ruled out by Eyink (2001).
For the downscale energy cascade we conjecture that inter-
mittency corrections are small for the same reasons as in three
dimensional turbulence. The scalesℓ(ε)uv , ℓ(η)

uv are the dissi-
pation length scales for the downscale energy and enstrophy
cascade. Finally,E(p)

uv (k) is the contribution from the effect of
forcing and the sweeping interactions. The latter can become
significant via the violation of statistical homogeneity caused
by the boundary conditions (see Gkioulekas (2005) for de-
tails). Thus, in the inertial range where the effect of forcing
and dissipation can be ignored, the energy spectrum will take
the simple form in the downscale range:

E(k) ≈ auvε
2/3
uv k

−5/3 + buvη
2/3
uv k

−3[χ+ ln(kℓ0)]
−1/3. (3)

We see that the energy spectrum will take the slope of−3 for
smallk , and−5/3 for largek . The transition from one slope
to the other occurs atkt , given byεuvk

2
t ∼ ηuv.

It should be emphasized that the formation of cascades ob-
servable in the energy spectrum is by no means guaranteed.
There are two prerequisites that need to be satisfied: first, the
contribution of the particular solutionE(p)

uv (k) has to be neg-
ligible both downscale and upscale of the injection scale, i.e.

E(p)
uv (k) ≪ E(ε)

uv (k) + E(η)
uv (k), ∀kℓ0 ≫ 1

E
(p)
ir (k) ≪ E

(ε)
ir (k) + E

(η)
ir (k), ∀kℓ0 ≪ 1.

(4)

Second, the dissipative adjustmentD(η)
uv (kℓ

(η)
uv ) and

D
(ε)
uv (kℓ

(ε)
uv ) of the homogeneous solution has to be such

that it does not destroy the power law scaling in the inertial
range. Furthermore, the dissipation scalesℓ

(η)
uv andℓ(ε)uv have

to be positioned so that the incoming energy and enstrophy
can be dissipated.

The idea of two cascades in the same wavenumber region
has an interesting precedent in the case of three-dimensional
turbulence, where there is interest in understanding the double
cascade of helicity and energy (Arad et al., 1999; Chen et al.,
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2003; Moiseev and Chkhetiani, 1996). There, the situation is
more straightforward because the helicity cascade and the en-
ergy cascade reside in separate isotropic sectors of theSO(3)
group (Arad et al., 1999; Biferale and Procaccia, 2005). This
makes it easier to argue in support of a superposition princi-
ple.

In two-dimensional turbulence the situation is more inter-
esting because both cascades reside in the same isotropic sec-
tors. The main argument in support of our conjecture was
given in section 2 of Gkioulekas and Tung (2005b). Addi-
tional evidence is given in section 3 of the same paper. It
should be noted that our main argument exploits the linearity
of the exact statistical theory of two-dimensional turbulence
(i.e. the complete infinite system of equations governing the
relevant fully-unfused structure functions). Nonlinear results,
such as the one that was proposed by Lilly (1989), follow from
closure models instead of the exact theory. Likewise, phe-
nomenological arguments with the eddy-turnover rate, such
as the one in Kraichnan (1971), are essentially coming out
of a 1-loop nonlinear closure theory, and would also lead to
nonlinear expressions for the energy spectrum. Most closure
arguments miss the point that theexactstatistical theory is in
fact linear.

It should be noted that the main results of the present
paper rely on the statement that the transition wavenum-
ber kt from −3 scaling to−5/3 scaling is given bykt ≈
√

ηuv/εuv. This statement follows from the superposi-
tion principle, but it doesn’t require it and can proba-
bly also be established with different arguments. For the
case of the double cascade of helicity and energy in three-
dimensional turbulence, such a different argument was given
by Moiseev and Chkhetiani (1996). Furthermore, the dimen-
sional estimatekt ≈

√

ηuv/εuv for the transition wavenum-
berkt has been confirmed by Tung and Orlando (2003a). Fi-
nally, extending the superposition principle to the two-layer
QG model (the main focus of this paper), which has three con-
servation laws instead of just two, remains an open theoretical
question.

In two-dimensional turbulence, the fluxesεuv andηuv are
constrained by an inequality that was communicated to us by
Sergey Danilov (Gkioulekas and Tung, 2005c) . This con-
straint implies that the contribution of the downscale energy
cascade to the energy spectrum is overwhelmed by the con-
tribution of the downscale enstrophy cascade and cannot be
seen visually on a plot. This result was conjectured earlierby
Smith (2004) who claimed that the downscale energy cascade
can never have enough flux to move the transition wavenum-
ber kt into the inertial range. The two-layer model is a dif-
ferent dynamical system than the two-dimensional Navier-
Stokes equations, and the validity of the Danilov inequality
in the two-layer model is not obvious (Gkioulekas and Tung,
2005c; Tung, 2004).

In the present paper we will show that in the two-layer
model when the Ekman dissipation coefficientνE is below
a critical value, then the Danilov inequality will be satisfied.
We will also argue that the asymmetric presence of Ekman
damping on the bottom layer but not the top layer may cause
the violation of the Danilov inequality for larger values ofthe

Ekman dissipation coefficient. In this case, the top layer has
more enstrophy than the bottom layer, as is realistic in the
atmosphere, and provided that the difference in enstrophy be-
tween the two layers is large enough, the downscale energy
cascade will be made observable in the energy spectrum. We
derive specific conditions on how large this difference needs to
be in order for the Danilov inequality to be violated for some
wavenumbersk. The simulation of Tung and Orlando (2003a)
has shown that it is possible to have an observable downscale
energy cascade, which implies a violation of the Danilov in-
equality. The role of the argument in this paper is to explain
how and why this can happen, given that it is a surprising and
very unexpected result. We also hope that our paper will raise
renewed interest in understanding the phenomenology of the
two-layer quasi-geostrophic model.

We will also show that in the surface quasi-geostrophic
model, which represents the most extreme case of baroclinic-
ity, the downscale energy cascade becomes completely dom-
inant. An immediate implication of our argument is that the
existence of an extensive observablek−5/3 in the energy spec-
trum of the atmosphere has the physical interpretation thatthe
atmosphere is very baroclinic.

The paper is organized as follows. The Danilov inequality
is reviewed in section 2 where we make some simple general-
izations. Its implications for two-dimensional turbulence are
discussed in section 3.The surface quasi-geostrophic model is
discussed in section 4 and that the two-layer model in section
5. Conclusions and some further remarks are given in section
6.

2. THE DANILOV INEQUALITY IN ONE-LAYER MODELS

The governing equation for a wide range of one-layer hy-
drodynamic models takes the form:

∂ζ

∂t
+ J(ψ, ζ) = D + F, (5)

whereF is the forcing andD is the dissipation andζ = −Lψ.
Here,L is a linear isotropic operator involving the derivatives
with respect to the horizontal coordinates. For a general com-
bination of hyper- and hypo-diffusion:

D = −ν0(−∆)pζ − ν1(−∆)−hζ, (6)

with p, h, positive integers.p = 1, h = 0 yields the combina-
tion of molecular viscosity and Ekman damping.

For 2D turbulence,L is given byL = −∆, where∆ is the
Laplacian operator and the streamfunctionψ is related to the
2D nondivergent velocity as

(u, v) =

(

−∂ψ
∂y
,
∂ψ

∂x

)

. (7)

For barotropic QG turbulence, also known as Charney-
Hasegawa-Nima (CHM) turbulence (Charney, 1948;
Hasegawa et al., 1979; Hasegawa and Mima, 1978),L is
given instead byL = −∆ + λ2, whereλ2 is a given positive
constant. Another interesting family of one-layer models are



4

theα-turbulence models whereL = Λα with Λ ≡ (−∆)1/2.
The caseα = 1 corresponds to surface quasi-geostrophic
turbulence (SQG) which is an extreme baroclinic model,
and not a barotropic model like 2D turbulence or CHM
turbulence.

2.1. Conservation laws

Let 〈〈f〉〉 be the spatial and ensemble average off(x, y) de-
fined as

〈〈f〉〉 ≡
∫∫

〈f(x, y)〉 dxdy. (8)

There are two inviscid quadratic invariants for (5), which are:

A = (1/2)〈〈(−ψζ)〉〉, (9)

B = (1/2)〈〈ζ2〉〉. (10)

Note thatB is conserved for all linear operatorsL, whereas
the conservation law ofA requires thatL be self-adjoint, i.e.

〈〈f(Lg)〉〉 = 〈〈(Lf)g〉〉. (11)

For example in 2D turbulence it is well-known that,

E ≡ (1/2)〈〈(u2 + v2)〉〉 = (1/2)〈〈|∇ψ|2〉〉 (12)

= (1/2)〈〈(−ψζ)〉〉 ≡ A, (13)

is the kinetic energy of the 2D fluid, and

G ≡ (1/2)〈〈ζ2〉〉 ≡ B, (14)

is the enstrophy. In section 4 we see thatA andB have a
different physical interpretation in SQG turbulence.

The spectraA(k) andB(k) of the conserved quadraticsA
andB are defined as

A(k) =
1

2

d

dk
〈〈−ψ<kζ<k〉〉, (15)

B(k) =
1

2

d

dk
〈〈(ζ<k)2〉〉, (16)

with ψ<k andζ<k the streamfunction and vorticity fields with
all the Fourier wavenumbers greater thank in magnitude fil-
tered out. The relationship,ζ = −Lψ, translates into the
spectral relationships in the Fourier space

ζ̂(k) = L(|k|)ψ̂(k), B(k) = L(k)A(k), (17)

where

ψ̂(k) =

∫∫

ψ(x)e−ik·xdx. (18)

We will assume thatL(k) > 0, so that bothA(k) andB(k)
are positive. Furthermore, we will assume thatL(k) is a
monotonically increasing function ofk. In 2D turbulence,
L(k) = k2; in CHM turbulence,L(k) = k2 + λ2; in α-
turbulence,L(k) = kα, and in SQG,L(k) = k.

Furthermore,A(k) andB(k) satisfy the following spectral
equations:

∂A(k)

∂t
+
∂ΠA(k)

∂k
= −DA(k) + FA(k) (19)

∂B(k)

∂t
+
∂ΠB(k)

∂k
= −DB(k) + FB(k). (20)

Here,DA(k) andDB(k) are the spectral dissipations rate of
A(k) andB(k), respectively, with

DB(k) = L(k)DA(k), (21)

DA(k) = [ν0k
2p + ν1k

−2h]A(k) > 0, (22)

for a combination of hyper- and hypo-viscosities. Further-
more,FA(k) andFB(k) are the spectra of forcing also re-
lated byFB(k) = L(k)FA(k), and,ΠA(k) andΠB(k) are
the spectral fluxes ofA andB. The Leith (1968) constraint on
the fluxes generalizes to

∂ΠB(k)

∂k
= L(k)

∂ΠA(k)

∂k
. (23)

The conservation laws forA andB arise from the following
boundary conditions onΠA(k) andΠB(k):

lim
k→0+

ΠA(k) = lim
k→+∞

ΠA(k) = 0 (24)

lim
k→0+

ΠB(k) = lim
k→+∞

ΠB(k) = 0. (25)

2.2. The Danilov inequality

Assuming that the injection (forcing) ofA andB occurs in
[k1, k2], then at steady state, we have, from (19) and (20):

ΠA(k) =

∫ +∞

k

DA(q) dq, for k > k2 (26)

ΠB(k) =

∫ +∞

k

DB(q) dq, for k > k2 (27)

ΠA(k) = −
∫ k

0

DA(q) dq, for 0 < k < k1 (28)

ΠB(k) = −
∫ k

0

DB(q) dq, for 0 < k < k1, (29)

sinceFA(k) = 0 andFB(k) = 0 for 0 < k < k1 andk > k2.
For wavenumbersk > k2, we have therefore

L(k)ΠA(k) − ΠB(k) =

∫ +∞

k

[L(k) − L(q)]DA(q) dq < 0.

(30)

Similarly, for wavenumbers0 < k < k1, we have:

L(k)ΠA(k) − ΠB(k) = −
∫ k

0

[L(k) − L(q)]DA(q) dq < 0.

(31)
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Consequently, for all wavenumbersk ∈ (0, k1) ∪ (k2,+∞)
not in the forcing range, we have:

L(k)ΠA(k) − ΠB(k) < 0. (32)

This inequality was brought to our attention by Danilov (2004,
personal communication) for the case of 2D turbulence. We
shall see later in this paper that although this inequality has
a trivial mathematical derivation in one-layer models, it be-
comes nontrivial for the two-layer QG model. In all cases,
what is interesting is the physical understanding that fol-
lows from studying this inequality, and not the mathematical
derivations per se.

Previously, Fjørtøft (1953) and Eyink (1996) derived a sim-
ilar, but looser, bound, for the downscale energy fluxΠE in
two-dimensional turbulence:ΠE(k) < η0/k

2, involving the
total rate of enstrophy injectionη0. This looser inequality is
often used to show (Salmon, 1998) that in two-dimensional
turbulence with an infinite downscale range, the energy flux
ΠE(k), vanishes. For the case of small but finite viscosity
where the downscale spectral range is finite, the energy flux
does not vanish.

The significance of the inequality (32) is that it decides
whether the transition wavenumberkt is within the inertial
range, thus making a transition from the leading cascade to
the subleading cascade observable in the energy spectrum
E(k). Whether this happens depends on the baroclinicity of
the system, as we will show below by considering three dif-
ferent cases: two-dimensional turbulence which is completely
barotropic, SQG turbulence which is completely baroclinic,
and the two-layer QG model which lies in between with re-
spect to baroclinicity.

3. THE CASE OF 2D TURBULENCE

We begin with the case of 2D turbulence in finite domain
with finite viscosity for the infrared and ultraviolet dissipa-
tions. This is a generalization of the theory by Kraichnan
(1967) of infinite domain with infinitesimal dissipation. Inthe
inertial range on the downscale side of injection,ΠA(k) ≈
ǫuv, andΠB(k) ≈ ηuv provided that we ignore a small dissi-
pative contribution. The inequality (32) implies thatǫuvk

2 <
ηuv for all k in this inertial range. The energy spectrum in (1),
valid in the inertial range, can be rewritten to leading order,
omitting the logarithmic correction:

E(k) ≈ C1ε
2/3
uv k

−5/3 + C2η
2/3
uv k

−3 (33)

≈ C2η
2/3
uv k

−3

(

1 +
C1

C2

(

εuvk
2

ηuv

)2/3
)

(34)

≈ C2η
2/3
uv k

−3, (35)

where we useǫuvk
2 < ηuv and the assumptionC1 ≤ C2.

This sequence of steps is validasymptoticallyin the limit of
large separation between the forcing scale and the dissipation
scale, for wavenumbersk in the inertial range. A similar argu-
ment can be made for the inertial range upscale of injection.

It follows that on the downscale side of injection the domi-
nant cascade is the enstrophy cascade withE(k) ∼ k−3, and
on the upscale side of injection the dominant cascade is the
inverse energy cascade withE(k) ∼ k−5/3. By “dominant”
we mean that even for finite Reynolds numbers the contri-
butions of the subleading downscale energy cascade and the
subleading inverse enstrophy cascade are hidden forall the
wavenumbersk in the inertial range. A violation of the con-
dition C1 ≤ C2 can allow, in principle, a transition tok−5/3

scaling very near the neighborhood of the dissipation range.
The Danilov inequality by itself cannot completely rule out
such an effect, but so far as we know, it has never been clearly
observed in numerical simulations of the enstrophy cascade.

This argument supports the conjecture by Smith (2004) that
in 2D turbulence, on the downscale side of injection, we have
no transition to shallower scalingE(k) ∼ k−5/3. His other
conjecture, that the same result also holds for the two-layer
QG model, is not true in general and will be discussed later in
this paper.

It should be noted that in the foregoing arguments it isas-
sumedthat an inertial range exists either upscale or downscale
of injection. Unlike the case of 3D turbulence, where the
downscale energy cascade is very robust, it is well known that
in 2D turbulence there are circumstances where the leading
inverse energy cascade (Danilov, 2005; Danilov and Gurarie,
2001a,b; Gkioulekas and Tung, 2005c) or the leading down-
scale enstrophy cascade (Tran and Bowman, 2003, 2004;
Tran and Shepherd, 2002) may fail to appear as expected.
Some of these issues are also relevant to the case ofα-
turbulence (Tran, 2004). In general, the failure of cascades
is to be attributed to the absense of a sufficiently strong large-
scale dissipation sink. Since the observational evidence sug-
gests that cascades exist in atmospheric turbulence, we will
simply assume that without further discussion.

4. THE CASE OF SQG TURBULENCE

There has been considerable confusion over the physical in-
terpretation of the surface quasi-geostrophic model. Although
its mathematical formulation is in the form of a one-layer
model, it represents a three-dimensional system that corre-
sponds to the baroclinic limit of the three-dimensional quasi-
geostrophic model. Once that is taken into account, the phys-
ical interpretation of the spectraA(k) andB(k) and the phys-
ical implications of the Danilov inequality have to be revised.
The viewpoint that we would like to put forth in this section is
that whereas two-dimensional turbulence is an extreme case
where the enstrophy cascade is completely dominant, SQG
turbulence is the other extreme case where it is the downscale
energy cascade that is completely dominant.

4.1. 3D interpretation of SQG turbulence

As derived by Charney (1971), 3D QG flow conserves the
3D potential vorticityξ, which is advected horizontally by the
streamfunctionψ. Here, bothψ andξ are 3D fields. For con-
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stant Coriolis parameterf , the governing conservation law for
ξ takes the form:

∂ξ

∂t
+ J(ψ, ξ) = 0, (36)

with ξ given by

ξ = ∆ψ +
f2

ρ0

∂

∂z

(

ρ0

N2

∂ψ

∂z

)

≡ Pψ, (37)

whereρ0(z) is the ambient air density, andN2(z) the Brunt-
Väisälä frequency. Here we have omitted the forcing and dis-
sipation terms.The streamfunctionψ is also linked with the
potential temperatureΘ via the hydrostatic relation

Θ =
g

N

T

T0
=

f

N

∂ψ

∂z
. (38)

The potential temperature is also governed by a 2D-like equa-
tion

∂Θ

∂t
+ J(ψ,Θ) +

T0N
2

g
w = 0, (39)

wherew is the vertical velocity field.
In SQG the potential vorticityξ is assumed, a priori, to be

identically zero forz > 0. The streamfunctionψ is solved
from ξ = Pψ = 0. With ρ0 andN2 taken to be constants, the
horizontal Fourier transform ofψ(x, y, z, t) is obtained as

ψ̂(k, z, t) = ψ̂0(k, t)e
−|k|(N/f)z, (40)

using the boundedness boundary condition asz → ∞.
Most of the dynamics in this model are occurring at the

surfacez = 0, where the boundary condition of vanishing
vertical velocityw applied to the potential temperature (Θ)
equation leads to:

∂Θ

∂t
+ J(ψ,Θ) = D + F, (41)

whereΘ now plays the role of the conserved quantityζ in (5).
Here we have also introduced thermal forcing and dissipation:
D = ν∆Θ is the thermal diffusion, and

F = Q = αE(Θ0 − Θ), (42)

is the thermal heating in the commonly used form of New-
tonian cooling (see Tung and Orlando (2003b)) which in-
cludes a “forcing” termαEΘ0 and the “Ekman damping” term
−αEΘ. This equation is to be solved on a 2D surfacez = 0.
It has the same form as the vorticity equation for 2D turbu-
lence (e.g. (5)), except that the spectral relationship between
the advected quantityΘ and the advecting fieldψ is given in-
stead by

Θ̂(k, z, t) =
f

N

∂

∂z

(

ψ̂0(k, t)e
−|k|(N/f)z

)

(43)

= −|k|[ψ̂0(k, t)e
−|k|(N/f)z] (44)

= −|k|ψ̂0(k, z, t), (45)

which reduces tôΘ(k, t) = −|k|ψ̂(k, t) at z = 0. Thus SQG
corresponds toL(k) = k.

It has been shown by Charney (1971), and more generally
by Tung and Orlando (2003b), that the 3D QG energy density

E ≡ 1

2
ρ0

[

|∇ψ|2 +
f2

N2

(

∂ψ

∂z

)2
]

, (46)

is an invariant (i.e. independent of time),when integrated
over the 3D domain.E is the sum of the kinetic energy density
EK and the potential energy densityEP which are given by

EK = (1/2)ρ0(u
2 + v2) = (1/2)ρ0|∇ψ|2 (47)

EP =
1

2
ρ0

(

f

N

)2(
∂ψ

∂z

)2

=
1

2
ρ0Θ

2. (48)

For SQG, using Parseval’s identity, the energies integrated
over the horizontal surface are given by

EP = 〈〈EP 〉〉 =
1

2
ρ0〈〈Θ2〉〉, (49)

EK = 〈〈EK〉〉 =
1

2
ρ0〈〈|∇ψ|2〉〉 (50)

=
1

2
ρ0

∫

〈

(ikψ̂(k, t)) · (−ikψ̂∗(k, t))
〉

dk (51)

=
1

2
ρ0

∫

〈

| − kψ̂(k, t)|2
〉

dk =
1

2
ρ0〈〈Θ2〉〉 = EP .

(52)

It is thus seen that the kinetic energy density and the avail-
able potential energy density, when integrated horizontally,
are equipartioned, and that

2B ≡ 〈〈Θ2〉〉 = (EP + EK)/ρ0 = E/ρ0, (53)

is the total energy at the lower surface. The 3D energy is,
instead

E3D ≡
∫ ∞

0

〈〈E〉〉dz =

∫ ∞

0

ρ0dz〈〈Θ2〉〉

=

∫ ∞

0

ρ0dz

∫∫

dkxdky

〈

∣

∣

∣
Θ̂|z=0

∣

∣

∣

2
〉

e−2|k|(N/f)z

=
1

2
ρ0

∫∫

dkxdky
f

N |k|
〈

Θ̂Θ̂∗
∣

∣

∣

z=0

〉

=
1

2
ρ0

∫∫

f

N

〈

−ψ̂Θ̂∗|z=0

〉

dkxdky

=
1

2
ρ0
f

N
〈〈(−ψΘ|z=0)〉〉 = ρ0(f/N)A,

with A defined earlier asA ≡ (1/2)〈〈(−ψΘ)〉〉. Previ-
ous authors have made use of the similarity between the
form of vorticity equation (5) in 2D turbulence and the
temperature equation (41) in SQG turbulence to identify,
by analogy,A as the “energy” andB as the “enstrophy”
(Held et al., 1995; Pierrehumbert et al., 1994). As pointed out
in Tung and Orlando (2003b) and also here,2B is the total
energy integrated over the lower surface, and includes kinetic
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plus available potential energy. The physical interpretation for
Awas not given, but can now be seen to be the total energy in-
tegrated over the 3D domain. There is no potential enstrophy
(ξ2/2) per se in SQG turbulence, because potential vorticity
ξ has been taken to be zero identically. Consequently the flux
of potential enstrophy in SQG is exactly equal to zero, thus
k2ΠE2D

(k) − ΠG(k) > 0 andk2ΠE3D
(k) − ΠG(k) > 0.

4.2. The energy spectrum in SQG turbulence

The argument of the previous section can be extended to
the case of SQG turbulence and to the even wider case ofα-
turbulence, which includes both the case of SQG forα = 1,
and the case of 2D forα = 2. HereL(k) = kα and we assume
α > 0. Using the linear superposition principle discussed in
Gkioulekas and Tung (2005b) and assuming the existence of
inertial ranges, the spectrum ofA(k) andB(k) are, in the
downscale inertial range:

A(k) ≈ C1(ΠA)2/3k−
7
3
+ 1

3
α + C2(ΠB)2/3k−

7
3
− 1

3
α (54)

B(k) = |k|αA(k). (55)

Here, ΠA and ΠB are the constant fluxes on the down-
scale side of the forcing range. The inequality (32) becomes
kαΠA < ΠB for all k in the inertial ranges. Consequently,
for wavenumbersk in the inertial range, the spectrumA(k) is
given by

A(k) ≈ C2(ΠB)2/3k−
7
3
− 1

3
α

(

1 +
C1

C2

(

ΠAk
α

ΠB

)2/3
)

(56)

≈ C2(ΠB)2/3k−
7
3
− 1

3
α, (57)

again in the limit of large separation between the forcing scale
and the dissipation scale and provided thatC1 ≤ C2. Thus,
in the downscale range, there is no observable transition and
therefore:

A(k) ≈ C2(ΠB)2/3k−
7
3
− 1

3
α, (58)

B(k) ≈ C2(ΠB)2/3k−
7
3
+ 2

3
α. (59)

For the SQG model, in the downscale inertial range, the
energy spectrum is the same as that for2B(k) in α-turbulence
with α = 1:

E(k) = 2B(k) ≈ C1ε
2/3
3D k

−1 + C2ε
2/3
2D k

−5/3. (60)

Hereε3D is the downscale energy flux of 3D energyA and
ε2D is the downscale energy flux of 2D energyB. From
the Danilov inequality we learn that the visible energy spec-
trum in the inertial range downscale from the injection scale
is given by

E(k) ≈ C2ε
2/3
2D k

−5/3. (61)

This k−5/3 energy spectrum is now predicted by our theory.
The fluxε2D is not the “enstrophy” flux but is the 2D flux of

2D energy2B = E at thez = 0 layer. Numerical simulations
have reproduced this energy cascade and appear to indicate a
small deviation from thek−5/3 slope due to conjectured inter-
mittency corrections (Celani et al., 2004).

5. THE CASE OF TWO-LAYER QG TURBULENCE

The results in the previous sections demonstrate that QG
turbulence can exhibit a variety of behaviors. Barotropic mod-
els usually possess an energy spectrum with−3 spectral slope,
as in 2D turbulence, while SQG turbulence, which is baro-
clinic (with its exponential decay with height), is expected to
have a spectrum with a−5/3 slope, in the downscale iner-
tial range. Two-layer QG models have both a barotropic and
a baroclinic component (see Salmon (1978, 1980, 1998)), and
we therefore expect a mixture of−3 and−5/3 slopes depend-
ing on the degree of baroclinicity. In terms of the Danilov in-
equality, we expect that it will hold for small wavenumbers
and fail for large wavenumbers.

A relatively realistic two-layer model applicable to study-
ing atmospheric turbulence in the troposphere was adopted in
Tung and Orlando (2003a). In this model forcing is due to
thermal heating, which injects energy directly into the baro-
clinic part of the total energy. The two-layer fluid sits atop
of an Ekman boundary layer near the ground, which intro-
duces Ekman pumping in the lower layer (Holton, 1979) but
not in the upper layer. If one artificially adds an identical Ek-
man damping in the upper layer it can be easily shown that
Danilov’s inequality applies, and we leave the proof to the in-
terested reader. Here we will discuss the case of asymmetric
Ekman damping.

For the multiple-layer QG model, the governing equations
can be rewritten in the form of the conservation law withζ =
−Lψ, if we makeL into a matrix andψ into a column vector.
We will discuss the more general theory of multi-layers in a
future paper. Here we only wish to explain why and how the
Danilov inequality can fail in the two-layer QG model.

5.1. The formal setup

Two-layer QG models conserve potential vorticity in each
layer in the absence of forcing and damping. In the forced-
dissipative case, the governing equations read:

Top layer:
∂ζ1
∂t

+ J(ψ1, ζ1) = D1 + F1 (62)

Bottom layer:
∂ζ2
∂t

+ J(ψ2, ζ2) = D2 + F2, (63)

where

ζ1 = ∆ψ1 −
k2

R

2
(ψ1 − ψ2), ζ2 = ∆ψ2 +

k2
R

2
(ψ1 − ψ2),

are the potential vorticity in each layer.kR ≡ (2
√

2f)/(hN)
is the Rossby radius of deformation wavenumber and is taken
as a given constant (h is the height). The dissipation terms,
Di, include momentum dissipation of relative vorticity,∆ψi,
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in each layer, and Ekman damping from the lower boundary
layer:

D1 = ν(−∆)p+1ψ1, D2 = ν(−∆)p+1ψ2 − νE∆ψ2. (64)

The forcing terms can be shown to satisfy

F1 = +
k2

R

2f
Q, F2 = −k

2
R

2f
Q, (65)

whereQ is the radiative heating term in the temperature equa-
tion.

The two inviscid quadratic invariants are the energyE and
the total layer potential enstrophiesG1 andG2 given by

E ≡ 〈〈ψ1ζ1 + ψ2ζ2〉〉 (66)

G1 ≡ 〈〈ζ2
1 〉〉, G2 ≡ 〈〈ζ2

2 〉〉. (67)

The energy and enstrophy spectra are defined as

E(k) ≡ d

dk
〈〈ψ<k

1 ζ<k
1 〉〉 +

d

dk
〈〈ψ<k

2 ζ<k
2 〉〉, (68)

G1(k) ≡
d

dk
〈〈ζ<k

1 ζ<k
1 〉〉, (69)

G2(k) ≡
d

dk
〈〈ζ<k

2 ζ<k
2 〉〉, (70)

and the total enstrophy spectrumG(k) is G(k) = G1(k) +
G2(k). We define the streamfunction spectra

U1(k) ≡
d

dk
〈〈ψ<k

1 ψ<k
1 〉〉, (71)

U2(k) ≡
d

dk
〈〈ψ<k

2 ψ<k
2 〉〉, (72)

C(k) ≡ d

dk
〈〈ψ<k

1 ψ<k
2 〉〉, (73)

and alsoU(k) ≡ U1(k)+U2(k). It is easy to show the triangle
inequality2C(k) ≤ U(k). The energy and enstrophy spectra
are related with the streamfunction spectra via

E(k) = (k2 + k2
R/2)U(k) − k2

RC(k) (74)

G(k) = (k4 + k2k2
R + k4

R/2)U(k) − k2
R(2k2 − k2

R)C(k).
(75)

From the standpoint of examining the Danilov inequality, it
is most convenient to work with the streamfunction spectra.
However, following Salmon (1978, 1980, 1998), for physi-
cal understanding it is useful to work with the energy and en-
strophy spectra. Furthermore, it is helpful to distinguishbe-
tween barotropic energy and baroclinic energy as follows: Let
ψ ≡ (ψ1 +ψ2)/2 andτ ≡ (ψ1 −ψ2)/2. So,ψ1 = ψ+ τ and
ψ2 = ψ−τ . Now we define three spectraEK(k),EP (k), and
EC(k) in terms ofψ andτ :

EK(k) ≡ 2k2 d

dk
〈〈ψ<kψ<k〉〉, (76)

EP (k) ≡ 2(k2 + k2
R)

d

dk
〈〈τ<kτ<k〉〉, (77)

EC(k) ≡ 2k2 d

dk
〈〈ψ<kτ<k〉〉. (78)

HereEK(k) is the barotropic energy spectrum andEP (k) the
baroclinic energy spectrum. It is easy to show that the defini-
tions are self-consistent, i.e.E(k) = EK(k) + EP (k). The
relation between the energy spectra and the enstrophy spectra
can be now written in terms of two constraint equations:

G1(k) = (1/2)[k2EK(k) + (k2 + k2
R)EP (k)] + (k2 + k2

R)EC(k) (79)

G2(k) = (1/2)[k2EK(k) + (k2 + k2
R)EP (k)] − (k2 + k2

R)EC(k). (80)

Thus we see that the physical interpretation ofEC(k) is that it represents the difference in potential enstrophydistribution
between the two layers, and it is given by

EC(k) =
G1(k) −G2(k)

2(k2 + k2
R)

. (81)

5.2. Controlled necessary condition

The right-hand-side of the Danilov inequality reads

k2ΠE(k) − ΠG(k) =

∫ +∞

k

dq (k2DE(q) −DG(q)) ≡
∫ +∞

k

dq ∆(k, q), (82)

so the key question is whether∆(k, q) is positive or negative for wavenumbersk < q < kmax. Herekmax is either the
truncation wavenumber in the numerical model, or, in the theoretical case of infinite resolutions, is the hyperviscosity dissipation
wavenumber, beyond which the spectral enstrophy dissipation rate becomes negligible.
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With some straightforward but tedious calculations, it canbe shown that the dissipation rateDE(k) for the total energy, and
the dissipation rateDG(k) for the total potential enstrophy are given by

DE(k) = 2νk2p+2U(k) + 2νEk
2U2(k) (83)

DG(k) = 2νk2p+2E(k) + νEk
2[(2k2 + k2

R)U2(k) − k2
RC(k)], (84)

thus it follows that

∆(k, q) = k2DE(q) −DG(q) = 2νq2p+2[k2U(q) − E(q)] + νEk
2
Rq

2C(q) + νEq
2(2k2 − 2q2 − k2

R)U2(q) (85)

= 2νq2p+2[(k2 − q2)U(q) + (k2
R/2)(2C(q) − U(q))] + νEk

2
Rq

2(C(q) − U2(q)) + 2νEq
2(k2 − q2)U2(q). (86)

The first and third terms in this expression are always negative. Consequently, anecessarycondition forviolating the Danilov
inequality is that the second term has to be positive, i.e.C(q) − U2(q) ≥ 0. Otherwise, ifC(q) − U2(q) ≤ 0, then the Danilov
inequality will be satisfied. A physical interpretation of this condition will be given in section 5.4.

A controlled sufficient condition to satisfy the Danilov inequality can be derived in terms of the physical parameters ofthe
problem by noting thatC(q) − U2(q) ≤ (1/2)(U1(q) − U2(q)). It follows that

∆(k, q) = 2νq2p+2[(k2 − q2)U(q) + (k2
R/2)(2C(q) − U(q))] + νEk

2
Rq

2(C(q) − U2(q)) + 2νEq
2(k2 − q2)U2(q) (87)

≤ 2νq2p+2[(k2 − q2)U(q) + (k2
R/2)(2C(q) − U(q))] + νEk

2
Rq

2(1/2)(U1(q) − U2(q)) + 2νEq
2(k2 − q2)U2(q)

(88)

= [2νq2p+2(k2 − q2) + (1/2)νEk
2
Rq

2]U1(q) + [2(νq2p+2 + νEq
2)(k2 − q2) − (1/2)νEk

2
Rq

2]U2(q) (89)

≤ [2νq2p+2(k2 − q2) + (1/2)νEk
2
Rq

2]U1(q). (90)

Here, we have used the inequality2C(k) ≤ U(k) to eliminate
the (k2

R/2)(2C(q) − U(q)) term. We have also eliminated
the U2(q) term because it is unconditionally negative.This
leads to the following controlledsufficientcondition tosatisfy
Danilov’s inequality:

νE < 4νk2p
max

(

kmax

kR

)2

. (91)

Equivalently, anecessarycondition toviolate Danilov’s in-
equality is

νE > 4νk2p
max

(

kmax

kR

)2

. (92)

It is interesting to note that in the numerical simu-
lation of the two-layer model the algorithm adopted by
Tung and Orlando (2003a) for determining the magnitude
of the hyperviscosity coefficient isνE ≫ νk2p

max, for
all but the last twenty wavenumbersk in the dissipation
range. Tung and Orlando (2003a) obtained an energy spec-
trum with the compound slope configuration and the transition
wavenumberkt occured in the inertial range downscale from
injection in agreement with the conditionkt ≈

√

ηuv/ǫuv,
thus implying a violation of Danilov’s inequality.

5.3. An uncontrolled necessary and sufficient condition

The question now arises: is it possible to derive a suffi-
cient condition to violate the Danilov inequality of the form
νEk

2
R ≥ Λνk2p+2

max for some universal constantΛ? So far as
we know, this is not possible. However, it is possible to derive
anuncontrollednecessary and sufficient condition for violat-
ing the Danilov inequality.

We begin with defining

2C(q) = λ(q)U(q) (93)

U2(q) = u(q)U(q) (94)

Here0 ≤ u(q) ≤ 1 and−1 ≤ λ(q) ≤ 1. We may thus rewrite
everything in terms ofU(q) by employing

C(q) − U2(q) = (λ(q)/2 − u(q))U(q) (95)

2C(q) − U(q) = (λ(q) − 1)U(q) (96)

Then we can rewrite∆(k, q), as follows:

∆(k, q) = 2νq2p+2[(k2 − q2)U(q) + (k2
R/2)(2C(q) − U(q))] + νEk

2
Rq

2(C(q) − U2(q)) + 2νEq
2(k2 − q2)U2(q) (97)

= q2U(q)[−νq2p(2(q2 − k2) + k2
R(1 − λ(q)) + νEk

2
R(λ(q)/2 − u(q) + 2(k/kR)2u(q) − 2(q/kR)2u(q))]. (98)
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It easy to see that a sufficient condition to get∆(k, q) ≥ 0 is

νEk
2
R(λ(q)/2 − u(q) + 2(k/kR)2u(q) − 2(q/kR)2u(q)) ≥ νq2p(2(q2 − k2) + k2

R(1 − λ(q))). (99)

The necessary condition to violate the Danilov inequality
C(q) − U2(q) ≥ 0, which was derived previously, implies
thatλ(q)/2−u(q) ≥ 0. Provided that we assume the stronger
condition

λ(q)/2−u(q)+2(k/kR)2u(q)−2(q/kR)2u(q) ≥ 0, (100)

we may rewrite our sufficient condition as:

νEk
2
R

νq2p
≥ 2(q2 − k2) + k2

R(1 − λ(q))

λ(q)/2 − u(q) + 2(k/kR)2u(q) − 2(q/kR)2u(q)
.

(101)
To violate the Danilov inequality at wavenumberk, this suffi-
cient condition must hold for allq such thatk < q < kmax.
Since the numerator is always positive, the condition (100)is
in fact a stronger necessary condition for violating the Danilov
inequality.

5.4. Physical interpretation of necessary conditions

We would like now to discuss the plausibility of the nec-
essary conditionλ(q)/2 − u(q) > 0 and the stronger neces-
sary condition (100). To this end, we rewrite these conditions
equivalently in terms of the physical energy and enstrophy
spectra.

It is easy to writeU1(k), U2(k), andC(k) in terms of
EK(k), EP (k), andEC(k):

U1(k) =
d

dk
〈〈(ψ + τ)<k(ψ + τ)<k〉〉 (102)

=
d

dk
〈〈ψ<kψ<k〉〉 + 2

d

dk
〈〈ψ<kτ<k〉〉 +

d

dk
〈〈τ<kτ<k〉〉

(103)

=
EK(k)

2k2
+

EP (k)

2(k2 + k2
R)

+
EC(k)

k2
, (104)

and with a similar argument we find

U2(k) =
EK(k)

2k2
+

EP (k)

2(k2 + k2
R)

− EC(k)

k2
(105)

C(k) =
EK(k)

2k2
− EP (k)

2(k2 + k2
R)
. (106)

We may thus writeλ(k) andu(k) in terms ofEK(k), EP (k),
andEC(k):

λ(k) =
2C(k)

U(k)
= 2

EK(k)

2k2
− EP (k)

2(k2 + k2
R)

EK(k)

k2
+

EP (k)

(k2 + k2
R)

(107)

=
(k2 + k2

R)EK(k) − k2EP (k)

(k2 + k2
R)EK(k) + k2EP (k)

, (108)

(109)

and

u(k) =
U2(k)

U(k)
=

EK(k)

2k2
+

EP (k)

2(k2 + k2
R)

− EC(k)

k2

EK(k)

k2
+

EP (k)

(k2 + k2
R)

(110)

=
1

2

(k2 + k2
R)EK(k) + k2EP (k) − 2(k2 + k2

R)EC(k)

(k2 + k2
R)EK(k) + k2EP (k)

.

(111)

and the necessary conditionλ(q)/2 − u(q) ≥ 0 can now be
rewritten as

λ(q)/2 − u(q) =
(q2 + k2

R)EC(q) − q2EP (q)

(q2 + k2
R)EK(q) + q2EP (q)

> 0. (112)

The denominator is obviously positive, consequently the con-
dition is equivalent to

G1(q) −G2(q) = 2(q2 + k2
R)EC(q) > 2q2EP (q), (113)

for all q such ask < q < kmax.
This is a very interesting result. The requirement, in part,is

that there should be more enstrophy on the top layer than the
bottom layer, i.e.G1(q) > G2(q). It is reasonable to expect
this if there is more dissipation on the bottom layer than the
top layer. This is the case for the model we are considering
where there is Ekman damping at the bottom layer but not
at the top layer. However, the actual condition also requires
that the difference should be larger than the potential energy
EP (q) multiplied with2q2 . In our model, as has been pointed
out by Salmon (1978, 1980, 1998), the energy is injected into
the system at large scales as baroclinic energy, and most of this
energy is converted into barotropic energy near the Rossby
wavenumberkR. It is therefore reasonable to expect that this
necessary condition will be satisfied for wavenumbersq >
kR.

It should be noted that this is only a necessary condition.
A sufficient condition would require furthermore that equa-
tion (101) be valid. The necessary precondition for that is the
stronger requirement

λ(q)/2 − u(q)

u(q)
> 2

(

q

kR

)2

− 2

(

k

kR

)2

. (114)

This condition can be rewritten equivalently as

G1(q) −G2(q) − 2q2EP (q)

2G2(q) + k2
R(EK(q) − EP (q))

> 2

(

q

kR

)2

− 2

(

k

kR

)2

.

(115)
and it can be simplified further to give

G1(q) −
(

1 + 4
q2 − k2

k2
R

)

G2(q)

> 2q2EK(q) − 2k2(EK(q) − EP (q)). (116)
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The constraintu(q) ≥ 0 implies that

2G2(q) + k2
R(EK(q) − EP (q)) ≥ 0, (117)

and subtracting this inequality from the necessary condition
above gives the following simplification:

G1(q) − (1 + 4(q/kR)2)G2(q) > 2q2EK(q), (118)

for all q such thatk < q < kmax.
This condition, which is also a necessary condition for vi-

olating the Danilov inequality, places an even stronger con-
straint on the difference between the enstrophy between the
two layers. The fly in the ointment is the4(q/kR)2G2(q)
term. If we want to go from the transition scale at about
700km in wavelength down to length scales of a few kilo-
meters, then4(q/kR)2 increases at least by four orders of
magnitude. In the numerical simulations of Tung and Orlando
(2003a), the variability of4(q/kR)2 is relatively small be-
cause they only go down to 100km in wavelength. We may
therefore conjecture that a violation of the Danilov inequality
requires that the ratio(kd/kR)2, wherekd is the dissipation
wavenumber, must be small. In other words, the subleading
downscale energy cascade is expected to be observable in a
numerical simulation with small separation of scales between
kR andkd, but not in a numerical simulation where the sep-
aration between these scales is large. A trend of diminishing
downscale energy flux with increasing numerical resolution,
and thus with increasing separation of scales, has already been
seen in the simulations of Tung and Orlando (2003a).

It should be noted, of course, that the quasi-geostrophic
model is not valid at length scales much smaller than 100km in
wavelength. When three-dimensional effects become relevant
the conservation of enstrophy is violated by the nonlinearity
itself which reflects itself in additional nonlinear dissipative
contributions toDG(k). These terms make it all the more eas-
ier to violate the Danilov inequality for wavenumbersk that
correspond to scales less than 100km in wavelength, thereby
preserving the very extensive downscale energy cascade ob-
served in the Nastrom-Gage spectrum.

6. CONCLUSIONS AND DISCUSSION

The classical KLB theory of 2D turbulence relies for its
mathematical simplicity and elegance on two unrealistic as-
sumptions: that the domain is infinite, and that the Reynolds
number approaches infinity. When these two assumptions are
relaxed, the situation becomes more complicated. The down-
scale enstrophy cascade is accompanied with a hidden down-
scale energy cascade, and similarly the inverse energy cas-
cade is accompanied with a hidden inverse enstrophy cascade.
This is true as long as the leading cascades themselves exist,
which requires the presence of a sufficiently strong dissipa-
tion sink at small wavenumbers. The fluxes associated with
the subleading cascades are constrained by the Danilov in-
equality, and as a result the subleading cascades cannot con-
tribute large enough terms to the energy spectrum to create
an observable effect. This picture represents a generalization

of the KLB theory to finite inertial ranges and finite dissipa-
tions. This situation changes, however, in baroclinic models
of quasi-geostrophic turbulence.

The surface quasi-geostrophic model represents an ex-
treme baroclinic case where the entire behavior in the three-
dimensional domain is constrained by the behavior of the sys-
tem at thez = 0 layer. In this model there is no enstrophy,
and the dominant feature is the downscale energy cascade.

We have shown that in the two-layer quasi-geostrophic
model, the violation of the Danilov inequality is possible
only as a result of asymmetric Ekman damping operating on
only one of the two-layers. This creates an imbalance be-
tween the amount of enstrophy accumulated in one layer ver-
sus the amount accumulated in the other layer, and the down-
scale energy cascade will become observable on the condition
that this imbalance is sufficiently large. We have derived in
the present paper a sufficient condition fornot violating the
Danilov inequality which explains why thek−5/3 spectrum
has not been observed in some of the previous simulations of
the two-layer model. We have also derived a necessary and
sufficient condition for violating the Danilov inequality,but
it is an uncontrolled condition. The numerical simulation by
Tung and Orlando (2003a) has confirmed that a double cas-
cade with the transition wavenumber located in the inertial
range can be realized. This can only occur when the Danilov
inequality is violated for some wavenumbersk in the inertial
range. The parameterization of the Ekman damping in that
simulation does in fact satisfy the necessary condition derived
in this paper.

As long as we operate within the framework of multiple-
layer models with a finite number of layers, one cannot
rule out the alternative theory that the atmospheric energy
spectrum might reflect a double downscale cascade of helic-
ity and energy instead of enstrophy and energy (see discus-
sion in section 6.5 of Branover et al. (1999), and figure 3 of
Bershadskii et al. (1993)). However, most of the current de-
bate has been focused on the somewhat mysterious nature of
the very extensive and robustk−5/3 spectrum.

Our work in the present paper explains why it can be re-
produced in numerical simulations that use baroclinic mod-
els, while the same effect cannot be realized in simulations
of two-dimensional turbulence. On the other hand our work
here does not rule out the possibility that the shallower part of
the spectrum observed by Nastrom and Gage (1984) over the
mesoscales can be due to dynamics other than QG, whether
it is barotropic or baroclinic, especially for scales of100 km
or less (see e.g. Lindborg (2005) with Bousinesq dynamics).
Our present work serves to point out that over the larger scales
(' 600km), where the transition to a shallower spectrum oc-
curs, baroclinic QG theory by itself is a viable mechanism for
explaining the transition from−3 to −5/3 slopes.

Furthermore, as proposed first by Tung and Orlando
(2003a), the downscale energy flux, which is important in ex-
plaining thek−5/3 energy spectrum over the mesoscales in
most theories, originates at larger scales (the synoptic scales).
Its contribution to the energy spectrum is hidden for smaller
wavenumbers under thek−3 part of the spectrum, and then
emerges for largerk past the transition scale. It remains an
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open question, one that is beyond the scope of this paper, to
explain how this downscale energy flux can be continued into
length scales too small for QG theory to describe, and how it
is eventually dissipated.
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