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ABSTRACT. This paper is concerned with three interrelated issues on our pro-
posal of double cascades intended to serve as a more realistic theory of two-
dimensional turbulence. We begin by examining the approach to the KLB
limit. We present improved proofs of the result by Fjortoft. We also ex-
plain why in that limit the subleading downscale energy cascade and upscale
enstrophy cascade are hidden in the energy spectrum. Then we review the
experimental evidence from numerical simulations concerning the realizability
of the energy and enstrophy cascade. The inverse energy cascade is found to
be affected by the presense of a particular solution, and the downscale enstro-
phy cascade is not robust. In particular, while it is possible to have either
the upscale range or the downscale range with suitable choice of dissipations,
the dual cascade of KLB does not appear to be realizable, not even approx-
imately. Finally, we amplify the hypothesis that the energy spectrum of the
atmosphere reflects a combined downscale cascade of energy and enstrophy.
The possibility of the downscale helicity cascade is also considered.

1. Introduction. This is the second paper in a series of papers. The goal of this se-
ries is to introduce a theoretical framework for the inertial ranges of two-dimensional
turbulence with infrared dissipation and finite viscosities. The standard KLB frame-
work [2,46,49] is applicable in an unbounded domain without infrared dissipation
under the limit v — 0. The scenario suggested by KLB is that there is an upscale
energy cascade and a downscale enstrophy cascade. Both cascades are pure; there
is no downscale energy flux and there is no upscale enstrophy flux. Assuming lo-
cality, the purity of the cascades allows the use of dimensional analysis to predict
the slope of the energy spectrum for each cascade. The upscale energy cascade is
therefore expected to scale as k~%/3, and the downscale enstrophy cascade as k~3
as a function of the local wavenumber k. In its traditional form, the KLB scenario
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requires an unbounded domain to allow the upscale energy flux to avoid the need
for infrared dissipation by escaping to larger and larger length scales. A number of
recent theoretical results [81-83] challenge the realizability of cascades as envisaged
by Kraichnan for the standard case of Navier-Stokes without an infrared sink.

In the more realistic case of a finite domain, a dissipative sink is needed both
at large scales and at small scales, in order for cascades to form. Inevitably, the
dissipation sink at small scales will dissipate some energy, and the dissipation sink
at large scales will dissipate some enstrophy. The presence of both energy and
enstrophy flux on either side of the injection scale means that we can no longer
predict the shape of the energy spectrum using dimensional analysis.

In the preceding paper [38] we have introduced a statistical theory for this sce-
nario, based on a similar non-perturbative theory introduced by L’vov and Pro-
caccia [54-58] to explain the energy cascade of three-dimensional turbulence. We
have shown that as long as the infinite set of balance equations of the generalized
structure functions is not truncated by closure approximations, it remains linear
and admits two homogeneous solutions, corresponding to the energy and enstrophy
cascades, and a particular solution raised by the forcing term and the boundary
conditions. The energy spectrum, both downscale and upscale of the injection
wavenumber, admits two contributions from the energy and enstrophy cascades
combined linearly, and a contribution from the particular solution that accounts
for the forcing range. They can be written as:

B(k) = BS) (k) + BS) (k) + BE) (), Vkto > 1

v

) (n) (») (1.1)

where E'@(L‘i,)(k) and E’Z(:)(k) are expected to scale as k~5/3, and E (k) and El(:’)(k)
as k73, These terms are the contribution of the homogeneous solutions to the en-
ergy spectrum. The contribution of the particular solution is B (k) and Ez(f ) (k).
The dissipation terms of the Navier-Stokes equations, corresponding to molecular
diffusion or hyperdiffusion and Ekman damping or hypodiffusion, modify the lin-
ear operator of the statistical theory, and, in so doing, modify the corresponding
homogeneous solutions by truncating the power law scaling with dissipation ranges
governed by exponential scaling. The form of these terms is summarized in the
preceding paper [38].

It should be emphasized that the formation of cascades observable in the energy
spectrum is by no means guaranteed. There are two prerequisites that need to be
satisfied: first, the contribution of the particular solution has to be negligible both
downscale and upscale of the injection scale, i.e.

E®) (k) < E&) (k) + ESD (), Yty > 1
E® (k) < ES (k) + B (k), Vkly < 1.

If this condition is satisfied, then we say that the corresponding inertial range is
structurally stable. Second, the dissipative adjustment of the homogeneous solution
has to be such that it does not destroy the power law scaling in the inertial range.
Furthermore, the dissipation scales have to be positioned so that the incoming
energy and enstrophy can be dissipated.

A careful development of our theory promises to tell us when these prerequisites
are satisfied. Meanwhile, it is possible to determine experimentally which of the two
prerequisites fails when there are departures from universal scaling. In a numerical

(1.2)
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simulation where the dissipation operators are artificially localized to act only in
the dissipation range, there will be no dissipative adjustment to the homogeneous
solution in the spectral region where the dissipation operators are suppressed. If
this measure restores universal scaling, then the failure of universality should be
attributed to failure of the second condition. If universal scaling is not restored,
then it is the contribution of the particular solution that is responsible for changing
the slope of the energy spectrum.

The goal of this paper is to examine the following three interrelated issues: First,
we show how our theory is reconciled with the KLB model in the limit of large
Reynolds number. We are going to refer to this limit as the KLB limit.! Second, we
review the accumulated theoretical and experimental studies of the inverse energy
cascade and the direct enstrophy cascade to highlight the issues that need to be
addressed by our theory. Third, we explain why the idea of a downscale double
cascade of energy and enstrophy is essential in explaining the energy spectrum of
the atmosphere.

The plan of this paper is as follows. In section 2, we consider in detail what
happens when the KLB limit is approached. We begin, in sections 2.1, 2.2 with
two different proofs that the leading downscale cascade is the enstrophy cascade
and the leading upscale cascade is the energy cascade. In section 2.3, we discuss
the subleading cascades. We show that for the case of two-dimensional turbulence,
the subleading cascades will be hidden in the energy spectrum. However, although
the percentage of the energy and enstrophy flux associated with the subleading
cascades vanishes very fast with increasing Reynolds numbers, the separation of
scales of the subleading cascades will be proportional to the separation of scales of
the leading cascades.

In section 3, we review the theoretical and experimental evidence both in support
and against the realizability of a direct enstrophy cascade and inverse energy cas-
cade with scaling consistent with the predictions of dimensional analysis. In section
3.1, we discuss in detail the paradox of the inverse energy cascade discovered by
Danilov and Gurarie [23]. We show that the experimental evidence suggests that
the inverse energy cascade is dominated by the particular solution, which dominates
and hides the k~%/3 contribution of the inverse energy cascade. In section 3.2 we
highlight that the direct enstrophy cascade can be realized in experiments that use
hypodiffusion, but not in experiments that use Ekman damping. A related finding
was previously given by Tran and Shepherd [83] who argued that the k3 scaling
of the energy spectrum downscale of injection depends on the use of hypodiffusion
as the infrared sink.

In section 4, we assemble the evidence, in light of the theory presented in this
paper, in support of the theory by Tung and Orlando [86, 87], that the atmospheric
energy spectrum corresponds to a double cascade of energy and enstrophy, both
of which are being injected by baroclinic instability at large scales and dissipated

1 As we will suggest in the body of this paper, a dual cascade scenario with two double cascades
is very likely to be unrealizable. When we talk about approaching the KLB limit, we mean that
there is a very large separation between the injection scale and the dissipation scale in one of
the two inertial ranges, either upscale or downscale of injection. In that case, for that particular
range, the leading cascade dominates the energy spectrum and the subleading cascade contributes
a negligible correction. It is very unlikely that the KLB limit can be simultaneously approached
by two inertial ranges, as a stationary state. This supposition will become apparent from the
discussion in section 3.
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at small scales. The bulk of this discussion is given in section 4.1. In section 4.2,
we argue that although the nature of the k=33 spectrum has been clarified, it is
the nature of the approximately k~2 part that remains controversial. Section 5
concludes the paper.

2. Approach to the KLB limit. The misconception that no energy can flow
downscale in two-dimensional turbulence is often explained in terms of the cel-
ebrated “proof” by Fjortoft [34], that has been copied in many textbooks and
review articles, including the recent article by Tabeling [80]. In light of Charney’s
[12] claim that quasi-geostrophic turbulence is isomorphic to two-dimensional tur-
bulence, this misconception has been carried over to the fundamentally different
problem of the energy spectrum of the atmosphere. The goal of this section is to
clarify this issue, from the viewpoint of two-dimensional turbulence, and show how
our theory is reconciled with the KLB limit.

The fallacy behind Fjortoft’s proof has been exposed by Tung and Orlando
[87,88]. Briefly, Fjortoft’s argument uses the structure of the quadratic term of
the Navier-Stokes equations but is independent of the dissipation terms. The latter
play no role in his proof. The problem is that without the dissipation terms, the
governing equation is time reversible. For every solution where the energy flows
upscale, there exists another solution where it flows downscale, that can be obtained
by reversing time’s arrow.

The only way to fashion an argument that can select the direction for the fluxes,
without involving the dissipation terms, is by making intuitively plausible but un-
proven assumptions. For example, Kraichnan [46] “proves”? the direction of fluxes
by comparing the slopes of inertial range solutions with the slope of the absolute
thermodynamic equilibrium solution. This amounts to choosing the direction of
time’s arrow by assuming a tendency to move towards thermodynamic equilib-
rium. Another argument by Rhines [72], similarly assumes that an amount of
energy concentrated around some wave number must have a tendency to spread
out. These arguments do not explain why it is only these solutions that are more
likely to be realized instead of their reversed counterparts.

Despite these criticisms, the claim that most of the enstrophy will be dissipated
at small scales and most of the energy at large scales is correct for the case of
two-dimensional turbulence. We present, in this section, two proofs: the first proof
is based on a folklore argument by Eyink [28]; the second proof is based on an
observation that was communicated to us by Danilov [20]. However, it is also
the case that there will exist a small downscale energy flux and a small upscale
enstrophy flux accompanying the leading cascades. We show that even though these
subleading fluxes decrease rapidly when the length of the corresponding inertial
ranges increases, there will always exist a sufficient amount to form subleading
cascades with length proportional to the length of the leading cascades.

2In his paper, Kraichnan does not intend this argument as a rigorous proof, even though this is
how the argument is often misinterpreted. It is intended only as a heuristic explanation. In fact,
Kraichnan himself stresses, in the first paragraph of section 3 of his paper, that there is nothing
in the conservation laws themselves (derived from the structure of the non-linear interaction term
in the Euler equation) that can determine the direction of the fluxes. We are making the same
argument: we claim that involving the dissipation terms is a necessary requirement for a correct
proof.
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2.1. Direction of fluxes: First proof. Let €4, 7y, be the energy and enstrophy
dissipated at small scales and €;,,7;, the energy and enstrophy dissipated at large
scales. In the stationary case, they satisfy

€E=¢€ir t+ Euyo

2.1
N = Nir + Nuw, 21)

where ¢ is the rate of energy input and 7 is the rate of enstrophy input. It should
emphasized that these variables are defined as dissipation rates, and they are equal
to fluxes only when a cascade forms successfully in the corresponding range. We
define the forcing scale from the relation ¢ = n¢3. Note that Eyink also defines?
dissipation rate ratios A\ and Ay, from the relations g;, = 1;,:A2. and €, = Mo A2,
These can be interpreted as flux ratios as long as the corresponding double cascade
exists. For the remainder of this section we will be calling these quantities “flux
ratios”.
We obtain the following system of equations

N = Nir + Nuv

2.2
7743 = 771'7)‘227" + Muw Aim ( )
and the solution reads

S 77(43 B Aiv) - n’\zzr(e% B A121.'1)) (2 3)

Nir = 2 _ )\—2 ir = —)\% 2 .

r uv T uv
ﬂ(/\fr B e%) TIA12w (Afr - E%)

_ = Tuv\ter 07 2.4
e TN TR, A7 = A2, (24)

The main difficulty that prevents concluding the argument is that there is no way
to calculate the flux ratios ;- and A, independently of their definition.

We propose that the argument can be carried forward in the following way. First,
in order for the system to reach a steady state, it is necessary for both large-scale
and small-scale dissipation terms to act. It is not possible for either term, by itself,
to dissipate together any arbitrary rate of energy and enstrophy injection. We may
therefore formulate two alternative theories, only one of which is self-consistent:
one in which there is an upscale energy cascade and a downscale enstrophy cascade
(what really happens), or one in which there is an upscale enstrophy cascade and
a downscale energy cascade. The form of both theories can range from a simple
dimensional analysis argument, to a more elaborate theory. The essential point
is that both theories, having been formulated, will predict that with increasing
Reynolds number the separation of scales in the dual cascade will increase.

According to the argument given later in section 2.3, in the same limit the
flux ratios A;- and Ay, are approximately equal to the corresponding dissipation
scales of the dominant cascades. It is true that the argument of section 2.3, makes
explicit use of the assumption that the leading downscale cascade is the enstrophy
cascade. However, if this assumption is replaced with the assumption that the
leading downscale cascade is the energy cascade, and repeat the argument, we will

3Eyink defines the ratios Ayy and A;. as dissipation scales, and not as flux ratios or dissipation
rate ratios. By definition, these quantities are dissipation rate ratios. In the event of the successful
formation of the corresponding double cascade, they will also be flux ratios and, as will be shown
later, double as transition scales. As the KLB limit is approached, they will converge to the
dissipation scale of the leading cascade. Only then is it valid to interpret them as dissipation
scales.
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still conclude that the flux ratios still asymptotically coincide with the dissipation
scales.
It follows that for large Reynolds numbers we expect the flux ratios to satisfy

/\u'u <K EO < )\ir- (25)

We stress that we do not need to know in advance the actual direction of the fluxes
to establish this inequality. The inequality follows both from the realistic theory
and from the theory which we will reject.

We now show, using this inequality, why the theory of the leading upscale en-
strophy cascade and downscale energy cascade is inconsistent. First, note that

Euy K Ejp = )‘12w (Azzr - ES) < Azzr(gg - Aiv)
= 20202 <222 +A2) (2.6)
= 2N L BA2 = V2, < L.

The physical meaning of this equivalence is that the separation of scales between
Auww and £y acts as a “shield” that diverts most of the energy upscale. We write
the mathematical steps in detail to stress that the inequality (2.5) is being used
to go from the second line to the third line. It is also needed to eliminate the
denominators. A similar argument can be provided for the enstrophy as follows:

Nir K Nuy e% - /\12“) < ’\zzr —E%

2.7)
=22 < A2+ N2, = V2 K Ny

This shows that the separation of scales between A;. and ¢y acts as a shield that
diverts most of the enstrophy downscale.

At this point it is of crucial importance to note that the experimental evidence
from numerical simulations in finite domains, reviewed in section 3, weighs heavily
against the realizability of the almost pure dual cascade scenario. The heart of the
problem is that under Ekman damping the enstrophy cascade deviates from KLB
scaling, and under hypodiffusion the same problem manifests in the inverse energy
cascade. Nevertheless, the argument that we have outlined in this section is still
valid for the case where at least one of the two inertial ranges forms successfully.
All that is required is that A, , A;» should satisfy the inequality Ay, < Ajp-

2.2. Direction of fluxes: Second proof. A different proof of the same claim can
be obtained by using the following inequality satisfied by the energy and enstrophy
flux both upscale and downscale of injection

k%e(k) —n(k) < 0. (2.8)

This inequality was brought to our attention by Danilov [20]. To prove it, note
that downscale of injection, in a stationary system, the energy and enstrophy flux
are given by

+oo +o0
(k) = 2 /k P E(q)dq + 26 /k ¢~ B(q)dg -

400 +o0
n(k) = 20 /k P E(q)dg + 28 /k 2B (q)dg,

as long as the entire forcing spectrum is localized in the [0,%] interval. These
relations are an immediate consequence of the observation that all the energy and
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enstrophy dissipated at the interval [k, 4+o00) has to cross the wave number £ to
come from the [0, k] interval where it is injected. It follows that

Re(k) - (k) =20 [ TR~ A Blg)dq + 28 / Tk — g™ B(g)dg <.

(2.10)
The same argument can be repeated when the wavenumber & is on the upscale side
of injection. In that case, the energy flux and the enstrophy flux satisfy

k k
e(k) = 2 / P E(q)dg — 28 / 42" B(q)dg
0 0 (2.11)

k k
n(k) = —2v / P B(q)dq - 28 / 2B (q)dg,
0 0

and the same inequality follows.

The connection between Danilov’s inequality and proving the direction of the
leading cascades lies in observing that the potential function P(k), introduced in
the preceding paper [38], satisfies the following identity

k
P(k) = /0 2qe(g)dq = K2e(k) — (k). (212)

Combined with (2.8), it follows that

/  2ge(a)dq < 0. (2.13)

The immediate interpretation of this inequality is that in order for two-dimensional
turbulence to reach a steady state, it is necessary that there is a spectral region with
negative energy flux. A somewhat similar argument was given previously by Tseskis
[84], in terms of the energy transfer rate. This condition requires the presence of
an infrared sink. Alternatively, it would be necessary to achieve a state of absolute
equilibrium where the energy flux is zero both upscale and downscale of injection.

Consider now the case where there are wavenumber intervals both upscale and

downscale of injection where the energy flux is constant:
e(k) =eyw, VEk € (ko,kyy

() (ko, kuv] (2.14)

E(k) = —&;4, VEkE [kirakO)-

As discussed in the preceding paper [38], the enstrophy flux is constrained to be
constant in the same intervals too. Furthermore, since we can presume that there
exists infrared dissipation in the interval [0, k;.], we may safely assume that the
energy flux satisfies

—Eir < S(k) <0, Vke [0, k“«] (215)

Using these equations combined with Danilov’s inequality (2.8), we find

kyv
P(kyy) :/ 2qe(q)dq
0 (2.16)

ki’r
= _Eir(kg - k?r) + 8U’U(k'z2u) - kg) ‘|‘/ 2qe(q)dg <0,
0

and using (2.15), we have the inequality
Euv (k'zzw - kg) - girkg < P(kuv) < O, (217)
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that can be rewritten as
2
Cuv kg
Eir k%w - k(%
For the upscale enstrophy flux 7;., a similar inequality can be established.
Choose a wave number k in the upscale range such that k;. < k < kg. The
potential function P(k) and its derivative read

(2.18)

kir
P(k) = —ein (k- k2) + / 24e(q)dq
0

8P(k) (2.19)
W = —261'7-]{?.
It follows that the upscale enstrophy flux 7;,. will satisfy
_ _ kOoP(k) _
Mo = —n(k) = 5 O+ P(k) =
k kir
= —5 P2k = e —k2)+ [ 20e(a)dg (2.20)

kir kir
= sirkfr + /0 2qe(q)dq < ekfr + /0 2qe(q)dq.

To finalize the proof we employ the same argument as in the preceding section.
The two possible theories involve either the case of leading downscale enstrophy
cascade and leading upscale energy cascade, or the hypothetical case of leading
downscale energy cascade or leading upscale enstrophy cascade. In both cases, it
can be shown that when the rate of energy and enstrophy injection is increased,
the dissipation wavenumbers go to the limits k,, — +o00 and k;;- — 0. Then we
use the inequalities derived above to reject the hypothetical case.

Although both this proof and the preceding proof are mathematically equivalent,
one advantage of the present proof is that it shows more clearly why it is necessary
to have sinks both upscale and downscale of injection. Furthermore, it does not
rely on establishing a connection between the flux ratios and the dissipation scales.
It should be noted, however, that the dissipation wavenumbers k,, and k;. belong
to the third order structure functions S3(r), whereas the flux ratios used in the
previous proof are claimed to be equal to dissipation length scales that belong to
Sa(r). Finally, it is possible to formulate a third proof by making direct use of
(2.8), as pointed out by Danilov [21].

2.3. The subleading cascades. Is it possible to see the subleading cascades? The
answer is that in numerical simulations we can look for the constant energy flux
in the downscale cascade, for example. In a recent comment, Smith [76] reported
a small energy flux accompanying the enstrophy flux in the downscale range of a
numerical simulation of two-dimensional turbulence. Constant downscale energy
flux has been observed before in Danilov and Gurarie [22,23] (see their Figure 1
n [23], and Figure 1,2 in [22]) and Borue [6] (see his Figure 3)). So far as we
know, the subleading inverse enstrophy cascade has not been discussed much in the
turbulence literature.

In a hypothetical situation where the fluxes are fixed but the inertial ranges
are extended indefinitely, the subleading cascades will eventually be exposed after
certain “transition” wavenumbers. These can be obtained by comparing the leading
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and subleading terms in the energy spectrum equation (1.1), and these transition
wavenumbers for the downscale and upscale ranges, respectively, are given by

uv [ Nuw 1 i [ Tl 1
uv uv wr r

It follows that the necessary condition for exposing the subleading cascades is:
em} < )‘uv and Eir > Air-

As has been pointed out by Danilov [20, 21], this condition cannot be satisfied for
the case of two-dimensional turbulence. In fact, it follows from Danilov’s inequality
(2.8), that the transition scales will be located in the dissipation range both upscale
and downscale of injection. A similar claim was given by Smith [76], however his
argument was problematic in some respects as pointed out by Tung [85]. It should
be stressed that the same claim is not applicable in quasi-geostrophic turbulence,
where the dynamics is different.

Although the subleading cascades remain effectively hidden, it will be shown
that as one approaches the KLB limit the transition scale will converge towards
the dissipation scale of the contribution to the energy spectrum by the leading
cascade. This convergence is essential in justifying the proof given in section 2.1.
Furthermore, it can be shown that although the energy and enstrophy flux associ-
ated with the subleading cascades is vanishing rapidly in the KLB limit, there will
always be a sufficient amount to form subleading cascades with separation of scales
proportional to that of the leading cascades.

We begin with the demonstration that in the KLB limit the transition scales
coincide with the dissipation scales of the leading cascade. When the system reaches
equilibrium, the downscale enstrophy flux 7,, , for example, will be equal to the
corresponding dissipation rate at small scales. Since the effect of the sink at large
scales can be safely ignored, the dominant contribution to the enstrophy flux is
given by the integrals

1/8yy +00
Nuw & 2V / E* 2B (k)dk + 2v / kE***t2E(k)dk. (2.22)
1/4o 1/€uy
When we substitute?
E(k) & buy 2Pk ™3 Dy (klyy), (2.23)

from (1.1), we find that the first integral diverges in the limit v — 0, whereas the
second integral stays finite because it is moderated by dissipative corrections to the
energy spectrum. The vanishing viscosity eliminates the second integral and mod-
erates the divergence of the first integral. As a result, the dominant contribution
comes from the first integral and it follows that

N % by (1/buy)* + vC1, (2.24)
In fact, for the case k # 1, the relevant coefficient
A(v) = v(1/0,), (2.25)

turns out to be constant. For the exceptional case k = 1, it will vanish in the limit
v — 0. However, it does so very slowly. To see this, note that for k = 1, A(v) can

4The asymptotically valid assumption of the almost-pure double cascade, enters the argument
at this step.
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be evaluated analytically as

Av) =3 [111 (g)] _4/3. (2.26)

This means, for example, that increasing the separation of scales ratio all the way
up to 10'° will only decrease A(v) by a little more than an order of magnitude.
Incidentally, this calculation shows that there is an anomalous sink of enstrophy
for hyperviscosity k > 1, and practically so for molecular viscosity x = 1.

Using a similar argument, the downscale energy flux is given by

1/8yy 400

Eup R 2V / k** E(k)dk + 2v / k%% E(k)dk. (2.27)
1/4o 1/€uv

Again, although the first integral does not balance the viscosity v, it still is the

case that the second integral vanishes more rapidly than the first integral. Using a

similar argument, as earlier, the downscale energy flux can be written as:

Eup N buvuniéa(l/ﬁuv)%_z + vCs, (2.28)

where again, it is expected that the dominant contribution is the first term.
If the quantities vCy and vCs are small enough to be negligible, then it follows
that

)\2 _ Euw ~ buvyniéa(l/euv)zn_z + vCy
Mo byyrneh (1/8y0)2 + vCy
~ buvynuv (1/&“))2#; 2 . Ez
~ _— uv-
bquhw (1/4yv)?"
Using a similar argument, we may show that as 8 — 0, we have £;. = \;,.

The same argument can be repeated for the hypothetical case, which is inconsis-
tent, where the dominant upscale cascade is the enstrophy cascade and the domi-
nant downscale cascade is the energy cascade. The form of the energy spectrum will
then be different, but it will be compensated by the laws governing the dominant
dissipation scales which will also be different. In particular, using the approxima-
tion E(k) ~ au052/3k_5/39w(k€m,) from (1.1), we get

Nuw = QuyVEL 13(1/£,)?* 23 4 vCy

Eup = QuyVED, (1/€ )2"“_2/3_2 + vCs.
Except for the case k = 1, which is problematic in a number of ways, when the
quantities vC; and vCs are negligible, then we still get £,, = Ayyp-

A consequence of this coincidence is that it enables the calculation of the sepa-
ration of scales of the subleading cascades as a function of the separation of scales

of the leading cascades. First, we write the downscale energy and enstrophy flux in
terms of the corresponding dissipation scales

Mo = V2[R |16
Eyp = 1/3[fR
Then, the flux ratio is given by

R(s) ("7) 6Kk—2
/\iv _ Euv _ ( 0,uv> le - [ (77)] , (232)

Nuw Eq(w

(2.29)

(2.30)

Pl 3

0,uv
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We have shown that in the KLB limit \,, ~ eSﬂ). It follows that the dissipation
scale of the subleading downscale energy cascade is given asymptotically by

R((]Eq)“) 3/(6}%—2)
R : (2.33)
:RO,uv

This equation shows that asymptotically the extent of the subleading downscale
energy cascade E&sv)
0

is proportional to the extent of the leading downscale enstrophy
cascade £y . For a very large order of hyperdiffusion x the proportionality constant
approaches unity. In that case, &(fq,) = &(ﬂ,) . Nevertheless the ratio of the leading
and subleading dissipation scales cannot be taken as 1 in (2.32). A small difference
in the dissipation scales ratio &(ﬂ,) /&(ﬁ,) can still result in a significant adjustment
of the transition scale, because in equation (2.32) it is being raised to very large
powers. (see [85])

A similar result can be derived for the upscale range. The upscale energy and
enstrophy fluxes are given by

(2.34)

and, likewise, the flux ratio reads

3 6m
. R (e)
2= ( °> [6” 672, (2.35)

o \agl) (42
and in the KLB limit we find
R(E) 1/2m
o ~ ) ( ?:f) : (2.36)
92’0,1'7"

The significance of these results is that they highlight that the subleading cas-
cades are not a hypothetical possibility; even far into the KLB limit, there will be
sufficient downscale energy flux and upscale enstrophy flux to provide subleading
cascades that are proportionally as large as the leading cascades. In fact, if that
were not the case it would signal an inconsistency in the overall theory, since the
energy flux and the enstrophy flux are constrained to be constant over the same
spectral region.

As separation of scales increases, the percentage of these counter fluxes decreases
rapidly. To see this, use the approximation £,, = A,, to show that

Ao \ 2 ¢\’
Euw = Nuw A2y SN2 = [ 22 ) ~e| o= | . (2.37)
4y 4y

Similarly, for the upscale range we have

2
b\’ fo

Nir < 1) (A_w> R <£(—s)> . (2.38)
wr

It follows from these inequalities that a separation of scales of one decade is sufficient
to reduce the counter fluxes percentagewise to about 1%. However, because the
derivation implicitly assumes the KL.B limit, it does not follow that a separation of
scales of only one decade is sufficient to reach that limit.
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3. Evidence from numerical simulations. The inertial ranges of two-dimensional
turbulence have been studied extensively with numerical simulations and experi-
ments for many decades. In this section we summarize the accumulated theoretical
and experimental insight derived from these studies. This insight should be under-
stood as a challenge that must be addressed with further theoretical work. We take
a first step, here, in interpreting these observations in terms of our theory.

3.1. The inverse energy cascade. The inverse energy cascade with the k=5/3
energy spectrum on the upscale side of injection appeared to be robust. It has been
observed in numerous simulations and experiments [35,40,65,75], and we even
have experimental indications that there are no intermittency corrections [4, 66].
Yakhot [91] has formulated an interesting theoretical explanation for the lack of
intermittency corrections, using a mathematical technique developed by Polyakov
[70] for Burger’s turbulence. His argument is based on the unproven assumption
that the pressure gradients are local.

In the Kolmogorov downscale energy cascade of three-dimensional turbulence,
smaller length scales always exist, so we may disregard the presence of boundary
conditions and assume that our system is unbounded with impunity. In the two-
dimensional inverse energy cascade, on the other hand, the boundary conditions
become significant for sufficiently large length scales. If the upscale cascading en-
ergy is not dissipated at length scales smaller than the typical length scales of the
boundary conditions, then the energy is condensed at large scales leading to steep
spectra. This corresponds to the formation of large-scale coherent structures, men-
tioned by many authors without necessarily elucidating their origin theoretically.
The formation of k~%/3 scaling, and the subsequent break down due to this con-
densation effect, have also been observed in numerical simulations [77, 78]. To form
a stationary inverse energy cascade it is therefore necessary that large-scale dissi-
pation remove the energy at the length scale much smaller than the typical length
scale of the boundary conditions.

Danilov and Gurarie [23] have conducted numerical simulations using (m, k) =
(0,2), and showed that the optimal § yielding an energy spectrum closest to the
KLB prediction of k~%/3 scaling does not correspond to constant energy flux. De-
creasing B improves the energy flux but the slope of the energy spectrum steepens.
This behavior is somewhat minimized in simulations using (m, k) = (0, 8), but the
reverse relation between optimizing the flux and optimizing the spectrum persists.
Sukoriansky et al [79] note that using higher order large-scale dissipation (m > 0)
may produce a constant energy flux, but distorts the spectrum. It has therefore
been suggested that the locality of the inverse energy cascade should be called into
question.

There are two aspects of this behaviour that call for an explanation. The first
is the behavior of the upscale energy flux, which is non-constant. The second is
the observed steepening of the energy spectrum. We wish to begin by pointing
out that the behaviour of the energy flux, by itself, is not paradoxical but quite
reasonable. It makes sense that decreasing 3, or using hypodiffusion, improves the
upscale energy flux, in the sense of making it more constant over a larger range.
It is also reasonable that the upscale energy flux is not constant under Ekman
damping. As we have mentioned in the preceding paper [38], the dissipation scale
law for the inverse enstrophy cascade breaks down for the case of Ekman damping.
It is therefore unlikely that an inverse enstrophy cascade with constant enstrophy
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flux can be realized. Because the energy flux is linked with the enstrophy flux, the
energy flux cannot® be constant either.

The interesting phenomenon is the steepening of the energy spectrum for small
B. Both Danilov and Gurarie [22], and earlier Borue [6], observed that this steep-
ening is caused by coherent structures. These structures cover a relatively small
portion of the domain, but they account for most of the energy. When the en-
ergy spectrum of the background flow, in which these structures are situated, is
evaluated instead, the regular —5/3 scaling is restored. This means that the ho-
mogeneous solution for the inverse energy cascade still exists, and therefore, the
observed steepening of the energy spectrum is caused either by the homogemeous
solution associated with an inverse enstrophy cascade, or the particular solution.
Danilov and Gurarie [22] have conducted a very careful examination of these co-
herent structures and established that they receive most of their energy from the
forcing term. Furthermore, as Danilov [21] has demonstrated, in a paper published
in this volume, the inverse enstrophy flux is very small for all cases, and in fact
it is larger in the simulations where Ekman damping is used and smaller in the
simulation where hypodiffusion is used. It follows that the homogeneous solution
associated with the inverse enstrophy cascade is not likely to be responsible for the
observed steepening.

The contribution of the particular solution Ez(f ) (k) to the energy spectrum plays
a crucial role in explaining this paradoxical behavior. We propose that the par-
ticular solution dominates and hides the homogeneous solution which continues
to exist. Physically, the particular solution is associated with the contribution to
the energy spectrum by the coherent structures. The homogeneous solution, on
the other hand, is associated with the contribution of the background turbulent
flow. The resulting energy spectrum is a linear combination of the two solutions.
The corresponding physical interpretation is that the coherent structures coexist
side-by-side with the background flow, and each contributes its share to the energy
spectrum. The fact that Danilov and Gurarie [22] can separate the two contribu-
tions to the energy spectrum is further evidence that the contributions are linearly
superimposed. Danilov [21] noted that the steepening of the energy spectrum can
be attributed to the non-locality of the triad interactions. The triad interactions
are obtained from a Fourier transform that mixes the homogeneous and particular
solution together. Nevertheless, the local interactions associated with the homoge-
neous solution continue to be there, and they remain responsible for a small part
of the energy and enstrophy transfer associated with the background flow.

This point is illustrated with the case of the inverse energy cascade in a simula-
tion that uses hypodiffusion. As Danilov [21] reports, the energy spectrum exhibits
a strong deviation from k£~5/3 scaling, which indicates non-locality. However, in the
same simulation a very constant energy flux is reported. This apparent discrepancy
can be explained as follows: The non-local interactions associated with the coher-
ent structures transfer energy and enstrophy directly from the forcing range to the
dissipation range, and they are in fact responsible for the greater part of energy and
enstrophy transfer [20]. It follows that the effect of the particular solution to the

51t is not strange that it is possible to see k~5/3 scaling without constant energy flux. This
indicates that there is a fortunate cancellation between the corrections to the inertial range scaling
from the forcing range and the dissipation range. The cancellation is not perfect, and that accounts
for the “bulge” observed in some of the numerical simulations [23] where Ekman damping is being
used.
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energy and enstrophy flux in the inertial range is to simply shift it by a constant
amount. The energy and enstrophy flux associated with the homogeneous solution
is also constant, and as a result the total fluxes are both constant. That the use of
hypodiffusion aggravates the departure from universal scaling in the energy spec-
trum instead of restoring it, is additional evidence that the non-universality of the
inverse energy cascade, and the associated non-locality, result from the particular
solution and not from dissipative adjustment of the homogeneous solution.

3.2. The enstrophy cascade. Numerical simulations do not reproduce the k=3
energy spectrum of the downscale range consistently. As a result, this prediction
of Kraichnan’s is considered by many an unproven conjecture. Alternative the-
ories have been proposed that predict steeper scaling [60,69,73]. Kraichnan [46]
himself noted that the non-locality of the direct enstrophy cascade makes the appli-
cation of dimensional analysis inconsistent. However, using a 1-loop closure model
[47], he showed that introducing a logarithmic correction to the energy spectrum
restores the constant enstrophy flux [48]. The same result can be obtained with
other 1-loop models [43]. If higher order closures yield additional higher powers of
logarithmic corrections, they may add up to a power law renormalization leading
to a steeper spectrum. Unfortunately, there is no solid theoretical argument that
decides conclusively whether we should expect such a renormalization.

What is known so far is as follows: Eyink [27] showed that the enstrophy range
cannot maintain a constant enstrophy flux if it is steeper than £~1'/3. Falkovich
and Lebedev [31, 32] used a Lagrangian approach [14, 30] to confirm Kraichnan scal-
ing with the logarithmic correction using a more rigorous mathematical argument.
They also predict that the vorticity structure functions have regular (the scaling
exponents form a straight line) logarithmic scaling given by

([¢(r1) = (x2)]") ~ [nIn(lo/r12)]>/>. (3.1)

Eyink [29] noted that this theory does not follow from first principles and that it
rests on an unproven regularity for the velocity field. However, should this regularity
condition be proven, it would then follow that the Kraichnan scaling scenario is the
only one that is statistically stable [33]. Indeed, the crucial step is assuming that
one may expand a velocity increment uy(r) — ue(0) = 04s7g, when the point
separation is within the enstrophy inertial range. In the limit of infinite Reynolds
number, the velocity field may not be differentiable but only Holder continuous. In
that case, the Taylor expansion is not justified.

A conspicuous characteristic of the theoretical argument of Falkovich and Lebe-
dev is that it is based on the Euler equations instead of the Navier-Stokes equations;
the effect of the viscosity terms is ignored. We suspect that the regularity assump-
tion is also linked with the assumption that it is safe to ignore interactions with the
forcing range from inside the inertial range of the enstrophy cascade. The reason
is that a steeper energy spectrum would result from a breakdown in the separa-
tion of scales in the Batchelor argument employed by Falkovich and Lebedev, as
was pointed out by Eyink [29]. Our assessment is that the theory of Falkovich
and Lebedev describes accurately the scaling behavior of the homogeneous solution
corresponding to the downscale enstrophy cascade, but an additional argument is
required to establish that the homogeneous solution is not hidden by the particular
solution and that it is not destroyed by dissipative adjustments.
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It is well known that in the presence of coherent structures, the enstrophy range
does not follow k=2 scaling. Borue [5] showed that using hypodiffusion (m = 8 and
k = 1,8) disrupts the coherent structures and with increasing Reynolds number
the scaling of the enstrophy range approaches asymptotically Kraichnan scaling.
As pointed out by Tran and Shepherd [83], all the successful simulations of the k3
spectral range are done so far with the hypodiffusion device. For example, Lindborg
and Alvelius [53] showed that the downscale enstrophy range with a k=3 energy
spectrum can be created in a high resolution simulation, if one uses hyperdiffusion
and hypodiffusion & = m = 2 and 40962 resolution. According to Pasquero and
Falkovich [67], the logarithmic correction can be also observed if the simulation is
allowed to run for a very long time. The presence of the logarithmic correction has
also been confirmed by Ishihira and Kaneda [42]. Bowman, Shadwick, and Morrison
[9] used a reduced statistical description of turbulence, called spectral reduction [8],
to calculate both the energy spectrum of the enstrophy cascade as well as higher
order statistics, and they found agreement with the scaling proposed by Falkovich
and Lebedev.

Although these results favor the Kraichnan scaling scenario, no numerical simula-
tion has reproduced clean scaling for the physically relevant case of Ekman damping
and molecular diffusion. As a matter of fact, Bernard [3] has given an elementary
proof that under Ekman damping it is not possible for the energy spectrum of the
downscale cascade to scale as k=2 with or without the logarithmic correction. A
steeper energy spectrum is predicted instead. From our viewpoint, Ekman damping
acts by modifying the operator of the balance equations, consequently it changes
the homogeneous solutions responsible for the enstrophy cascade.

Nam et al. [62] have derived a law governing the steepening of the enstrophy
cascade by Ekman damping, however it cannot be used directly to predict the
slope of the energy spectrum from the viscosity parameters without additional
experimental input. That the behavior of the spectrum at the downscale range
is so dependent on the nature of the energy sink at the largest scales is also one
of the surprising and important messages from the work of Tran and Shepherd
[83], and later Tran and Bowman [82]. A numerical simulation by Schorghofer [74]
using Ekman damping and molecular diffusion showed that the enstrophy range
approaches Kraichnan scaling with increasing Reynolds number, but failed to yield
the k=3 slope with the same precision as simulations employing hyperdiffusion
and hypodiffusion. Note that the simulation by Ishihira and Kaneda [42] uses a
filtered Ekman damping that acts only on wavenumbers smaller than the injection
wavenumber. Such a dissipation filter is effectively a hypodiffusion, and Bernard’s
argument does not apply in this case.

The accumulated evidence of numerical experiments suggests that the enstrophy
cascade can be observed in the energy spectrum, but its existence is fragile and
heavily dependent on the dissipation mechanisms. Furthermore, because Ekman
damping has the effect of steepening the energy spectrum of the downscale enstro-
phy cascade, but hypodiffusion has the effect of steepening the energy spectrum of
the upscale energy cascade, the dual cascade predicted by Kraichnan may indeed be
unrealizable. It is quite clear that the enstrophy cascade cannot be realized under
Ekman damping, and that hypodiffusion is needed. It remains an open question
whether the enstrophy cascade can be realized under hypodiffusion and molecular
viscosity.
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4. The atmospheric energy spectrum. According to Kraichnan [46], the study
of two-dimensional turbulence was motivated by the hope that it would prove a
useful model for atmospheric turbulence. This idea was founded on a paper by
Charney [12] that claimed that quasi-geostrophic turbulence is isomorphic to two-
dimensional turbulence. Early observations suggested that the energy spectrum of
the atmosphere follows a power law behavior (see [87] for review). An analysis of
wind and temperature measurements taken during the Global Atmospheric Sam-
pling Program by Nastrom et al. [63,64] showed that there is a robust k£~ spectrum
extending from approximately 3,000 km to 1,000 km in wavelength and a robust
k=53 spectrum extending from 600 km down to a few kilometers. A theoretical
analysis by Gage and Nastrom [37] showed that the observed spectrum indeed rep-
resents quasi-two-dimensional turbulence. Recent measurements [18, 19, 59] have
confirmed the k£~3/3 part of the atmospheric energy spectrum, and it has also been
reproduced in General Circulation Model simulations [44, 45].

In light of the KLB theory of two-dimensional turbulence, the k=2 spectrum
has been interpreted as a direct enstrophy cascade driven by enstrophy injection
by the baroclinic instability. The small-scale k~%/% spectrum, on the other hand,
for a long time has been the source of a bit of a mystery. Because it was widely
believed that downscale energy cascade is forbidden in two-dimensional turbulence,
one interpretation was that it reflects an inverse energy cascade given by energy
injection at small scales [36, 50]. Another explanation was that it represents positive
energy flux from large to small scales that results from the breaking of long gravity
waves to shorter waves [24, 89)].

4.1. Double cascades in atmospheric turbulence. Recent observational ev-
idence in the atmosphere shows that there is both a downscale flux of enstrophy
Nyy and a downscale flux of energy e,, over the mesoscales, from a few tens of
kilometer to a few thousand kilometers in wavelength [16,17]. As pointed out by
Tung and Orlando [86, 87], under some situations the downscale energy flux, though
small compared to its upscale part, can manifest itself in the energy spectrum for
wavelumbers k such that €,,k% > 7,,. This then gives rise to the —5/3 spectral
slope, which is observed in the atmosphere for large wavenumbers.

The present paper has amplified this explanation by demonstrating theoretically
that in a double cascade of both energy and enstrophy, the resulting energy spec-
trum will be the linear combination of contributions from the energy and enstrophy
cascade according to (1.1). A different, nonlinear, form of the energy spectrum was
predicted by Lilly [51], obtained using the Leith [49] and Pouquet [71] closure ap-
proximations, for a double cascade but with a negative energy flux. As discussed in
the preceding paper [38] closure approximations break the linearity of the statistical
theory, hence the discrepancy in the form of the predicted energy spectrum.

Indeed, Tung and Orlando [86] have also demonstrated that a two-level quasi-
geostrophic channel model with thermal forcing, Ekman damping, and hyperdiffu-
sion with kK = 9 can reproduce the atmospheric energy spectrum. The diagnostic
shown in figure 7 of [86], clearly shows both the constant downscale energy and
enstrophy fluxes coexisting in the same inertial range. The k=3 spectrum of the
enstrophy cascade is actually very short, extending from 1,980 km to approximately
800 km. It is also shown that the range corresponding to 8,580 km to 1,980 km, a
portion of which was believed to be part of the enstrophy cascade, is actually part
of the forcing range.
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In their simulation, Tung and Orlando [86] use a very high order hyperviscos-
ity to model dissipation mechanisms that are not included in the original quasi-
geostrophic theory or the two-layer model, such as frontogenesis, the generation of
gravity waves, etc. As Tung [85] has pointed out, the hyperviscosity coefficient has
to be adjusted as a function of the resolution to control the rate of downscale energy
flux. It may be objected that in a simulation where the quasi-geostrophic theory is
well resolved, the rate of downscale energy flux should be independent of the reso-
lution, and it shouldn’t be necessary to adjust the hyperviscosity efficient. In the
real atmosphere, the quasi-geostrophic theory is valid in the inertial range but not
in the dissipation range, because it does not account for all the dissipation mech-
anisms at work. The renormalization of the hyperviscosity coefficient is needed to
account for these additional dissipation mechanisms. As long as the correct fluxes
are provided, it does not matter whether the dissipation range is governed by our
renormalized hyperdiffusion or by resolving the actual physical mechanisms in a
more realistic model.

In a recent comment, Smith [76] argued that in a simulation where the Kol-
mogorov dissipation scale is resolved, the transition scale will have to be in the
dissipation range. Smith’s argument suffers from a number of problems discussed
by Tung [85]. One of these problems, locating the dissipation scales for the leading
and subleading downscale cascades, can only be addressed within the framework
proposed in the preceding paper [38]. Furthermore, the more convincing argument
communicated to us by Danilov [20], presented in section 2.3 of this paper, is ap-
plicable for two-dimensional turbulence, but cannot be extended to the two-layer
model of quasi-geostrophic turbulence.

Contrary to Charney’s claim [12], quasi-geostrophic turbulence is fundamentally
different from two-dimensional turbulence, especially in the dissipative spectral
region [87,88]. Therefore, these results from two-dimensional turbulence theory do
not contradict the Tung and Orlando model. The principle of linear superposition
of the energy and enstrophy cascade, on the other hand, is a deeper mathematical
result and it is shared by both dynamical systems. It should be stressed that this
simulation has indeed established the crucial fact: that the quasi-geostrophic theory,
valid in the inertial range, does admit a double cascade of energy and enstrophy
and does yield the observed energy spectrum with the transition scale located at
in agreement with observations.

4.2. The possibility of a helicity cascade. Quasi-two-dimensional turbulence
differs from two-dimensional turbulence in that it also satisfies the conservation
of helicity law. This leaves open the possibility of downscale helicity cascades.
Numerical models using a small number of vertical layers axiomatically exclude
helicity cascades.

The idea that the conservation of helicity law in three-dimensional turbulence
may lead to helicity cascades was first proposed by Brissaud et al.[11]. By dimen-
sional analysis, the energy spectrum associated with the helicity cascade is expected
to have k~7/3 scaling. It is also possible to show that in the helicity cascade we
have (3 = 2 [15,39]. A theoretical treatment of the double cascade of helicity and
energy in stratified and compressible non-entropic gases was given by Moiseev and
Chkhetiani [61], using the framework of the Hopf formalism [41]. A transition scale
from k~7/3 to k~5/3 scaling, similar to the transition scale for the double downscale
cascade of energy and enstrophy, was also derived.
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Helicity cascades have been observed in quasi-two-dimensional turbulence exper-
iments [1]. It has been established that three-dimensional instabilities are responsi-
ble for injecting helicity into the system. When these instabilities are suppressed by
constraints such as stratification, rotation, a magnetic field, etc. then the helicity
cascade is replaced by an enstrophy cascade. A typical example are the energy
spectra reported for mercury flows constrained by a magnetic field with variable
intensity [68]. There is also some recent interest in the double cascade of energy
and helicity in three-dimensional turbulence, as opposed to quasi-two-dimensional
turbulence [7, 13, 25, 26, 90].

So far as we know, it is unclear whether the inertial range observed in the sub-
synoptic scales is an enstrophy cascade or a helicity cascade. It has been suggested
that in the spectrum reported by Nastrom and Gage [63] the —7/3 slope gives a
better fit than the —3 slope (see discussion in section 6.5 of [10], and figure 3 of
[1]). The question can be decided by analyzing third order structure functions of
velocity differences, as pioneered by Lindborg [52]. The presence of a constant
enstrophy flux has been clearly established for scales between 300 km and 1,500 km
[16]. However, a remarkably clean 72 ({3 = 2) dependency governs the off diagonal
third order functions in the stratosphere from 10 km to 1,000 km in scale. It is
possible that this dependency is the footprint of an extensive helicity cascade. More
work in this direction would go a long way to clarify this issue.

5. Conclusions. The direction of the energy and enstrophy fluxes cannot be de-
termined without considering the effect of dissipation. Previous arguments that
rely only on the structure of the quadratic term in the Navier-Stokes equations
are not rigorous. We provide a more careful argument to show that, in the limit
of large separation of scales, most of the energy will be dissipated at large scales,
and most of the enstrophy at small scales. The only self-consistent possibility, as
long as universality is not broken, is therefore a leading downscale enstrophy cas-
cade and a leading upscale energy cascade. It is also shown, however, that even
in the limiting case where the separation of scales in the double cascades is very
large, the subleading downscale energy cascade and the subleading upscale enstro-
phy cascade continue to exist. Although they are shown to be hidden, their extent
is asymptotically proportional to the extent of the corresponding leading cascades.

We have shown that the experimental evidence from numerical simulations shows
that the inverse energy cascade is not structurally stable. The direct enstrophy
cascade can be reproduced in numerical simulations that use hypodiffusion and
hyperviscosity. Hypodiffusion is known to be necessary, but it is not clear whether
hyperviscosity is also required. We will study these issues in detail in forthcoming
publications.

We also clarified, in light of the theoretical framework presented in this paper, the
numerical issues with the simulation by Tung and Orlando [86]. We have explained
that the simulation does settle the crucial question of whether a downscale energy
and enstrophy cascade can coexist at length scales governed by quasi-geostrophic
theory. We also raised the possibility that the spectrum of the real atmospheric
turbulence could be a triple downscale cascade of energy, enstrophy, and helicity.
The presence of a helicity cascade cannot be predicted by numerical simulations
that do not resolve the vertical direction. There are however some peculiaritities
in the observational measurements of third-order structure functions that suggest
that a helicity cascade may indeed be present in atmospheric turbulence.
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