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[1] We point out the pitfall of using spatial patterns of correlation coefficients obtained
from filtered data to infer physical mechanisms. Filtering is often used to emphasize a
signal of interest by removing unrelated variability, but it alters subsequent
correlation maps when the removed variance contains spatial structure, as is most often the
case in geophysical applications. This then results in misleading patterns of correlation. In
the case where filtering involves the removal of independent signals, we show that the
resulting increase in correlation is entirely due to the removed signal. We include a short
discussion of alternative methods that can be used to generate more consistent maps of
statistical relationships.
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1. Introduction

[2] This note addresses the problem of filtering a time
series prior to calculating correlations with that time series.
Because correlation calculations are nonlinear, the effect of
the filtering is not obvious.
[3] We are motivated by the field of solar-climate inter-

actions where isolating the effect of solar variations on the
atmosphere invariably involves extracting a small signal
from much larger atmospheric variations. This means that
some type of filtering is essential and, historically, the
examination of correlation patterns is used to discern the
solar influence on climate (Rheita [1645], Riccioli [1651],
Herschel [1801], Flaugergues [1818], Koppen [1914,
1873a, 1873b], Shaw [1928], Labitzke and van Loon
[1988], and Reid [1991] as quoted by Hoyt and Schatten
[1997]). It is therefore important to understand the effect of
combining these techniques. Here we use multiple regres-
sion as an example of one way to filter a time series but it
should be kept in mind that our results apply generally to
any filtering process where the removed signal is approx-
imately orthogonal to the remaining time series.
[4] Multiple regression analysis can be used to model

changes in the atmosphere by determining the dependence
of the variability on a number of known predictors. The
dependence can be determined in a number of different
ways but here we focus on the simplest and most used
method, linear least squares. In this case, the variability,
T(t), is assumed to be a linear combination of predictors.
For example,Gleisner and Thejll [2003] (hereinafter referred
to as GT), an El Niño index, a time series of volcanic
aerosols, the 10.7 cm solar flux and a linear trend were

chosen to be the predictors for atmospheric variability. In
this way, a time series can be written as

T tð Þ ¼ k1NINO3 tð Þ þ k2F10:7 tð Þ þ k3VOLCANO tð Þ
þ k4TREND tð Þ þ Residual:

The coefficients, k1 to k4, are found by fitting the time series
at each grid point to this model and minimizing the square
of the Residual.
[5] In order to emphasize a small signal amongst a noisy

atmospheric time series, one might consider subtracting out
the terms associated with the other predictors in order to
emphasize the remaining signal. In this case, GT removed
all terms except the solar cycle, yielding what they call a
‘‘corrected’’ time series,

T* tð Þ ¼ k2 F10:7 tð Þ þ Residual:

We will show that the correlation of an independent time
series, S(t), with T*(t) will always be larger than its
correlation with the original time series, T(t), even if there is
no signal related to S(t) present in T(t). This is always true
as long as S(t) is uncorrelated with the removed signal. This
deceptive increase in correlation may then give false
confidence in an unfounded relationship between S(t) and
T(t). When applied to data which also varies in space, the
corrected correlations will also contain misleading struc-
tures which are due to the removed signals and not to any
inherent relationship with the original field. In section 3, we
briefly mention some alternative methods that can produce
more reliable results.

2. Patterns of Correlations

[6] To give a simple and obvious illustration of the
problem, we consider carrying the filtering procedure to
the extreme by removing all other variability except the
solar cycle. The correlation between this ‘‘corrected’’ time
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series and the solar cycle itself would then yield r = 1
everywhere. This flat spatial pattern does not suggest that
the atmosphere’s response to the solar cycle is perfectly
uniform. The remaining signal still contains spatial variation
which can be seen in the solar regression coefficient, k2.
However, this is normalized out in the calculation of the
correlation coefficient, r, and hence the spatial information
about the solar cycle is lost. This illustrates the pitfall of
using correlations to infer a spatial pattern when the data
have been filtered.
[7] Below we show that the correlation values obtained

with corrected fields are determined as much by the
variance in the removed signal as by any actual relationship
between the independent time series (the 10.7 cm solar flux
in the above example) and the original data. By comparing
these ‘‘corrected’’ correlation coefficients with the correla-
tion coefficients that one obtains without any correction, we
can reveal exactly where the two correlations differ and
why.
[8] The calculations below are shown in terms of S, T, T*

and Tc. S is the independent predictor, which means that S is
independent of the removed signal. S may be one of the
original predictors which remains in the filtered time series
(this is the case given by GT where S = F10.7) or S may be
an entirely new time series which is orthogonal to the
removed signal. T is the original time series, T* is defined
to be the corrected observable (T* = T � Tc) and Tc is the
correction (Tc = k1 NINO3(t) + k3VOLCANO(t) + k4
TREND(t) in the example above).
[9] The correlation between the independent predictor

and the original data is defined to be

Corr S;Tð Þ ¼ Cov S; Tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Sð Þvar Tð Þ

p

and the correlation between the independent predictor and
the corrected data is

Corr S; T*ð Þ ¼ Corr S;T � Tcð Þ

¼ Cov S;Tð Þ � Cov S;Tcð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var sð Þ var Tð Þ þ var Tcð Þ � 2Cov T ;Tcð Þ½ �

p :

If S is independent of the removed signal, thenCov(S, Tc) = 0.
This will be true if S is one of the retained predictors from a
multiple regression analysis where the predictors are
unrelated. Generally, if the covariance between predictors
is small, jCov(S, Tc)j 	 jCov(S, T)j, then this approximation
holds.
[10] GT tested the colinearity of their regression variables

and came to the conclusion that they were linearly unrelated
using a test developed by Belsley [1991]. This test or an
examination of the condition number [Weisberg, 1985] can
be used to verify that the predictors are not collinear, and
unless complex interactions between predictors is sus-
pected, a simple calculation of the correlation between
predictors is often sufficient to determine the extent of their
orthogonality.

[11] To compare the corrected and original correlations,
consider the ratio:

Corr S; T � Tcð Þ
Corr S; Tð Þ

¼ Cov S;Tð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
var Sð Þ

p

Cov S;Tð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
var Sð Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Tð Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Tð Þ þ var Tcð Þ � 2Cov T ;Tcð Þ

p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Tð Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Tð Þ þ var Tcð Þ � 2Cov T ; Tcð Þ

p : ð1Þ

Cancelling out the common terms, which are the only terms
involving the time series, S, we see that the change in
correlation has nothing to do with S or the relationship
between it and the original observable. The change in
correlation depends only on the variance and covariance of
the removed signals and the original time series.
[12] When the removed signal (Tc) is uncorrelated with

the remaining signal (T*), a correlation with the corrected
signal will always be greater than the correlation with the
total signal. A proof of the increase in correlation is shown
below.
[13] Consider the covariance of Twith Tc (the last term in

the denominator of equation (1)):

Cov T ; Tcð Þ ¼ Cov Tc þ T*;Tcð Þ ¼ Cov Tc; Tcð Þ þ Cov T*; Tcð Þ
¼ var Tcð Þ

because T* and Tc are uncorrelated.When this is substituted
into the ratio of correlations,

Corr S;T*ð Þ
Corr S;Tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Tð Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Tð Þ � var Tcð Þ

p > 1: ð2Þ

This implies that as long as the variability removed from the
original time series is uncorrelated with the remaining
signal, the corrected correlation will always be greater than
the original correlation, regardless of the relationship (or
lack of relationship) with S.
[14] This can also be written in terms of the original

regression coefficients. Without loss of generality, the
variances of the original time series, T(t), and the original
predictors (NINO3(t), Volcano(t), F10.7(t) and the Trend(t)
given by GT) can be normalized to 1. When the variables
are normalized in this way, the regression coefficients are
commonly referred to as b coefficients. In this case, the
ratio reduces to

Corr S;T*ð Þ
Corr S; Tð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k21 þ k23 þ k24
� �q : ð3Þ

Here we see that the ratio is completely determined by the
variance of the removed signal and is unrelated to the solar
cycle coefficient, k2. Because these coefficients change with
height and latitude as the influence of the predictors change
with height and latitude, the resulting patterns will be
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misleading if one is looking for a spatial connection
between S(t) and the original time series, T(t).
[15] Figure 1 shows this ratio for annually averaged

correlations with the NCEP/NCAR temperature and the
solar cycle. It contains some of the features highlighted by
GT from their enhanced temperature correlation, including
maxima over the equator and in the Southern Hemisphere
midlatitudes. These patterns, however, are simply the
result of the variances removed. The increases in correla-
tion are due to temperature changes related to the time
series of NINO3, the volcanic aerosols and the TREND.
They do not reveal anything new about the solar cycle
signal in temperatures. Here an annual average was taken
for comparison with the correlation patterns of GT. Note
that the effect of taking an annual average of these terms is

linear, hT*i = hT � Tci = hTi � hTci, and does not change
the general mathematical relationships described above.

3. Alternative Analysis

[16] A correlation is composed of the covariance of two
time series normalized by the square root of the variance of
the individual signals involved. One way to avoid the
problem of polluting the correlation with the variances of
a removed signal would be to consider the regression
coefficient on its own merits. When the predictors of a
regression analysis are uncorrelated, this is just the covari-
ance of the predictor with the original variability divided by
the variance of the predictor. The regression coefficient is
then the amount that the observable changes for every

Figure 1. Ratio of correlations of the solar flux and corrected versus original temperatures. The
corrected temperature correlations are calculated with the annually averaged 10.7 cm solar flux and the
annual average of the corrected temperature time series. The standard temperature correlations are
calculated with the annually averaged 10.7 cm solar flux and the annual average of the original National
Centers for Environmental Prediction/National Center for Atmospheric Research temperature reanalysis.
The bold black box encompasses the area of the corrected temperature correlations shown by Gleisner
and Thejll [2003] on the left side of their Figure 1c.
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standard deviation change in the predictor and it remains
unchanged when other, orthogonal terms are filtered out of
the time series:

Cov S;Tð Þ
Var Sð Þ ¼ Cov S;T*ð Þ

Var Sð Þ ¼ k2: ð4Þ

GT did not show their regression coefficients. They showed
only solar correlation coefficients calculated from the
corrected time series, T*.
[17] Figure 2 shows the NCEP/NCAR temperature

reanalysis [Kalnay et al., 1996] regressed onto the
F10.7 cm solar flux (provided as a service by the National
Research Council of Canada) for the same years as given by
GT, 1958–2001, courtesy of the NOAA-CIRES Climate
Diagnostics Center in Boulder, Colorado [National Climate
Data Center, 1994]. Figure 2a shows the b coefficient which

is produced by standardizing (subtracting the mean and
dividing by the standard deviation) both the observable and
the predictors before calculating the regression coefficients.
The b coefficient shown here is then the fraction of one
standard deviation change in temperature that coincides with
one standard deviation change in the solar flux. Multiplying
these values by the standard deviation of the temperature at
each point, produces the regression coefficients referred to in
equation (4). To see the change in temperature (K) for every
120 sfu, which is roughly the difference between the
maximum and minimum 10.7 cm flux values, the solar
predictor is normalized by 120 sfu, instead of one standard
deviation of the solar flux time series. This is shown in
Figure 2b.
[18] Comparing the pattern seen in this regression (Figure 2b)

to those emphasized by GT (left part of their Figure 1c), we
see some important differences. The equatorial maxima seen

Figure 2. Annual regression on zonally averaged air temperature anomalies with 10.7 cm solar flux,
1958–2001. (a) The b coefficient shows the fraction of one standard deviation change in temperature (K)
for every standard deviation change in solar flux. (b) This regression coefficient shows the change in
temperature (K) for every 120 sfu (maximum-minimum) change in solar flux. A solar flux unit (sfu) is
10�22 W m�2 Hz�1. These regression coefficients all show a small increase in temperature associated
with an increase in solar flux.
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in GT’s temperature correlation, which they link to tropical
convection, is completely missing in this pattern. Also, the
structure in the subtropical troposphere is less pronounced.
[19] The main difference, though, is that these regression

maps are robust. These maps provide direct information
about the observable (in this case the annual mean NCEP/
NCAR reanalysis temperatures) and they will not change
with the addition of independent predictors.
[20] If, however, correlated predictors are necessary, then

interaction terms become important and the linear regres-
sion model should be rethought. If the relationship between
variables is known, these can be explicitly added to a linear
regression model and this is the first thing that should be
done. Curvature in the relationship can also be dealt with by
transforming the variables or explicitly allowing for non-
linear components, or interaction terms, in the regression
analysis. However, when the method of least squares is
applied to nonorthogonal data, very poor estimates of the
regression coefficients are obtained. Mela and Kopalle
[2002] discuss the impact of collinearity on regression
analysis. In general, the estimates of the regression coef-
ficients may be inflated and very unstable; that is, their
magnitudes and signs may change given different sampling
of the data. Instead, Montgomery and Peck [1992] suggest
using a bias estimator of the regression coefficients in a
method called ridge regression, which is closely related to
Bayesian estimation. See Montgomery and Peck [1992] for
more details.
[21] Besides ridge regression, partial correlation may also

be a useful method to derive a better conditioned regression
model. It is a stepwise procedure where predictors are one
by one added to or removed from the regression model in
order of their partial F static. The procedure stops when the
addition or subtraction of terms no longer improves the
model (as defined by a set limit on the F statistic). Although
the forward version of this procedure is unstable, the
backward version (where all predictors are included and
then one by one removed) and the stepwise regression
(where previously added predictors can be removed from
the forward version) tend to be reliable. Details of this
method can be found starting on page 290 of Montgomery
and Peck [1992].

4. Conclusions

[22] It is a challenge to extract a small signal amid larger
noise. While at first glance, it may seem reasonable to filter
out other signals in order to emphasize and examine the
remaining signals, the impact of removing these signals
needs to be appreciated. We show here that the resulting

enhancements in correlation have nothing to do with the
signature of the independent predictor in the original obser-
vations. Instead, the augmented spatial patterns are the
result of the removed signals. The patterns are therefore
misleading and, as shown by comparison with GT’s solar
example, not reliable as an indicator of a relationship with
the original field.
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