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Does the subdominant part of the energy spectrum due to downscale
energy cascade remain hidden in quasi-geostrophic turbulence?

Ka Kit Tundfl and Eleftherios Gkioulekadl
Department of Applied Mathematics, University of Washington, Seattle, WA, United States

In systems governing two-dimensional turbulence, surfgaeasi-geostrophic turbulence, (more generally
turbulence), two-layer quasi-geostrophic turbulence,, étere often exist two conservative quadratic quastitie
one “energy”-like and one “enstrophy”-like. In a finite itiat range there are in general two spectral fluxes,
one associated with each conserved quantity. The energyrgpein general has a contribution from each of
the fluxes, and our previous work showed that these two ¢nions to the energy spectrum can be linearly
superimposed despite the highly nonlinear nature of thblpno. Often, one of the fluxes is dominant and the
energy spectrum then has the visual shape of the case witlyle §iux; the contribution from the subdominant
flux is effectively hidden. The relative magnitudes of thecipal fluxes depend on the dissipative sinks in the
system, and varies according to the physical/mathematicgtem under consideration. We derive an important
inequality involving the “energy” and enstrophy” fluxes fesich representative system. This result then allows
us to determine the effective energy spectral shape in thergkecase of double cascades.

1. INTRODUCTION Tran and Bowman, 2003, 2004). A review can be found in
Gkioulekas and Tung (2005c) and Tabeling (2002).

The characteristic feature of two-dimensional turbulésce ~ Further confusion has resulted from efforts to explain the
that there are two conserved quantities, kinetic energy an@bserved energy spectrum of the atmosphere with the KLB
enstrophy. This led_Kraichnan (1967), Leith (1968), andtheory. Observations show that there is a robust energy spec
Batcheldri(1969) to conjecture that there will exist twortigd ~ trum with slope —3 which transitions at large wavenum-
ranges, one located upscale of the spectral region of inject bers into slope-5/3 (Gage| 1949; Gage and Nastfam, 1986;
and another on the downscale side of injection. In the upNastrom and Gage. 1984; Nastrom etlal.. 1984). In the KLB
scale side, it is assumed that there is only an upscale flux dheory, on the other hand, one expects that at small wavenum-
energy, and no flux of enstrophy. On the downscale side, likePers the energy spectrum will have slopg/3 from the in-
wise, there is only a downscale flux of enstrophy, and no fluxerse energy cascade, which will then transition at the-forc
of energy. One then uses a dimensional analysis argument g wavenumber, into a3 slope from the direct enstrophy
calculate the energy spectruli{k) where it is assumed that cascade. The apparent contradiction between these two pre-
in each inertial range it depends only on the correspondingictions has led to various explanations and debate (Dewan,
single flux and the wavenumbér The same type of argu- 1979]Lilly,[1989]1 indborg. 1999; VanZadt, 1982).
ment was used in the energy cascade of three-dimensional tur It was conjectured by Tung and Orlanhdo (2003a) that the
bulence [(Batchelbf, 1947: Kolmogordv, 1941a,b). Althoughobserved atmospheric energy spectrum results from the-down
three-dimensional turbulence also has two conserved guanscale cascade of enstrophy and energy injected at the large
ties, energy and helicity, one has the option to inject gnergscales by baroclinic instability and dissipated at the testl
without injecting helicity. In two-dimensional turbuleait is  length scales. Ify,, is the downscale enstrophy flux ang,
not possible to inject energy without injecting enstrophg a  is the downscale energy flux, it was suggested that they would
vice versa, because the two quantities are related coexist on the downscale side of injection and that their sep

Initial efforts to simulate the enstrophy cascade yielded®ate contributions to the energy spectrum would give the la
confusing reports of various numerical slopes. Consedyent €F @ compound spectral shape, with-a slope transition-
alternative theories have been proposed over the past 8§ yed"9 toa shgllowep5/3 slope as the wavenumber increases.
to explain them [(Moffatt] 1986: Polyakol., 1993; Saffinan, | N€ transition from-3 slope to—5/3 slope occurs at the
1971). Recently‘ in carefully set L]p experiments, it waslransition wavenumbet; with order of magnitude estimated
shown that it is possible to obtain the enstrophy cascadBY k¢ =~ v/fuv/cuy. Tungand Orlandol (2003a) have also
in agreement with the KLB theory (Ishihira and Kardeda, deémonstrated numerically that a two-layer quasi-geobfoop
2001;[Lindborg and Alvelitid, 20b0; Pasauero and Falkovichchannel model with thermal forcing, Ekman damping, and hy-
2002) . A numerical simulation with very good diag- perd_|ffu5|on c_an_reproduce this energy spectrum. The diag-
nostics has shown that the inverse energy cascade c&@stic shown in figure 7 of (Tung and Orlando, 2003a), shows
be obtained accordingly_(Boffetta ef al., 2000). There ard?0th the constant downscale energy and enstrophy fluxes co-
also however many papers that question the universality ofXisting in the same inertial range. Furthermore, recerd-me

these results_(DanilbV, 2005; Danilov and Guiakie, 20()1a,bSurements and data analysis by (Cho and Lindborg.12001)
have confirmed the existence of a downscale energy flux and

estimatey,, ~ 2 x 10~s73 ande,, ~ 6 x 10~ 'km*s3.
From these estimates we find the mean value of the tran-

o — —1
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magnitude. contribution of the particular solutioB % (k) has to be neg-
This theory is contrary to the widely accepted misconcepiigible both downscale and upscale of the injection scade, i
tion that the argument by (Fjarteft, 1953) forbids a down-

scale energy flux in two-dimensional turbulence, and thnroug ) k) < E(E)(k:) n E(”)(k:) Vilo > 1
uv uv uv ’ 0

the isomorphism theorem of Charhey (1971) also in quasi- ()
geostrophic turbulence. This misconception has been clar- Ez'(f) (k) < Eff)(k:) + Ei(:)(k)v VEly < 1.

ified by [Merilees and Warn _(1975), Tung and Welch (2001)

and Gkioulekas and Tun(y (2005a). Second, the dissipative adjustmer®{) (k¢{)) and

As has been pointed out by previous authprs (Edrue, 19949263(/{&63) of the homogeneous solution has to be such

Ey(ijnl«;, 19”9'5)' Ias 'r?”g "’},5 the dissipation tf?.rr.ns at Iargeascalthat it does not destroy the power law scaling in the inertial
and small scales have finite viscosity coefficients and the in o " ihermore. the dissipation scalé and () have

ertial ranges exist, the downscale enstrophy flux will be ac—FO be positioned so that the incoming energy and enstrophy
companied by a small downscale energy flux, and the upscale

) . can be dissipated.
energy flux W'I.l be accomp.anled by a small upscal_e enstrophy This principle of linear superposition of the enstrophy-cas
flux. Dimensional analysis arguments are premised on th

assumption that these additional fluxes can be ignored, co E_ade and the energy cascade is similar to the superposition

sequently the energy spectrum predictions obtained by suc f isotropic and anisotropic contributions to the geneeai

arguments are valid only to leading order. While this assump ructure functions (Arad etlal., 1999; Biferale and Praac
. L . L 2005 inci i i i
tion can be justified for strictly two-dimensional turbuten ) and the principle 6i(h) covariance in the direct energy

we will araue in this paper that it cannot obviously be .usti_cascade of three-dimensional turbulente (Belinicherlet al
9 pap Y D€ JUSt 79981 b 'vov and Procactla, 1998); the same idea s iritplic

fied for models of quasi-geostrophic turbulence, such as th% the multifractal model of Frisch (1995). It has been ob-

Fwo-layer r.nodel,. where the sublead[ng contributions can b(?ained by exploiting the mathematical structure of the exac
important in the inertial range. Predicting the form of #hes statistical theory of two-dimensional turbulence (i.ee tom-

ijgfadi'cgncg frécﬁ:gﬂfegg“;n?ﬁ,,fg b{gg onga;hi?;?t'c(gsaggeplete infinite system of equations governing the relevantst
' 9 0 . s ' 9 ture functions). Nonlinear results, such as the one that was
yond dimensional analysis.

. : roposed by Lilly(1989), follow from closure models inslea
In particular,| Gkioulekas and Tung _(2005b) have showngf the exact theory.

that the subleading fluxes are associated with a subleading In two-dimensional turbulence, the fluxes, andr,., are
H uv

downscale energy <_:asc_:ade and a subleading inverse erWro'@bnstrained by an inequality, that was communicated to us by
cascade that contributinearly to the total energy spectrum Danilov (Gkioulekas and Tuh@, 2005c) . This constraint im-

in addition to th? dominant contributions. As a result, ie th plies that the contribution of the downscale energy cascade
downscalge inertial range, th_e tot.al energy spectéiifh) has to the energy spectrum is overwhelmed by the contribution
the following three contributions: of the downscale enstrophy cascade and cannot be seen visu-
ally on a plot. This result was conjectured earlier.lby Smith
(2004) who claimed that the downscale energy cascade can
never have enough flux to move the transition wavenumber
whereE(;) (k), EVY (k) are the contributions of the downscale £, into the inertial range. The two-layer model is a different

E(k) = BG) (k) + B (k) + EE) (k), Ykto >1, (1)

energy and enstrophy cascade, given by dynamical system than the two-dimensional Navier-Stokes
_ equations, and although the superposition principle isegpde
E() (k) = auweZ 2k ?PDE) (k) mathematical result that is valid in both cases, the valioit

, . (2) Tov meauality : - -
BLP(0) bt ooy, @ e Dl ety o wolye model s obius

() ) - o . In the present paper we will show that in the two-layer
with D,y andD.; describing the dissipative corrections. The model when the Ekman dissipation coefficient is below

scale/\5)¢411) are the dissipation length scales for the down-3 critical value, then the Danilov inequality will be satfi
scale energy and enstrophy cascade. Finﬁl{ﬁ} (k) isthe  We will also argue that the asymmetric presence of Ekman
contribution from the effect of forcing and the sweeping in- damping on the bottom layer but not the top layer may cause
teractions. The latter can become significant via the vimfat the violation of the Danilov inequality for larger valuestbé
of statistical homogeneity caused by the boundary cormditio Ekman dissipation coefficient. In this case, the top layer ha
(see.Gkioulekas (2005) for details). Thus, in the ineraalge  more energy than the bottom layer, as is realistic in the atmo
where the effect of forcing and dissipation can be ignofieel, t sphere, and provided that the difference in energy between t
energy spectrun will take the simple form two layers is large enough, the downscale energy cascatde wil
be made observable in the energy spectrum. The simulation
E(k) & a2k + b2k 3[x +1n(ké)] /3. (3)  ofTung and Orlandd (2008a) has shown that it is possible to
have an observable downscale energy cascade, which implies
It should be emphasized that the formation of cascades ola violation of the Danilov inequality. The role of the argumhe
servable in the energy spectrum is by no means guaranteeid.this paper is to explain how and why this can happen, given
There are two prerequisites that need to be satisfied: fiest, t that it is a surprising and very unexpected result.
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An immediate implication of our argument is that the exis- There are two inviscid quadratic invariants o (5), which:a
tence of an extensive observabie®/? in the energy spectrum
of the atmosphere has the physical interpretation thattthe a A= (1/2)[[(=¥Q)], 9
mosphere is very baroclinic. We will also show that in the B =(1/2)|Ic2. (10)
surface quasi-geostrophic model, which represents thé mos

extreme case of baroclinicity, the downscale energy ca&scad\ote thatB is always conserved, whereas the conservation

becomes completely dominant. law of A requires that. be self-adjoint, i.e.
The paper is organized as follows. The Danilov inequality
is reviewed in section 2 where we make some simple general- 1F Ll = 1Lyl (11)

izations. Its implications for two-dimensional turbulena:-

turbulence, and SQG turbulence are discussed in sectitve 3. T For example in 2D turbulence it is seen that,

surface quasi-geostrophic model is discussed in sectionl4 a

that the two-layer model in section 5. Conclusions and some E = (1/2)[|(u® + )| = (1/2)[[[Vy]?] (12)
further remarks are given in section 6. = (1/2)|(=yQ)|| = 4, (13)

is the kinetic energy of the 2D fluid, and

2. THE DANILOV INEQUALITY IN ONE-LAYER MODELS
G=(1/2)Ic? =B (14)

The governing equation for a wide range of one-layer hy-
drodynamic models takes the form: is the enstrophy. The energy spectrd#tk) and enstrophy

spectrumG (k) are defined so thabl = fooo E(k)dk and

ac¢ G = [;° G(k)dk, wherek = k| is the isotropic wavenum-
5+ JW, ) =D+7, (5)  ber magnitude. In the more general cagék) is similarly
defined as the spectrum df, and B(k) the spectrum of3.
where7 is the forcing and is the dissipation and = —L.  In the general casé(k) may not necessarily be the energy

Here,L is a linear isotropic operator involving the derivatives Spectrum, as will be demonstrated.
with respect to the horizontal coordinates. For a generakco ~ The relationshipg = —Lv, translates into the spectral re-
bination of hyper- and hypo-diffusion: lationships in the Fourier space

D = —wy(—AYP¢ — i (—A) ¢, (6) {(k) = L(|k|)b(k), B(k)=L(k)A(k),  (15)

with p, h, positive integersp = 1, h = 0 yields the combina- Where
tion of molecular viscosity and Ekman damping.

For 2D turbulencef} is given byl = —A, whereA is the vk, t) = //MX, t)e” " dx, (16)
Laplacian operator and the streamfunctiois related to the
2D nondivergent velocity as We will assume thaf.(k) > 0, so that bothA(k) and B(k)
are positive. Furthermore, we will assume thatk) is a
(u,v) = <_a_¢ 6_¢) @) monotonically increasing function df. In 2D turbulence,
’ dy’ Oz L(k) = k?; in CHM turbulence,L(k) = k? + A\?; in a-

turbulenceL(k) = k*, and in SQGL(k) = k.
For barotropic QG turbulence, also known as Charney- FurthermoreA(k) and B(k) satisfy the following spectral
Hasegawa-Nima _(CHM) turbulence _(Charney. _1948;equations:
Hasegawa et al., _1979; Hasegawa and Mima, 11978)js

given instead byl = —A — A2, where)? is a given positive 0A(k) ~ Olla(k)

constant. Another interesting family of one-layer modets a ot ok —Da(k) + Fa(k) (17)
the a-turbulence models wheie = A® with A = (—A)1/2, oB(k)  olp(k)

The casen = 1 corresponds to surface quasi-geostrophic D ok —Dg(k) + Fp(k). (18)

turbulence (SQG) which is an extreme baroclinic model,
and not a barotropic model like 2D turbulence or CHM Here, D 4(k) and D (k) are the spectral dissipations rate of

turbulence. A(k) andB(k), respectively, with
Dp(k) = L(k)Da(k), (19)
2.1. Conservation laws Da(k) = [ok® + 11k~ A(k) > 0, (20)
Let || f]| be the norm off (z, y) defined as for a combination of hyper- and hypo-viscosities. Further-

more, F4(k) and F(k) are the spectra of forcing also re-
_ lated by Fs(k) = L(k)Fa(k), and,I14(k) andIlz(k) are
171 = //(f(x’y))dmy' @) the spectral fluxes ofl and B. Ensemble average is taken in



(@32) and [IB), but will not be denoted with different symbols 3. IMPLICATIONS FOR THE ENERGY SPECTRUM

here. The Leilh (1968) constraint on the fluxes generalizes t

oMp(k) _ .\ 0a(k)
e - W
and it shows that iflz (k) is constant, thedl 4 (k) is also

constant. The conservation laws fdrand B come out as the
following boundary conditions of 4 (k) andIIz (k):

(21)

Ma(0) = Jim TLa(k) =0 (22)

2.2. The Danilov inequality

Assuming that the injection (forcing) of and B occurs in

The significance of the inequalitf{[30) is that it decides
whether the transition wavenumbkyr is within the inertial
range, thus making a transition from the leading cascadweto t
subleading cascade observable in the energy spediiim
Whether this happens depends on the baroclinicity of the sys
tem, as we will show below by considering different cases.

It should be noted that in the following arguments ia&
sumedhat an inertial range exists either upscale or downscale
of injection. Unlike the case of 3D turbulence, where the
downscale energy cascade is very robust, it is well known tha
in 2D turbulence there are circumstances where the leading
inverse energy cascade_(Danilov, 2005; Danilov and Glrarie
20014.b| Gkioulekas and Turig, 2005c) or the leading down-
scale enstrophy cascadz (Tran and Bownian, 12003,] 2004;
Tran and Shepherd, 2002) may fail to appear as expected.

[k1, ko], then at statistical equilibrium, we have, frofk17) andSome of these issues are also relevant to the case- of

@3):

—+o0

HA(/{) = DA(q) dq, for k > ko (24)
k
+oo
HB(/{) = DB(q) dq, for k > ko (25)
k
k
HA(k):—/ Da(q) dq, for0 < k < ky (26)
0
k
Mp(k) = —/ Dg(q) dg, for0 < k < kq (27)
0

sinceF4 (k) = 0andFp(k) =0for0 < k < ky andk > ks.
For wavenumberg > ko, we have therefore
+oo
LRMAR) = Tp(k) = [ L) = La)Da(a) da <0
(28)

Similarly, for wavenumber8 < k£ < k{, we have:

k
L(W)TLa(k) — Tp(k) = — / (L(K) — L(q)|Da(q) dq < 0
(29)

Consequently, for all wavenumbeitse (0, k1) U (ko, +00)
not in the forcing range, we have:

L(k)ILa(k) — Tp(k) <0 (30)

This inequality was brought to our attention by Danilov (200

personal communication) for the case of 2D turbulence.

turbulencel(Tran, 2004).

In general, the failure of cascades is to be attributed to the
absense of a sufficiently strong large-scale dissipatiok. si
Since the observational evidence suggests that cascaides ex
in atmospheric turbulence, we will simply assume that witho
further discussion.

3.1. Two-dimensional turbulence

We begin with the classic case of 2D turbulence in finite
domain with finite viscosity for the infrared and ultravible
dissipations. In the inertial range on the downscale side of
injection, I14 (k) = €4y, andIlg(k) = n.,. The inequality
@30) implies thatk,,, k> < n,, for all & in this inertial range.
The energy spectrum ifll(1), valid in the inertial range, can b
rewritten to leading order, omitting the logarithmic cartien:

E(k) ~ CLe23k75/% 4 Con?/3k—3 (31)

uka 2/3
~ Con?Pk3 <1 T % (an ) (32)

~ Con2/3k3 (33)

where we use,,k% < n... This sequence of steps is valid
asymptotically in the limit of large separation between the
forcing scale and the dissipation scale, for wavenumbers
in the inertial range. A similar argument can be made for the
inertial range upscale of injection.

As shown previously by Gkioulekas and Tuhg (2005b,c) on
the downscale side of injection the dominant cascade igthe e

Previously, Fiartaft (1953) and Eyvink (1996) derived a sim-strophy cascade with (k) ~ k3, and on the upscale side of

ilar, but looser, bound, for the downscale energy fllis:

injection the dominant cascade is the inverse energy cascad

e(k) < no/k?, involving the total rate of enstrophy in- with E(k) ~ k~%/3. By “dominant” we mean that even for

jection .

This looser inequality is often used to show finite Reynolds numbers the contributions of the subleading

(Salmaoh| 1998) that in two-dimensional turbulence withreni downscale energy cascade and the subleading inverse-enstro

finite downscale range, the energy flilx (k), vanishes. This

phy cascade are hidden falt the wavenumberk in the iner-

is not true for the case of small but finite viscosity where thetial range.
downscale spectral range is finite. It is also not true for the This argument proves more rigorously a conjecture by

kind of quasi-geostrophic turbulence which is not 2D-like.

Smith (2004) that in 2D turbulence, on the downscale side of
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injection, we have no transition to shallower scalifi¢k) ~ As derived by Charney (1971), 3D QG flow conserves the
k—5/3. His other conjecture, that the same result also hold8D potential vorticity¢, which is advected horizontally by the
for the two-layer QG model, can be justified only when thestreamfunction). Here, bothy) and¢ are 3D fields. For con-
Ekman dissipation coefficiemz is below a critical value. stant Coriolis parametght, the governing conservation law for

¢ takes the form:

3.2. a-turbulence and SQG turbulence ‘Zﬁ +J(®,€) =0, (42)
This argument can be extended to the case-bfrbulence,  jith ¢ given by

which includes the case of SQ& & 1). HereL(k) = k©

and we assume > 0. Using the linear superposition prin- €= Ay + f_QQ po O _ Py 43)

ciple discussed in Gkioulekas and Tuhg (2005b) the spectrum ' po 0z \N29z) 7

of A(k) andB(k) are, in the downscale inertial range: . . , ,
wherepg(z) is the ambient air density, anéi?(z) the Brunt-

A(k) = Cy(TT4)*/3k~5F3% 4 Cy(I1p)2/3k~5 5> (34)  Vaisala frequency. Here we have omitted the forcing aed d
B(k) = [k|* A(K). (35)  Sipation terms. , S o
In SQG this potential vorticity is assumed, a priori, to be
Here, II, andIlp are the constant fluxes on the down-identically zero forz > 0. The streamfunctiom is solved
scale side of the forcing range. The inequaliid (30) becomefrom ¢ = Py = 0. With py and N2 taken to be constants, the

k“Il4 < Ilp for all k in the inertial ranges. Consequently, horizontal Fourier transform af(z, y, z, t) is obtained as
for wavenumberg in the inertial range, the spectruA{k) is

given by bk, z,t) = ok, t)e” FKN/Dz, (44)
11, Oy (Take\?/? using the boundedness boundary condition as cc.
A(k) ~ Co(TIg)*/ Pk 5 5 (1 tG ( T, ) Most of the dynamics in this model are occurring at the
surface, where the boundary condition of vanishing velrtica
(36) velocity, w, applied to the potential temperatuf®)(equation
~ Cy(Tlp)?/3k 3739 (37) leadsto:
again in the limit of large separation between the forciresc 99 +J@,0)=D+7, (45)
and the dissipation scale. Thus, in the downscale range the ot
is no observable transition and therefore: where
A(k) = Cy(Tg)2/3k—5 35, (38) o= 9T _foy (46)
B(k) o CQ(HB)Q/ka%Jr%a' (39) NTO N 0z

pow plays the role of the conserved quantjtyn (), D =

In the upscale range, the fluxes in the inequalifyl (30) becomyAG) is the thermal diffusion. and

negative. The spectra become then

A(k) 22 Cy(ILy /P55, (40)
B(k) = k*A(k). (41) is the thermal heating in the commonly used form of Newto-

nian cooling (se2_Tung and Orlando (2003b)) which includes

. For the SQG model, we show in the next section that the, forcing termaz0, and the Ekman damping terma z©.
visible energy spectrum actually has the shallowsy3 slope  This equation is to be solved on a 2D surface- 0. It has
even though the Danilov inequality is also satisfied, beausie same form as the vorticity equation for 2D turbulencg. (e.

actually itis B(k) which is the 2D energy spectrum addk)  @)) except that the spectral relationship between thected
is E]stead the 3D energy spectrum; there is no enstrophy Caguantity© and the advecting fielg is given instead by
cade.

F=Q=0ag(©y—-0) (47)

O(k, z,1) = %a% (Yo, yeIIVID=) - (ag)
4. PHYSICAL INTERPRETATION OF A(k) AND B(k) IN 7 —|k[(N/f)z
SQG TURBULENCE " “ = ~[kl[o(k,t)e N (49)
= —[k|to(k, 2,1) (50)
There has been considerable confusion over the physical in- R .
terpretation of the surface quasi-geostrophic model.cAith ~ Which reduces t® (k, t) = —[k[¢(k, t) atz = 0. Thus SQG
its mathematical formulation is in the form of a one-layercorresponds td.(k) = k.
model, it represents a three-dimensional system that corre Itcan be showrl(Charney, 1971; Tung and Orlahdo, 2003b)
sponds to the baroclinic limit of the three-dimensionalsjua thatthe 3D QG energy density
geostrophic model. Once that is taken into account, the-phys ) 9
ical interpretation of the spectr&(k) and B(k) and the phys- V|2 + e <Z_¢> ] 7 (51)
4

1
E=—p
ical implications of the Danilov inequality have to be reds 2"




is an invariant (i.e. independent of time)yhen integrated 2B(k) in a-turbulence withn = 1:
over the 3D domain¢ is the sum of the kinetic energy density E(k) = 2B(k) = Cy (I3 k=1 4 Co (1) k=53 (59)

&k and the potential energy denstty which are given by
s o ) From the Danilov inequality we learn that the visible energy
€k = (1/2)po(u” +v7) = (1/2)po| VY| (52)  spectrum in the inertial range downscale from the injection

1 2 ro0\% 1 scale is given by
=50 (£) <6_w> = 570®” (53) 2/3},-5/3
2 2 E(k) = Cye?/ 353, (60)
For SQG, using Parseval's identity, the energies intedratewhereIlz(k) = ¢, a positive constant in the downscale
over the horizontal surface are given by range. Thisk~>/3 energy spectrum is now predicted by
our theory. The flux is not the “enstrophy” flux, nor is it
1 the flux of 3D energyA, but is the 2D flux of 2D ener
Ep = ||€p|| = =po)|©? 54 > energys, but. : energy
P =lErl 2pOH | (54) 2B = E. This k—®/3 shape is also seen in numerical sim-
_ 1 2 ulations [Hover and Sadouiriy, 1982).
Ex =€kl = ipolllvdll I (55) For the spectral region upscale from that of injection the
1 s o energy spectrum should have the form:
— 5o [ (ki ) - =ik (1) dk (56) oy'sp

| . E(k) = Cy(T14)* 3k, (61)

3P0 /(l — kip(k, 1)])* dk = §P0||@2H =Ep (57)  wherell, is the inverse flux of the 3D total energy in the
horizontal spectral direction.

It is thus seen that the kinetic energy density and the avail-

able potential energy density, when integrated horizontal

are equipartitioned in flows such as SQG where potential vor?:- TWO-LAYER QG MODELS
ticity is zero, and that

The results in the previous sections demonstrate that QG
2B = ||©%| = (Ep + Ex)/po = E/po (58) turbulence can exhibit a variety of behaviors. Barotropacim
els possess an energy spectrum witB spectral slope, as
is the total energy at the lower surface. The 3D energy isin 2D turbulence, while SQG turbulence, which is baroclinic

instead. (with its exponential decay with height), has a spectruniwit
00 o0 a—5/3 slope, in the downscale inertial range. Two-layer QG
Esp = / |E]|dz = / podz||©?| models have both a barotropic and a baroclinic component
o 0 , (see . Salmoan (1978, 1980, 1998)), and we therefore expect a
_ A —2|k|(N/f)z mixture of —3 and —5/3 slopes depending on the degree of
N /0 podz // dkzdky ®|Z:0‘ € baroclinicity. The governing equations can be rewrittethia
1 o, form of the conservation law with = —L1), if we makeL
= 3P0 // dkzdkym@@ into a matrix andp into a column vector. The results obtained
#=0 so far for scalar relations do not hold in this case. We will
= lpo // £ (_1[,(:)*|z:0 dkdk, discuss the more general theory of multi-layers in a futiare p
2 N per. Here we only wish to explain why and how the Danilov

inequality can fail.

A relatively realistic version of two-layer model applica-
, , ble to studying atmospheric turbulence in the troposphaise w
This expression for 3D energy turns out to pe(f/N)A,  adopted irl_Tung and Orlandb (20D3a). In this model forcing
with A defined earlier asd = (1/2)[|(-¢©)|. Previ- 5 que to thermal heating, which injects energy directlpint
ous authors have made use of the similarity between thg,q paroclinic part of the total energy. The two-layer fliig s

form of vorticity equation [(b) in 2D turbulence and the 544, of an Ekman boundary layer near the ground, which in-
temperature equatiofi{45) in SQG turbulence to identifyoq,,ces Ekman pumping in the lower laybr (Hdlton, 1979)

by analogy, A é":s_ the “energy” a”_‘fB as the “enstrophy”  p ot in the upper layer. If one artificially adds an identi-
(Held etal.L19958; Pierrehumbert el al.. 1994). As pointéd 0 ¢4 Exman damping in the upper layer it can be easily shown

in [Tung and Orlandol (2008b) and also hetd is the total  h4; panilov's inequality applies, and we leave the prodht®
energy integrated over the lower surface, and includegikine interested reader.

plus available potential energy. The physical interpretefor
Awas not given, but can now be seen to be the total energy in
tegrated over the 3D domain. There is no potential enstroph
(€2/2) per se in SQG turbulence, because potential vorticity

1
S (00l )|

Two-layer QG models conserve potential vorticity in each
ayer in the absence of forcing and damping. In the forced-
dissipative case, the governing equations read:

has been taken to be zero identically. There is also no flux of Top layer: % + I, G) =Dy + T (62)
potential enstrophy in SQG. gt
In an inertial range where both fluxesAfandB are simul- . (2

. Bottom | = =D 63

taneously present, the energy spectrum is the same asthatfo o o Yo' or /W) =D+, (63)



where where( is the radiative heating term to the temperature equa-
tion.
g M R
G = Ad = 7(1#1 ~¥2), G2 = Ave 7(1#1 —¥2); The two inviscid quadratic invariants are the total energy

. o A = E and potential enstroph = G, defined as
are the potential vorticity in each layérg = (2v/2f)/(hN)

is the Rossby radius of deformation wavenumber and is taken

as a given constant(is the height). The dissipation terms,

D;, include momentum dissipation of relative vorticityy);, E =
in each layer, and Ekman damping from the lower boundary

layer:

Il = (¥1¢1 + ¥202)|| (66)
IV + 1Vl + S — vyl 67)

[\DIP—‘ N~

D1 = v(=APT1, Dy = v(—AP ey — vpAips. (64)

The forcing terms can be shown to satisfy where the first two terms represent the kinetic energy in each

layer, and the last term is the so-called available poteatia

F, = 2?@, = QfQ (65) ergy; and
|
2
G= l||(C1 +&) = H{(A%)Q + (Ath)* + k—R[k?a(% —12)* 4+ 2|Veh — Vb !} (68)

4
In the above defined conserved quantities, the contribsifiamm the two layers are summed, which allows us to discuss th
spectral fluxes of E and G through the horizontal wavenumbaraink. The governing spectral equations now have the same
form as [I¥) and{18), but the appropriate spectral dissipattes are different. They are given By (k) = 2rkdg(k) and
D¢ (k) = 2wkdq(k), whered g (k) anddq (k) are the one-dimensional dissipation rates which read

dp(k) = vE*E* [ |2 + (VK + vp)k?[o|? > 0

1 N
da(k) = (K* + k})dr(k) — kR [vE*? + Vel Re{tni3}
k2 - R A s k% .
= k*dp(k) + (2vk* + VE)7R/€2[|¢1|2 + [th2]* = Re(n193)] + ey K ([dal* — [¢1]?].

Itis seen that the the first two termsda: (k) are positive but the sign @l (k) is indeterminant, depending on the difference in
kinetic energy in each layéf1/2)k2|¢1 |2 vs (1/2)k2[)2|2). So

KL (k) — T (k) = /k " arqlkde(q) - do(a)ldq
—/jzwq{@?—q%d (@) + v LR @ — (o))
(20 + ) B + 12l - Re(a(a)a)] | o (69)

The first and third terms in the integrand are negative. loves that Danilov’s inequality holds, i.&I1z (k) — g (k) < 0,

if either the top layer has no more kinetic energy than the Idayar (i.e. |1 ()| — |2(q)|? < 0) or if kr = 0, which is the
barotropic limit where the two layers do not interact. Thiera wider sufficient condition in terms ofz, which can be derived
by requiring that the sumd (%, q) of the first two terms in[{89) should be negative. Using thaiity

[W1()? + [P2(a) | — R(@1 ()93 (q)) > O, (70)

it is easy to see that
BHLg(b) - Te(t) < [ 2rodu(h.g) do (72)
k

thus it is sufficient to show that 15 (k,q) < Oforall k < g < kmaz-



Note that4,2(k, ¢) can be bounded from above as:

Ava(k,q) = (* — ¢*)de(q) + (1/2)vekhd®[[41(9)]* — [¥2(g)]?] (72)
= (K = A P11 + (vg®™ + ve) P [ha(@)P] + (1/2)vekha® (11 (g)]* — [¢2(0)] (73)
= v (k* — ¢*) + (1/2)vekp®][1 (@) + (K — ¢*)(va®™ + ve)d® — (1/2)vekihd®]lba()F  (74)
< v (K — %) + (1/2)vekig®] 1 () (75)

This leads to the followingsufficient condition to satisfy  tem at thez = 0 layer. In this model there is no enstrophy,

Danilov’s inequality: and the dominant feature is the downscale energy cascade.
) We have shown that in the two-layer quasi-geostrophic
9p [ Kmax model, the violation of the Danilov inequality is possibldy
v < 2k P | — (76) : . .
kg as a result of asymmetric Ekman damping operating on only

one of the two-layers. This creates an imbalance between the
wherek,,. is either the truncation wavenumber in the numer-amount of energy accumulated in one layer versus the amount
ical model, or, in the theoretical case of infinite resolofipis  accumulated in the other layer, and the downscale energy cas
the hyperviscosity dissipation wavenumber, beyond whieh t cade will become observable on the condition that this imbal
spectral enstrophy dissipation rate becomes negligiiierd~  ance is sufficiently large. We have derived in the presergépap
fore anecessargondition toviolate Danilov’s inequality is a sufficient condition fomot violating the Danilov inequal-

ity which explains why thé:—>/3 spectrum has not been ob-

(kmax ) 2 77) served in previous simulations of the two-layer model. eri

vp > 2wk

kr ing a theoretical sufficient condition for violating the Dlan
inequality remains an open question. However, the nunierica
It is interesting to note that in the numerical simu- Simulation by Tung and Orlandb (2003a) has confirmed that a
lation of the two-layer model the algorithm adopted by double cascade with the transition wavenumber locatedein th

Tung and Orlando[(2008a) for determining the magnituddnertial range can be realized. This can only occur when the
of the hyperviscosity coefficient isz > wvk2»_, for  Danilovinequality is violated for some wavenumbgris the

max’

all but the last twenty wavenumbefs in the dissipation @nertial range.. The pargmeteriza_tion of the Ekman d_amping
range. [ Tung and Orlandb (2003a) obtained an energy spe# that simulation does in fact satisfy the necessary candit
trum with the compound slope configuration and the transitio derived in this paper.

wavenumbet:, occured in the inertial range downscale from As long as we operate within the framework of multiple-

injection in agreement with the condition ~ \/7u, /e,  |2Y€F Mmodels with a finite number of layers, one cannot
thus implying a violation of Danilov’s inequality. rule out the alternative theory that the atmospheric energy

spectrum might reflect a double downscale cascade of helic-
ity and energy instead of enstrophy and energy (see discus-
6. CONCLUSIONS AND DISCUSSION sion in section 6.5 of Branover etlal. (1999), and figure 3 of
Bershadskii et all(1993)). However, most of the current de-
The classical KLB theory of 2D turbulence relies for its bate has been focused on the somewhat mysterious nature of
mathematical simplicity and elegance on two unrealistic asthe very extensive and robust®/* spectrum.
sumptions: that the domain is infinite, and that the Reynolds Our work in the present paper explains why it can be re-
number approaches infinity. When these two assumptions agroduced in numerical simulations that use baroclinic mod-
relaxed, the situation becomes more complicated. The dowrels, while the same effect cannot be realized in simulations
scale enstrophy cascade is accompanied with a hidden downf two-dimensional turbulence. On the other hand our work
scale energy cascade, and similarly the inverse energgdasc here does not rule out the possibility that the shallower gfar
is accompanied with a hidden inverse enstrophy cascads. Thihe spectrum observed by Nastrom and (age (1984) over the
is true as long as the leading cascades themselves exist) whimesoscales can be due to dynamics other than QG, whether
requires the presence of a sufficiently strong dissipatiok s it is barotropic or baroclinic, especially for scalesl@b km
at small wavenumbers. The fluxes associated with the suler less (see e.d._Lindborg (2005) with Bousinesq dynamics).
leading cascades are constrained by the Danilov inequalityour present work serves to point out that over the largeescal
and as a result the subleading cascades cannot contritgge la (£ 600km), where the transition to shallower spectrum oc-
enough terms to the energy spectrum to create an observalsigrs, baroclinic QG theory is a viable mechanism for explain
effect. This situation changes, however, in baroclinic eied ing the transition from-3 to —5/3 slopes.
of quasi-geostrophic turbulence. Furthermore, as proposed first ky Tung and Orlando
The surface quasi-geostrophic model represents an eX20034a), the downscale energy flux, which is important in ex-
treme baroclinic case where the entire behavior in the threeplaining thek—°/3 energy spectrum over the mesoscales in
dimensional domain is constrained by the behavior of the sysmost theories, originates at larger scales (the synopiesg
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Its contribution to the energy spectrum is hidden for smnalle Fjarteft, R., 1953: On the changes in the spectral disiobutf ki-
wavenumbers under thie=2 part of the spectrum, and then  netic energy for two dimensional non-divergent flolellus 5,
emerges for largek past the transition scale. It remains an  225-230.

open question, one that is beyond the scope of this paper, fgisch, U., 1995Turbulence: The legacy of A.N. Kolmogor@am-
explain how this downscale energy flux can be continued intg_Pridge University Press, Ca[ns'%'dge: . .

length scales too small for QG theory to describe, and how ifaage, K., 1979: Evidence forka °/* law inertial range in mesoscale

is eventually dissipated.
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