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Is the subdominant part of the energy spectrum due to downsca le energy
cascade hidden in quasi-geostrophic turbulence?

Eleftherios Gkioulekasd and Ka Kit Tundf
Department of Applied Mathematics, University of Washington, Seattle, WA, United States

In systems governing two-dimensional turbulence, surfaeasi-geostrophic turbulence, (more generally
turbulence), two-layer quasi-geostrophic turbulence,, étere often exist two conservative quadratic quastitie
one “energy”-like and one “enstrophy”-like. In a finite itiaf range there are in general two spectral fluxes, one
associated with each conserved quantity. We derive hemeegpuality comparing the relative magnitudes of the
“energy” and “enstrophy” fluxes for finite or infinitesimalsdipations, and for hyper or hypo viscosities. When
this inequality is satisfied, as is the case of 2D turbulemicere the energy flux contribution to the energy spec-
trum is small, the subdominant part will be effectively head In sQG turbulence, it is shown that the opposite
is true: the downscale energy flux becomes the dominantibation to the energy spectrum. A combination
of these two behaviors appears to be the case in 2-layer Q8lénce, depending on the baroclinicity of the
system.

1. INTRODUCTION Tabeling (2002) and Gkioulekas and Tuhg (2005c).

Further confusion has resulted from efforts to explain the

The characteristic feature of two-dimensional turbulesce observed energy Spectrum of the atmosphere with the KLB
that there are two conserved quantities, kinetic energy angheory. Observations show that there is a robust energy spec
enstrophy. This led_Kraichnam (1967). Leith (1968), andirym with slope —3 which transitions at large wavenum-
Batchelari(1969) to conjecture that there will exist twortied ~ pers into slope-5/3 (Gage| 1979; Gage and Nastiam, 1986;
ranges, one located upscale of the spectral region of ioject [Nastrom and Galé, 1984; Nastrom ét/al., 1984). In the KLB
and another on the downscale side of injection. In the uptheory, on the other hand, one expects that at small wavenum-
scale side, it is assumed that there is only an upscale flux ®fers the energy spectrum will have slop&/3 from the in-
energy, and no flux of enstrophy. On the downscale side, likeyerse energy cascade, which will then transition at the-forc
wise, there is only a downscale flux of enstrophy, and no fluxng wavenumber, into a3 slope from the direct enstrophy
of energy. One then uses a dimensional analysis argument {ascade. The apparent contradiction between these two pre-
calculate the energy spectruli{k) where it is assumed that dictions has led to various explanations and deliate (Dewan,
in each inertial range it depends only on the correspondingg79: Lilly, 11989 Lindborg, 1999; VanZadt, 1982).
single flux and the wavenumbér The same type of argu-
ment was used in the energy cascade of three-dimensional tu(;
bulencel(Batchelbl, 1947; Kolmogorav, 1941a,b). Although
three-dimensional turbulence also has two conserved guan
ties, energy and helicity, one has the option to inject energ,
without injecting helicity. In two-dimensional turbulead is
not possible to inject energy without injecting enstrophy a
vice versa, because the two quantities are related a

Initial efforts to simulate the enstrophy cascade yieldecLl
confusing reports of various numerical slopes. Consedyent
alternatiye theories have been proposed over the past 3§ Ye&ansition from—3 slope to—5/3 slope occurs at the tran-
to_explain them (Moffattl 1986;_Polyakoy, 1993 Saffinan, giion wavenumbet, with order of magnitude estimated by
1971). Recently, in carefully set up experiments, it was, __ \/T
shown that it is possible to obtain the enstrophy cascade’ Muv/Euo-
in agreement with the KLB theoryl (Ishihira and Kadeda, ©eneral Circulation models have been shown to be
2001;[Lindborg and Alvelihd, 2000; Pasquero and Falkdvichc@pable of reproducing the Nastrom-Gage spectrum in
2002). A numerical simulation with very good diagnos- 2dreement with observations_(Koshyk and Hamilton, 2001;
tics has shown that the inverse energy cascade can be dikoshyk et a_\“ 199_‘9; Skamaroc:k. _2()04_). AI'_[hough the nature
tained accordingly[(Boffetta etlall,_2000). There are als®f the nonlinear interactions which give rise to the down-
however many papers that question the universality ofcale energy flux changes from quasi-geostrophic to sertifi
these results_(DanilbV, 2005; Danilov and Guiarie, 2001a,bthree-dimensionalin the mesoscales, as far as the enexgy sp

Tran and Bowmarl, 2008, 2004). A review can be found inffum E(k) is concerned it is the existence of a downscale en-
' ' ergy flux which gives rise to thé =5/ slope, regardless of

the character of the motion. The recent interest, typified by

Lindborg [2005), in understanding the 5/ slope in terms
*Electronic addres$: f@amath.washingtonledu of three-dimensional stratified turbulence is justifiedgcsi it
TElectronic addres$: tung@amath.washingtor].edu is necessary to account for length scales less than 100km in

It was conjectured by Tung and Orlando (2003a) that the
bserved atmospheric energy spectrum results from the-down
cale cascade of enstrophy and energy injected at the large
cales by baroclinic instability and dissipated at the tesal
ength scales. If,, is the downscale enstrophy flux asg,
is the downscale energy flux, it was suggested that they would
coexist on the downscale side of injection and that theiasep
te contributions to the energy spectrum would give thendat
compound spectral shape, with-8 slope transitioning to
a shallower—5/3 slope as the wavenumber increases. The
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wavelength where the quasi-geostrophic assumption fhils. pendent of the downscale energy fluy,. As a result, in the
is the view of the authors that it is equally important to unde downscale inertial range, the total energy spectfufh) has
stand why the quasi-geostrophic model is capable of supporthe following three contributions:

ing a downscale energy cascade with?/3 scaling, because

one also has to account for the existencé&of/? scaling at E(k) = EC) (k) + EWD (k) + E®)(k), Vkto > 1, (1)
length scales ranging from 700km to 100km where the quasi-
geostrophic assumption is presumably valid. whereE() (k), B (k) are the contributions of the downscale

Tung and Orlandd (2003a) have demonstrated numericall§nergy and enstrophy cascade, given by
that a two-layer quasi-geostrophic channel model with-ther
mal forcing, Ekman damping, and hyperdiffusion can also Efﬁ) (k) = auvgiégk%/ng?(Mg?) @)
reproduce this compound spectrum. The resolution of these E (k) = buyn?!2k3[x + In(klo)]~/>D) (ke(M),
simulations goes down to 100km in wavelength. The diag-
nostic shown in figure 7 of (Tung and Orlando. 2003a), showsiih 19553 and DSJL) describing the dissipative corrections.
both the constant downscale energy and enstrophy fluxes cgygre we use the logarithmic correctionof Kraichnan (1971),
existing in the same inertial range. Recent measuremedts aRdjusted by the constant of Bowmah [1996) for the con-
data analysis by Cho and Lindbbrg (2001) have confirmed thgihtion of the enstrophy cascade. We have also assumed
eX|stencleS of3a downscale energyJquQanS estimale ~  without explicit justification that we may ignore the poskib
2 x 10~*°s™ f_;lnd Euv ~ 6 x 107 'km*s— . I_:_rom these ity of intermittency corrections to the subleading downaca
estimates we find the ryeaglvalue of the transition slcgal:e energy cascade. For the downscale enstrophy cascade inter-
VT /€uw = 0.57x107°km™" and\; = 27 /k; ~ 1x10°km  mitency corrections have been ruled outlby Eyihk (2001).
which has the correct order of magnitude. For the downscale energy cascade we conjecture that inter-
This theory of a combined downscale enstrophy cascadgittency corrections are small for the same reasons asée thr
and downscale energy cascade is contrary to the widely a¢ymensional turbulence. The scalé§), ¢ are the dissi-
cepted misconception that the argument.by Flariaft (1953) 4 jength scales for the downscale energy and enstrophy

forbids a downscale energy flux in two-dimensional tur- , ®) /1y : _—
bulence altogether, and through the isomorphism theore asgade. Finally, (k? IS t_he cont_r|but|on from the effect of
orcing and the sweeping interactions. The latter can becom

of ICharney 1(1971) also in quasi-geostrophic turbulence.. .. . S e :
y [(1971) d g P ignificant via the violation of statistical homogeneitysad

Various aspects of this misconception have been clarifie " - — :
by IMerilees and Walnl_(19/75), Tung and Welch_(2001) angy the boundary C(_)ndlt!ons (see Gkioulekas (2005) for _de-
Y \ = ) ails). Thus, in the inertial range where the effect of fogri

Gkioulekas and Tung (2005a). LT ) ;

L . nd dissipation can be ignored, the energy spectrum will tak
As has been pointed out by previous authprs (Edrue,i199 he simple form in the downscale range:

Eyink, [1996), as long as the dissipation terms at largeescal '

anq small scale_s have finite viscosity coefficients ar_ld the in B(k) ~ auvaié3k_5/3 +buvn5é3/€_3[x+ln(kﬁo)]_w. 3)

ertial ranges exist, the downscale enstrophy flux will be ac-

companied by a small downscale energy flux, and the upscalgie see that the energy spectrum will take the slope dfor

energy flux will be accompanied by a small upscale enstrophgmall% , and—5/3 for largek . The transition from one slope

flux. Dimensional analysis arguments are premised on the ago the other occurs &t , given byeuwuk? ~ Nuo.

sumption that these additional fluxes can be ignored, conse- |t should be emphasized that the formation of cascades ob-

quently the energy spectrum predictions obtained by such agervable in the energy spectrum is by no means guaranteed.

guments are valid only to leading order. While ignoring sub-There are two prerequisites that need to be satisfied: fiest, t

leading effects can be justified for strictly two-dimensibn ., ntribution of the particular solution® (k) has to be neg-

turbulence, we will argue in this paper that for models Ofjiginje hoth downscale and upscale of the injection scate, i
guasi-geostrophic turbulence, such as the two-layer model

the subleading contributions can be important in the iakrti

range and cannot be safely ignored. Predicting the form of EWP (k) < ES) (k) + EW (k), Vkég > 1

these subleading corrections requires a subtle mathehatic ) () )

argument, given bl Gkioulekas and Thihg (2005b), that goes B (k) < B, (k) + By (), Vo < 1.

beyond dimensional analysis. L _ ) 1)
In particular,| Gkioulekas and Tun@ (2005b) have arguedsecond’ the dissipative adjustmeriD.y (kf.v) and

that the subleading fluxes are associated with a subleadi () (k€i)) of the homogeneous solution has to be such

downscale energy cascade and a subleading inverse enstroghat it does not destroy the power law scaling in the inertial

cascade that contributimearly to the total energy spectrum range. Furthermore, the dissipation scalgs and () have

in addition to the dominant contributions. The two contribu to be positioned so that the incoming energy and enstrophy

tions are homogeneous solutions of the underlying stedisti can be dissipated.

theory, which is in factinear. Furthermore, the two homoge-  The idea of two cascades in the same wavenumber region

neous solutions are independent of each other, so the dowhas an interesting precedent in the case of three-dimeaision

scale energy cascade is independent of the downscale ensttarbulence, where there is interest in understanding thbléo

phy flux n,, and the downscale enstrophy cascade is indeeascade of helicity and energy (Arad etial., 1999; Chenlet al.

(4)
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2003;IMoiseev and Chkhetiani, 1996). There, the situaton i Ekman dissipation coefficient. In this case, the top layer ha
more straightforward because the helicity cascade andthe emore enstrophy than the bottom layer, as is realistic in the
ergy cascade reside in separate isotropic sectors ¢f@H8) atmosphere, and provided that the difference in enstrophy b
group [Arad et all, 1999; Biferale and Procactia, 2005)sThi tween the two layers is large enough, the downscale energy
makes it easier to argue in support of a superposition princicascade will be made observable in the energy spectrum. We
ple. derive specific conditions on how large this difference s¢ed

In two-dimensional turbulence the situation is more inter-be in order for the Danilov inequality to be violated for some
esting because both cascades reside in the same isotropic savenumbers. The simulation of Tung and Orlarido (2003a)
tors. The main argument in support of our conjecture wadas shown that it is possible to have an observable downscale
given in section 2 of Gkioulekas and Tiing (2005b). Addi-energy cascade, which implies a violation of the Danilov in-
tional evidence is given in section 3 of the same paper. lequality. The role of the argument in this paper is to explain
should be noted that our main argument exploits the lingarit how and why this can happen, given that it is a surprising and
of the exact statistical theory of two-dimensional turlmgle  very unexpected result. We also hope that our paper wikrais
(i.e. the complete infinite system of equations governiry th renewed interest in understanding the phenomenology of the
relevant fully-unfused structure functions). Nonlineasults, two-layer quasi-geostrophic model.
such as the one that was proposed by Lilly (1989), follow from We will also show that in the surface quasi-geostrophic
closure models instead of the exact theory. Likewise, phemodel, which represents the most extreme case of baroclinic
nomenological arguments with the eddy-turnover rate, suchy, the downscale energy cascade becomes completely dom-
as the one in_Kraichnan (1971), are essentially coming ounant. An immediate implication of our argument is that the
of a 1-loop nonlinear closure theory, and would also lead teexistence of an extensive observabté/ in the energy spec-
nonlinear expressions for the energy spectrum. Most adosurtrum of the atmosphere has the physical interpretatiortiieat
arguments miss the point that teeactstatistical theory is in  atmosphere is very baroclinic.
factlinear. The paper is organized as follows. The Danilov inequality

It should be noted that the main results of the presenis reviewed in section 2 where we make some simple general-
paper rely on the statement that the transition wavenumizations. Its implications for two-dimensional turbulenare
ber k; from —3 scaling to—5/3 scaling is given byk; ~ discussed in section 3.The surface quasi-geostrophiclisde

/rv/am_ This statement follows from the superposi- discussed in section 4 and that the two-layer model in sectio
tion principle, but it doesn’t require it and can proba- 5. Conclusions and some further remarks are given in section
bly also be established with different arguments. For theb-
case of the double cascade of helicity and energy in three-
dimensional turbulence, such a different argument wasngive
byIMoiseev and Chkhetiani (1996). Furthermore, the dimen
sional estimaté; &~ /"y, /ey for the transition wavenum- . . . ) :
berk; has been confirmed by Tung and Orlando (2003a). Fiar;)r(;]eng?r\]/i?:rrwgge?g?;I:g)snt;%rfirvr\rl:qe range of one-layer hy
nally, extending the superposition principle to the twgela y '

2. THE DANILOV INEQUALITY IN ONE-LAYER MODELS

QG model (the main focus of this paper), which has three con- a¢
servation laws instead of just two, remains an open theateti o T/, Q) =D+7, (5)
guestion.

In two-dimensional turbulence, the fluxes, andz,, are ~ WhereJ is the forcing andD is the dissipation and = —Lv.
constrained by an inequality that was communicated to us byiere,£ is a linear isotropic operator involving the derivatives
Sergey Danilov[(Gkioulekas and Tiirlg, 2005¢c) . This con-With respect to the horizontal coordinates. For a generratco
straint implies that the contribution of the downscale gger bination of hyper- and hypo-diffusion:
cascade to the energy spectrum is overwhelmed by the con- _
tribution of the downscale enstrophy cascade and cannot be D = —vp(=A)¢C = m(=8)7"¢, 6)
seen visually on a plot. This result was conjectured eaoljer
Smith {2004) who claimed that the downscale energy casca
can never have enough flux to move the transition wavenum
ber k, into the inertial range. The two-layer model is a dif-
ferent dynamical system than the two-dimensional Navier
Stokes equations, and the validity of the Danilov inequalit
in the two-layer model is not obvious (Gkioulekas and Tung, ( o a¢>

ith p, h, positive integersp = 1, h = 0 yields the combina-
fon of molecular viscosity and Ekman damping.
" For 2D turbulencef is given byl = —A, whereA is the
Laplacian operator and the streamfunctiois related to the
2D nondivergent velocity as

2005E{ Tuny. 2004). (u,v) =
In the present paper we will show that in the two-layer

model when the Ekman dissipation coefficient is below  For barotropic QG turbulence, also known as Charney-

a critical value, then the Danilov inequality will be satsfi Hasegawa-Nima (CHM) turbulencel| (Charney, 1948;

We will also argue that the asymmetric presence of Ekmaitdasegawa et al., 1979; Hasegawa and Mima, 11978)js

damping on the bottom layer but not the top layer may causgiven instead by, = —A + A2, where\? is a given positive

the violation of the Danilov inequality for larger valuestbé  constant. Another interesting family of one-layer modets a
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Furthermore A(k) and B(k) satisfy the following spectral

The case = 1 corresponds to surface quasi-geostrophicequations:

turbulence (SQG) which is an extreme baroclinic model,
and not a barotropic model like 2D turbulence or CHM

turbulence.

2.1. Conservation laws

Let {(f) be the spatial and ensemble averagé(of, ) de-
fined as

= [[ 1) dsdy ®)

There are two inviscid quadratic invariants fo (5), which:a

A= (1/2)((=¢0)) (9)
B = (1/2)(¢*)- (10)

Note thatB is conserved for all linear operatofs whereas
the conservation law ofl requires that. be self-adjoint, i.e.

(f(Lg)) = ((LS)g)- (11)
For example in 2D turbulence it is well-known that,
E=(1/2)((*+v*) = (1/2)(|VelP?) (12
= (1/2)((=vQ)) = 4, (13)
is the kinetic energy of the 2D fluid, and
G =(1/2)(¢*) = B, (14)

is the enstrophy. In section 4 we see thland B have a
different physical interpretation in SQG turbulence.

The spectrad(k) and B(k) of the conserved quadratics
andB are defined as

A(k) = 5 —-(—=r¢<h),

((E

(15)

N~ N~
S g|a

B(k) = (16)
with ¢ <*¥ and¢<* the streamfunction and vorticity fields with
all the Fourier wavenumbers greater tHam magnitude fil-
tered out. The relationshig, = —£L, translates into the
spectral relationships in the Fourier space

C(k) = LK)y (k), B(k)=

9) = [ [ wie*xax.

We will assume thal (k) > 0, so that bothA(k) and B(k)

are positive. Furthermore, we will assume that) is a
monotonically increasing function df. In 2D turbulence,
L(k) = k2, in CHM turbulence,L(k) = k> + A2, in a-

turbulenceL (k) = £, and in SQGL(k) = k.

L(k)A(k), — (17)

where

(18)

wgtk) 3“;}5@ = —Da(k)+ Fa(k)  (19)
5@&“ aﬂ;k(k) = —Dp(k)+ Fp(k).  (20)

Here,D 4 (k) and Dg(k) are the spectral dissipations rate of
A(k) andB(k), respectively, with

Dp(k) = L(k)Da(k),
Da(k) = [ok® + 1k 2MA(k) > 0,

(21)
(22)

for a combination of hyper- and hypo-viscosities. Further-
more, F4(k) and F(k) are the spectra of forcing also re-
lated by Fs(k) = L(k)Fa(k), and,I14(k) andIlz(k) are
the spectral fluxes ofl andB. ThelLeith (1968) constraint on
the fluxes generalizes to

ollp (k)

Oll4 (k)
ok '

ok

The conservation laws fod and B arise from the following
boundary conditions of 4 (k) andIl 5 (k):

= L(k)

(23)

Jim (k) = lim T0a(k) =0 (24)
Jim TIp(k) = lim Tip(k) =0. (25)

2.2. The Danilov inequality

Assuming that the injection (forcing) of and B occurs in
[k1, k2], then at steady state, we have, frdml (19) (20):

+oo
(k) = Da(q) dq, for k > ky (26)
k
+oo
HB(k) = DB(q) dq, fork > ko (27)
k
k
HA(k):—/ Da(q) dg, for0 <k < ky (28)
0
k
(k) = —/ Dg(q) dgq, for0 <k <ki, (29)
0

sinceF4 (k) = 0andFp(k) = 0for0 < k < ky andk > ko.
For wavenumberg > ks, we have therefore

+o0
LRMAR) = Tp(k) = [ (L) = L@ Dala) dg < 0.
(30)
Similarly, for wavenumber8 < k£ < k;, we have:

k
L(W)TLa(k) — Tp(k) = — / (L(K) — L(@))Da(g) dq < 0.
(31)
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Consequently, for all wavenumbeltse (0, k1) U (k2, +00) It follows that on the downscale side of injection the domi-
not in the forcing range, we have: nant cascade is the enstrophy cascade With) ~ k3, and
on the upscale side of injection the dominant cascade is the
L(k)4(k) —g(k) < 0. (32)  inverse energy cascade wili(k) ~ k~°/3, By “dominant”

we mean that even for finite Reynolds numbers the contri-
This inequality was broughtto our attention by Danilov (200 butions of the subleading downscale energy cascade and the
personal communication) for the case of 2D turbulence. Weubleading inverse enstrophy cascade are hiddealfdhe
shall see later in this paper that although this inequality h wavenumber# in the inertial range. A violation of the con-
a trivial mathematical derivation in one-layer models,ét b dition C; < C, can allow, in principle, a transition tb—5/3
comes nontrivial for the two-layer QG model. In all cases,scaling very near the neighborhood of the dissipation range
what is interesting is the physical understanding that fol-The Danilov inequality by itself cannot completely rule out
lows from studying this inequality, and not the mathematica such an effect, but so far as we know, it has never been clearly
derivations per se. observed in numerical simulations of the enstrophy cascade

Previously, Fiartaft (1953) and Eyink (1996) derived a sim-  This argument supports the conjecturé by Smith (2004) that
ilar, but looser, bound, for the downscale energy fliix in  in 2D turbulence, on the downscale side of injection, we have
two-dimensional turbulencdl (k) < no/k?, involving the  no transition to shallower scaling(k) ~ k=5/3. His other
total rate of enstrophy injection,. This looser inequality is  conjecture, that the same result also holds for the tworlaye
often used to show (Salmon, 1998) that in two-dimensionaQG model, is not true in general and will be discussed later in
turbulence with an infinite downscale range, the energy fluxhis paper.
I g(k), vanishes. For the case of small but finite viscosity |t should be noted that in the foregoing arguments #ss
where the downscale spectral range is finite, the energy fluumedhat an inertial range exists either upscale or downscale
does not vanish. of injection. Unlike the case of 3D turbulence, where the
The significance of the inequality{32) is that it decidesdownscale energy cascade is very robust, it is well known tha

whether the transition wavenumbkgy is within the inertial  in 2D turbulence there are circumstances where the leading
range, thus making a transition from the leading cascade tpverse energy cascade (Danilbv, 2005; Danilov and Gijrarie
the subleading cascade observable in the energy spectripn01H b| Gkioulekas and Turg, 2005c) or the leading down-
E(k). Whether this happens depends on the baroclinicity okcale enstrophy cascade_(Tran and Bownlan, 12003.] 2004;
the system, as we will show below by considering three dif{Tran and Shephdrd,_2002) may fail to appear as expected.
ferent cases: two-dimensional turbulence which is comeptet Some of these issues are also relevant to the case- of
barotropic, SQG turbulence which is completely baroclinic turbulencel(Tran, 2004). In general, the failure of cassade
and the two-layer QG model which lies in between with re-js to be attributed to the absense of a sufficiently strorgglar
spect to baroclinicity. scale dissipation sink. Since the observational evidenge s

gests that cascades exist in atmospheric turbulence, Wwe wil

simply assume that without further discussion.
3. THE CASE OF 2D TURBULENCE

We begin with the case of 2D turbulence in finite domaing THE CASE OF SQG TURBULENCE
with finite viscosity for the infrared and ultraviolet dipsi-

tions. This is a generalization of the theory by Kraichnan = There has been considerable confusion over the physical in-
(1967) of infinite domain with infinitesimal dissipation.tine  terpretation of the surface quasi-geostrophic model.Aigh
inertial range on the downscale side of injectiéh (k) ~  its mathematical formulation is in the form of a one-layer
€uv, aNdllp(k) ~ 7., provided that we ignore a small dissi- mqogel, it represents a three-dimensional system that -corre
pative contribution. The inequalitf{B2) implies that.k” < gponds to the baroclinic limit of the three-dimensionalsjua
"y forall k in this inertial range. The energy spectrurih (1), geostrophic model. Once that is taken into account, the-phys
valid in the inertial range, can be rewritten to leading orde -5 interpretation of the spectr&(k) andB(k) and the phys-

omitting the logarithmic correction: ical implications of the Danilov inequality have to be reds
The viewpoint that we would like to put forth in this sectian i
E(k) ~ Che2l’ k™3 + Conl?k™® (33)  that whereas two-dimensional turbulence is an extreme case
Cy [ cunk? 2/3 where the enstrophy cascade is completely dominant, SQG
~ 02775{;3/4*3 (1 + roN ( w ) ) (34)  turbulence is the other extreme case where it is the dowascal
2\ v energy cascade that is completely dominant.
~ Conl k2, (35)

where we use,,k?> < 1., and the assumptio6; < C.. 4.1. 3D interpretation of SQG turbulence

This sequence of steps is vabidymptoticallyin the limit of

large separation between the forcing scale and the digsipat ~ As derived by Charney (1971), 3D QG flow conserves the
scale, for wavenumbetsin the inertial range. A similar argu- 3D potential vorticity¢, which is advected horizontally by the
ment can be made for the inertial range upscale of injection. streamfunction). Here, both) and¢ are 3D fields. For con-
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stant Coriolis parametgt, the governing conservation law for which reduces t@(k, t) = —|k|¢(k, t) atz = 0. Thus SQG
¢ takes the form: corresponds td.(k) = k.
It has been shown by Charhey (1971), and more generally
% + I, &) =0, (36) by|Tung and Orlanda (2003b), that the 3D QG energy density
with £ given by 1 . f2 [0y 2
) (p_oa_w) e - €=5p0 (VU + 1 <3z) ] (46)
po 0z \ N2 0z ’

is an invariant (i.e. independent of timeWwhen integrated
wherepy(z) is the ambient air density, amd?(z) the Brunt-  over the 3D domaing is the sum of the kinetic energy density
Vaisala frequency. Here we have omitted the forcing aisd d €x and the potential energy density which are given by
sipation terms.The streamfunctignis also linked with the

_ 2 2\ 2
potential temperatur® via the hydrostatic relation €k = (1/2)po(u” +v7) = (1/2)po| V)| (47)
1 rov\? 1
o=21_L% (39) egn(y) (5) =300 @
N Ty N 0z

6{:or SQG, using Parseval's identity, the energies intedrate

The potential temperature is also governed by a 2D-like equ ) .
P P 9 y d over the horizontal surface are given by

tion
1
%_? + (0, 0) + TO;VQM —0, (39) Ep = (&p)) = 5Po<<®2>>7 (49)
1
whereuw is the vertical velocity field. B = (&) = §p0<<|v¢|2>> (50)

In SQG the potential vorticity is assumed, a priori, to be 1 o2 Tk
identically zero forz > 0. The streamfunctior) is solved o §p0/<(lk¢(k’t)) (—iky (k’t))> dk (51)
from & = Py = 0. With py andN? taken to be constants, the 1 . ) 1 )
horizontal Fourier transform af(z, y, z, t) is obtained as = §po/<| — kip(k,t)] > dk = 5po{(©7) = Ep.
Bk, 21) = ok, e M, (40) 2

It is thus seen that the kinetic energy density and the avail-
able potential energy density, when integrated horizonptal
are equipartioned, and that

using the boundedness boundary condition as co.

Most of the dynamics in this model are occurring at the
surfacez = 0, where the boundary condition of vanishing
vertical velocityw applied to the potential temperatur®)( 2B = ((©2) = (Ep + Ex)/po = E/po, (53)
equation leads to:

96 is the total energy at the lower surface. The 3D energy is,

- TJ(1,0)=D+7, (41) instead
where© now plays the role of the conserved quantiiy @&). Esp = / (ENdz = / podz(©%)
Here we have also introduced thermal forcing and dissipatio OOO 0 )
D = vAO is the thermal diffusion, and :/ podz // dlydk, <‘é|z_0‘ >€2|k|(N/j')z

0
F=Q=ag(® —0), (42) 1 foan
N //dkzdky— (66"

is the thermal heating in the commonly used form of New- 2 Nk #=0
tonian cooling (seé¢_Tung and Orlahdo (2003b)) which in- _ 1 //i ey diedle
cludes a “forcing” termyz 0 and the “Ekman damping” term 20 N< ¥ |Z:O> Y
—ag0O. This equation is to be solved on a 2D surface 0. f

1
It has the same form as the vorticity equation for 2D turbu- T 9Py ((=98[.—0)) = po(f/N)A,
lence (e.g.[B)), except that the spectral relationshipéen

the advected quantitp and the advecting fielg is givenin- ~ With A defined earlier asA = (1/2)((-v©))). Previ-
stead by ous authors have made use of the similarity between the

form of vorticity equation [[b) in 2D turbulence and the
A 9 (- - temperature equatiori{41) in SQG turbulence to identif
-9 k|(N/f)z P q Y,
Ok, 2,%) 0z (wo(k’ te ) (43) by analogy,A as the “energy” andB as the “enstrophy”
= —[K|[Yo(k, t)e KIV/1)z] (44) (Heldetal.| 1995 Pierrehumbert el al.. 1994). As pointed o
N in Tung and Orlandol (2008b) and also he2& is the total
= —kl¢po(k, 2, 1), (45) energy integrated over the lower surface, and includegikine

2|~



plus available potential energy. The physical interpretefior 2D energy2B = E at thez = 0 layer. Numerical simulations

A was not given, but can now be seen to be the total energy irave reproduced this energy cascade and appear to indicate a
tegrated over the 3D domain. There is no potential enstrophgmall deviation from thé —>/3 slope due to conjectured inter-
(€2/2) per se in SQG turbulence, because potential vorticitymittency corrections (Celani etlel., 2004).

¢ has been taken to be zero identically. Consequently the flux

of potential enstrophy in SQG is exactly equal to zero, thus
kMg, , (k) — Tg(k) > 0 andk?Ilg, , (k) — g (k) > 0. 5. THE CASE OF TWO-LAYER QG TURBULENCE

The results in the previous sections demonstrate that QG

4.2. The energy spectrum in SQG turbulence turbulence can exhibit a variety of behaviors. Barotropazim

els usually possess an energy spectrum wittspectral slope,

The argument of the previous section can be extended tas in 2D turbulence, while SQG turbulence, which is baro-

the case of SQG turbulence and to the even wider case of clinic (with its exponential decay with height), is expette
turbulence, which includes both the case of SQGdox 1, have a spectrum with a5/3 slope, in the downscale iner-
and the case of 2D fer = 2. HereL(k) = k~ and we assume tial range. Two-layer QG models have both a barotropic and
a > 0. Using the linear superposition principle discussed ina baroclinic component (see Salmon (1978, 1980,/1998)), and
Gkioulekas and Tumng (2005b) and assuming the existence ofe therefore expect a mixture ef3 and—5/3 slopes depend-
inertial ranges, the spectrum df(k) and B(k) are, in the ing on the degree of baroclinicity. In terms of the Danilov in

downscale inertial range: equality, we expect that it will hold for small wavenumbers
and fail for large wavenumbers.
A(k) = C(T14)*3k 515 4 Cy(Ilg)*Pk~575%  (54) A relatively realistic two-layer model applicable to study
B(k) = |k|*A(k). (55) ing atmospheric turbulence in the troposphere was adopted i

Tung and Orlandol (2003a). In this model forcing is due to
Here, II4 and IIz are the constant fluxes on the down- thermal heating, which injects energy directly into thedsar
scale side of the forcing range. The inequalify (32) becomeslinic part of the total energy. The two-layer fluid sits atop
k°Il, < IIp for all k in the inertial ranges. Consequently, of an Ekman boundary layer near the ground, which intro-
for wavenumbers in the inertial range, the spectrua{k) is ~ duces Ekman pumping in the lower layer (Holtbn, 1979) but

given by notin the upper layer. If one artificially adds an identical Ek-
man damping in the upper layer it can be easily shown that
v, Oy (TIake\ 23 Danilov’s inequality applies, and we leave the proof to the i
A(k) ~ Co(Tp)*Pk 575 (1 te ( i, ) terested reader. Here we will discuss the case of asymmetric

Ekman damping.

(56) For the multiple-layer QG model, the governing equations

~ Cy(Mp)2/ 3k~ 57 5, (57)  can be rewritten in the form of the conservation law wjtk-
— L), if we makel into a matrix and) into a column vector.

again in the limit of large separation between the forcirmdesc  We will discuss the more general theory of multi-layers in a
and the dissipation scale and provided that< C>. Thus, future paper. Here we only wish to explain why and how the
in the downscale range, there is no observable transitidn arDanilov inequality can fail in the two-layer QG model.
therefore:

A(k) ~ Co(Ilp)?3k—5 52, (58)  5.1. The formal setup
B(k) ~ Cy(IIp)2/3k 3 tie, 59 ) o
(k) 2(Ils) 2 (59) Two-layer QG models conserve potential vorticity in each

For the SQG model, in the downscale inertial range, thdayer in the absence of forcing and damping. In the forced-
energy spectrum is the same as tha2fBrk) in a-turbulence ~ dissipative case, the governing equations read:

with « = 1: a0,
Top layer:  —— +J(¥1,()=D1+F1  (62)
E(k) = 2B(k) ~ Cye2Pk™ + CoellPk~5/3. (60) gct
: 2 _
Hereesp is the downscale energy flux of 3D energyand Bottom layer: o J(2,G) =D2+F2, (69)
eap IS the downscale energy flux of 2D ener@ From here
the Danilov inequality we learn that the visible energy specW
trum in the inertial range downscale from the injection scal k2 k2%
is given by G =AYy — 7(7/)1 —h2), (2 = Aty + 7(7/)1 — 1),
E(k) ~ Coel2k5/3, (61)  are the potential vorticity in each layérr = (2v/2f)/(hN)

is the Rossby radius of deformation wavenumber and is taken
This k£=5/% energy spectrum is now predicted by our theory.as a given constant:(is the height). The dissipation terms,
The fluxesp is not the “enstrophy” flux but is the 2D flux of D;, include momentum dissipation of relative vorticityy);,
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in each layer, and Ekman damping from the lower boundarand alsd/ (k) = U, (k)+Uz(k). Itis easy to show the triangle
layer: inequality2C'(k) < U(k). The energy and enstrophy spectra
are related with the streamfunction spectra via
'Dl = V(—A)p+1¢1, 'Dg = V(—A)p+1¢2 — VEA’L/JQ. (64)

The forcing terms can be shown to satisfy

B(k) = (k* + kg/2)U (k) — kC(k) (74)
Fi=+ fQ, Fy = ?Q, (65)  G(k) = (K* + K2k + kb /2)U (k) — k3 (2k% — kf%)c(/gs)
where( is the radiative heating term in the temperature equa-
tion.
The two inviscid quadratic invariants are the eneklggnd . o o o
the total layer potential enstrophi€s andG, given by From the standpoint of examining the Danilov inequality, it
is most convenient to work with the streamfunction spectra.
= (V11 + V20 (66)  However, following Salmonl (1978, 1980, 1998), for physi-
_ _ 2 cal understanding it is useful to work with the energy and en-
= (¢E), = (G- (67)

strophy spectra. Furthermore, it is helpful to distinguish
tween barotropic energy and baroclinic energy as follovet: L

The energy and enstrophy spectra are defined as
’l/) = (’l/)l —|—’l/)2)/2 andr = (1ﬁ1 —1ﬁ2)/2 SO,lﬁl = ¢+T and

d 12 = 1 —7. Now we define three spectfax (k), Ep(k), and
k k ~<k
E(k) = dk <<7/)1< C >> dk — 2< > b2 (68) Ec(k) interms ofy andr:
d
Gr(k) = (GG, (69)
— d <k <k
GQ(k) = %« 2 >>7 (70) EK(/{) — 2]{32 <<,[/)<k¢<k>> (76)
and the total enstrophy spectru@(k) is G(k) = G1(k) + 2, o4, b <k
G2 (k). We define the streamfunction spectra Ep(k) = 2(k"+ k )dk (== (77)
d
d Ec(k) = 2k>— (<F7<F)). (78)
Ur(k) = —- (e, (71) _ dk
Here Ek (k) is the barotropic energy spectrum afig (k) the
Uy (k) = i<<¢<k1/) ) (72) baroclinic energy spectrum. It is easy to show that the defini
dk ’ tions are self-consistent, i.& (k) = Ex (k) + Ep(k). The
C(k) = i<<¢<kw<k>> (73) relation between the energy spectra and the enstrophyrapect
de VLRl can be now written in terms of two constraint equations:
Gi(k) = (1/2)[k*Ek (k) + (k* + k%) Ep (k)] + (k* + k%) Ec (k) (79)
Ga(k) = (1/2)[k*Ex (k) + (k* + k&) Ep (k)] — (k* + k) Ec (k). (80)

Thus we see that the physical interpretationf(k) is that it represents the difference in potential enstrogisyribution
between the two layers, and it is given by

G1(k) — Ga(k)

5.2. Controlled necessary condition
The right-hand-side of the Danilov inequality reads
+o0 too
R ~ o) = [ da (2Dpl0) - Data) = [ da Alkua) (52)
k k

so the key question is whethéx(k, q) is positive or negative for wavenumbets< ¢ < k.. Hereknax is either the
truncation wavenumber in the numerical model, or, in thetbgcal case of infinite resolutions, is the hypervisgodissipation
wavenumber, beyond which the spectral enstrophy dissipadite becomes negligible.
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With some straightforward but tedious calculations, it barshown that the dissipation rafes (k) for the total energy, and
the dissipation rat® (k) for the total potential enstrophy are given by

Dg(k) = 2vk*T2U (k) 4 2vpk?Us (k) (83)
Dg (k) = 2vk* T2 E(k) + vpk?[(2k? + k%)Usz (k) — k%C(K)], (84)

thus it follows that
A(k,q) = k*Dg(q) — Da(q) = 2v¢*?[k*U(q) — E(q)] + vekzq*C(q) + ved® (2k* — 2¢° — k%)Us(q) (85)

=g [(k* — ¢*)U(q) + (k%/2)(2C(q) — U(q))] + vekha®(C(q) — Ua(q)) + 2veq” (K* — ¢*)Uz(q).  (86)

The first and third terms in this expression are always nega€onsequently, aecessargondition forviolating the Danilov
inequality is that the second term has to be positiveG'gr) — Uz(¢q) > 0. Otherwise, ifC'(¢) — Uz(¢) < 0, then the Danilov
inequality will be satisfied. A physical interpretation bfg condition will be given in sectidn3.4.

A controlled sufficient condition to satisfy the Danilov oneality can be derived in terms of the physical parameteth@f
problem by noting tha€'(q) — Uz2(q) < (1/2)(U1(q) — U2(q)). It follows that

A(k,q) = 2v¢**P?[(K* — ¢*)U(q) + (k%/2)(2C(q) — U(q))] + vekRa®(C(q) — Uz(q)) + 2veq®(k* — ¢*)Us(q)  (87)
< 20?2 [(k* — @)U (q) + (k%/2)(2C(q) — U(q))] + vekia®(1/2)(Ur(q) — Ua2(q)) + 2veq* (K* — ¢*)Us(q)

(88)
= [2v¢* T2 (K — ¢°) + (1/2)vekid®lUi(q) + 2(vd* T + vpd®) (K — ¢°) — (1/2)vekzd*]Uz(q) (89)
< Rug® (K — ¢) + (1/2)vekzd® U1 (q). (90)

Here, we have used the inequal§/ (k) < U(k) to eliminate  5.3. An uncontrolled necessary and sufficient condition
the (k%/2)(2C(q) — U(q)) term. We have also eliminated
the Usz(gq) term because it is unconditionally negative.This
leads to the following controllesufficientcondition tosatisfy
Danilov’s inequality:

The question now arises: is it possible to derive a suffi-
cient condition to violate the Danilov inequality of the for
vpk% > Avk2Pi? for some universal constant? So far as

we know, this is not possible. However, it is possible toderi

2
vp < 4vk?P (@) , (91) anuncontrollednecessary and sufficient condition for violat-
kr ing the Danilov inequality.
Equivalently, anecessarycondition toviolate Danilov’s in- We begin with defining
equality is
)\ 2C(q) = Mq)U 93
Ve > Ak (km&x) _ (92) (¢) = Ma)U(q) (93)
kR Uz(q) = u(q)U(q) (94)

It is interesting to note that in the numerical simu-
lation of the two-layer model the algorithm adopted byHere0 < u(g) < 1and—1 < A(g) < 1. We may thus rewrite
Tung and Orlando| (2003a) for determining the magnitudesverything in terms of/(q) by employing
of the hyperviscosity coefficient isr > vk2_, for
all but the last twenty wavenumbefs in the dissipation
range. | Tung and Orlandb _(2003a) obtained an energy spec- C(q) — Ua(q) = (Mq)/2 —u(q)U(q) (95)
trum with the compound slope configuration and the transitio 2C(q) — U(q) = (A\(q) — DU (q) (96)
wavenumbeF; occured in the inertial range downscale from
injection in agreement with the condition =~ +/7uv/€uv,
thus implying a violation of Danilov’s inequality. Then we can rewrité\(k, ¢), as follows:

A(k,q) = 2vg”?[(K* — ¢*)U(q) + (k%/2)(2C(q) — U(q))] + vekra*(Clq) — U2(q)) + 2veq®(k* — ¢*)Ua(q)  (97)
= U(Q v (2(¢° — k) + k(1 — X(q)) + vekR(Mq)/2 — u(q) + 2(k/kr)*u(q) — 2(¢/kr)*u(q))].  (98)



It easy to see that a sufficient condition to g€t ¢) > 0 is

10

vekR(Mq)/2 — u(q) + 2(k/kr)*u(q) — 2(g/kr)*u(q)) > vg*(2(¢> — k*) + kR(1 — A(9)))- (99)
|
The necessary condition to violate the Danilov inequalityand
C(q) — Uz(q) > 0, which was derived previously, implies Ex (k) Ep(k) Ec(k)
that\(q)/2 —u(q) > 0. Provided that we assume the stronger Us(k) 272 T
condition u(k) = =22 = R (110)
) ) (k) Ex(k) _ _Ep(k)

Aq)/2—u(q) +2(k/kr) u(q) — 2(¢/kr) u(q) = 0, (100) k2 (k2 ER)
we may rewrite our sufficient condition as: _ 1 (K + kR)Ex(k) + k*Ep(k) — 2(k* + ki) Ec (k)
vk 2(¢° — k%) + k3 (1 — \a)) 2 (k? + k%) Exc (k) + k2 Ep (k) a1
vg* — Mq)/2 —u(q) + 2(k/kr)?u(q) — 2(q/kr)*u(q)

(101)
To violate the Danilov inequality at wavenumberthis suffi-
cient condition must hold for alf such thatt < ¢ < knaz-

Since the numerator is always positive, the conditionl(1€0)
in fact a stronger necessary condition for violating the il@an

inequality.

5.4. Physical interpretation of necessary conditions

We would like now to discuss the plausibility of the nec-
essary conditio\(¢)/2 — u(g) > 0 and the stronger neces-
sary condition[(Z00). To this end, we rewrite these condgio
equivalently in terms of the physical energy and enstroph

spectra.
It is easy to writeU;(k), Uz(k), and C(k) in terms of
EK(]{I), Ep(/{), andEc(k):

d

Ur(k) = - (@ + 1) <F (@ + 7)) (102)
d d d
= o) 2 k) 4 i)
(103)
_ Ex(k) | EBp(k) _ Ecl(k)
2k 2(k2+k3) k2 (104)
and with a similar argument we find
_ Ek(k) Ep(k) Ec(k)
alk) = =55z 2k2 + k%) k2 (105)

2k2 2(K2+ k%)

We may thus write\(k) andu(k) in terms of Ex (k), Ep(k),
andEq (k):

Ex(k)  Ep(k)
— 2C(k) . 2k2 2(k2 +k‘2)
AR = T =2 B Ep(k)R (107)
K2 (k2 + k)
_ (k% + k%) Ex (k) — k2Ep (k)
(k2 + k%)EK(k) T 2Ep(k)’ (108)
(109)

and the necessary conditioiig) /2 — u(g) > 0 can now be

rewritten as
~ (®+FkR)Ec(q) — ¢°Er(q)
Ma)/2 —ula) = (> + k?i)EK(Q) +¢*Ep(q)

The denominator is obviously positive, consequently the co
dition is equivalent to

G1(q) — Ga2(q) = 2(¢* + k%)Ec(q) > 2¢°Ep(q), (113)

forall ¢ such ask < q < knaz-
This is a very interesting result. The requirement, in part,
that there should be more enstrophy on the top layer than the
ottom layer, i.e.G1(q) > G2(q). Itis reasonable to expect
his if there is more dissipation on the bottom layer than the
top layer. This is the case for the model we are considering
where there is Ekman damping at the bottom layer but not
at the top layer. However, the actual condition also reguire
that the difference should be larger than the potentialggner
Ep(q) multiplied with2¢? . In our model, as has been pointed
out bylSalmoni (1978, 1980, 1998), the energy is injected into
the system at large scales as baroclinic energy, and mdssof t
energy is converted into barotropic energy near the Rossby
wavenumbeFk . It is therefore reasonable to expect that this
necessary condition will be satisfied for wavenumbers
kR.

It should be noted that this is only a necessary condition.
A sufficient condition would require furthermore that equa-
tion (I01) be valid. The necessary precondition for thalés t
stronger requirement

oo (1) (2)

This condition can be rewritten equivalently as

> 0. (112)

(114)

2G5 (q) + k%(Ex (q) — Ep(q kr kg
(115)
and it can be simplified further to give
2 _ kQ
Gilq) - <1+4 s > Ga(q)
R
> 2¢°Fk (q) — 2k*(Ex (q) — Ep(q)). (116)
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The constraint.(q) > 0 implies that of the KLB theory to finite inertial ranges and finite dissipa-
tions. This situation changes, however, in baroclinic ®de
2G5 (q) + k& (Ex (q) — Ep(q)) > 0, (117)  of quasi-geostrophic turbulence.

The surface quasi-geostrophic model represents an ex-
treme baroclinic case where the entire behavior in the three
dimensional domain is constrained by the behavior of the sys
tem at thez = 0 layer. In this model there is no enstrophy,
and the dominant feature is the downscale energy cascade.

We have shown that in the two-layer quasi-geostrophic

This condition, which is also a necessary condition for vi-M0del, the violation of the Danilov inequality is possible
olating the Danilov inequality, places an even stronger conOnly as a result of asymmetric Ekman damping operating on

straint on the difference between the enstrophy between tHly one of the two-layers. This creates an imbalance be-
two layers. The fly in the ointment is thé(q/kz)2G2(q) tween the amount of enstrophy accumulated in one layer ver-
term. If we want to go from the transition scale at aboutSUS the amountaccumulated in the other layer, and the down-
700km in wavelength down to length scales of a few kilo-Sc@le energy cascade will become observable on the camditio
meters, theni(q/kg)? increases at least by four orders of that this imbalance is sufficiently large. We have derived in

magnitude. In the numerical simulationd of Tung and Orlandd€ Present paper a sufficient condition fm;v/iglating the
(2003h), the variability ofi(q/kz)? is relatively small be- Danilov inequality which explains why the spectrum

cause they only go down to 100km in wavelength. We ma)has not been observed in some of the previous simulations of

therefore conjecture that a violation of the Danilov indgya e two-layer model. We have also derived a necessary and

requires that the ratiéky/kr)?, wherek, is the dissipation sufficient condition for violating the Danilov inequalitiput

wavenumber, must be small. In other words, the subleadinfi is an uncontrolled condition. The numerical simulation b

downscale energy cascade is expected to be observable i”‘rgng and Orlando_(2003a) has confirmed that a double cas-

numerical simulation with small separation of scales betwe cade With the transition wavenumber located in the inertial
kr andk,, but not in a numerical simulation where the sep-'ang€ can be realized. This can only occur when the Danilov
aration between these scales is large. A trend of dimingshinineduality is violated for some wavenumbérin the inertial

downscale energy flux with increasing numerical resolytion'@19€: The parameterization of the Ekman damping in that

and thus with increasing separation of scales, has alrezely b simulation does in fact satisfy the necessary conditioivddr
seen in the simulations bf Tung and Orlando (2003a).

and subtracting this inequality from the necessary conliti
above gives the following simplification:

Gi(q) — (1 +4(q/kr)*)G2(q) > 2¢°Ex(q),  (118)

for all g such that < g < kpaz.

in this paper.

It should be noted, of course, that the quasi-geostrophic AS long as we operate within the framework of multiple-
model is not valid at length scales much smaller than 100km i#gyer models with a finite number of layers, one cannot
wavelength. When three-dimensional effects become reteva rule out the_ alternative theory that the atmospheric energy
the conservation of enstrophy is violated by the nonlirgari SPectrum might reflect a double downscale cascade of helic-
itself which reflects itself in additional nonlinear disatiye ity and energy instead of enstrophy and energy (see discus-
contributions taD¢; (k). These terms make it all the more eas- Sion in section 6.5 cf Branover et al. (1999), and figure 3 of
ier to violate the Danilov inequality for wavenumbérshat Bershadskii et all(1993)). However, most of the_ current de-
correspond to scales less than 100km in wavelength, theretﬁfte has been focused on the somewhat mysterious nature of
preserving the very extensive downscale energy cascade offle Very extensive and robust>* spectrum.
served in the Nastrom-Gage spectrum. Our work in the present paper explains why it can be re-

produced in numerical simulations that use baroclinic mod-

els, while the same effect cannot be realized in simulations
6. CONCLUSIONS AND DISCUSSION of two-dimensional turbulence. On the other hand our work

here does not rule out the possibility that the shallowetr gfar

The classical KLB theory of 2D turbulence relies for its the spectrum observed by Nastrom and (Gage (1984) over the
mathematical simplicity and elegance on two unrealistic asmesoscales can be due to dynamics other than QG, whether
sumptions: that the domain is infinite, and that the Reynold# is barotropic or baroclinic, especially for scales1ob km
number approaches infinity. When these two assumptions af¥ less (see e.d._Lindborg (2005) with Bousinesq dynamics).
relaxed, the situation becomes more complicated. The dowrfur present work serves to point out that over the largeescal
scale enstrophy cascade is accompanied with a hidden dowfg 600km), where the transition to a shallower spectrum oc-
scale energy cascade, and similarly the inverse energy caeurs, baroclinic QG theory by itself is a viable mechanism fo
cade is accompanied with a hidden inverse enstrophy cascadxplaining the transition from-3 to —5/3 slopes.

This is true as long as the leading cascades themselves exist Furthermore, as proposed first by Tung and Orlando
which requires the presence of a sufficiently strong dissipa(20034a), the downscale energy flux, which is important in ex-
tion sink at small wavenumbers. The fluxes associated witplaining thek—>/3 energy spectrum over the mesoscales in
the subleading cascades are constrained by the Danilov imost theories, originates at larger scales (the synopiesg
equality, and as a result the subleading cascades cannot cdts contribution to the energy spectrum is hidden for snnalle
tribute large enough terms to the energy spectrum to createavenumbers under thie3 part of the spectrum, and then
an observable effect. This picture represents a gendiializa emerges for largek past the transition scale. It remains an
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open question, one that is beyond the scope of this paper, ®yink, G., 1996: Exact results on stationary turbulencenia ti-
explain how this downscale energy flux can be continued into mensions: Consequences of vorticity conservafitysica D 91,

length scales too small for QG theory to describe, and how it 97-142.

is eventually dissipated.
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