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Does the subdominant part of the energy spectrum due to downscale
energy cascade remain hidden in quasi-geostrophic turbulence?

Ka Kit Tung∗ and Eleftherios Gkioulekas†

Department of Applied Mathematics, University of Washington, Seattle, WA, United States

In systems governing two-dimensional turbulence, surfacequasi-geostrophic turbulence, (more generallyα-
turbulence), two-layer quasi-geostrophic turbulence, etc., there often exist two conservative quadratic quantities,
one “energy”-like and one “enstrophy”-like. In a finite inertial range there are in general two spectral fluxes,
one associated with each conserved quantity. The energy spectrum in general has a contribution from each of
the fluxes, and our previous work showed that these two contributions to the energy spectrum can be linearly
superimposed despite the highly nonlinear nature of the problem. Often, one of the fluxes is dominant and the
energy spectrum then has the visual shape of the case with a single flux; the contribution from the subdominant
flux is effectively hidden. The relative magnitudes of the spectral fluxes depend on the dissipative sinks in the
system, and varies according to the physical/mathematicalsystem under consideration. We derive an important
inequality involving the “energy” and enstrophy” fluxes foreach representative system. This result then allows
us to determine the effective energy spectral shape in the general case of double cascades.

1. INTRODUCTION

The characteristic feature of two-dimensional turbulenceis
that there are two conserved quantities, kinetic energy and
enstrophy. This led Kraichnan (1967), Leith (1968), and
Batchelor (1969) to conjecture that there will exist two inertial
ranges, one located upscale of the spectral region of injection
and another on the downscale side of injection. In the up-
scale side, it is assumed that there is only an upscale flux of
energy, and no flux of enstrophy. On the downscale side, like-
wise, there is only a downscale flux of enstrophy, and no flux
of energy. One then uses a dimensional analysis argument to
calculate the energy spectrumE(k) where it is assumed that
in each inertial range it depends only on the corresponding
single flux and the wavenumberk. The same type of argu-
ment was used in the energy cascade of three-dimensional tur-
bulence (Batchelor, 1947; Kolmogorov, 1941a,b). Although
three-dimensional turbulence also has two conserved quanti-
ties, energy and helicity, one has the option to inject energy
without injecting helicity. In two-dimensional turbulence it is
not possible to inject energy without injecting enstrophy and
vice versa, because the two quantities are related

Initial efforts to simulate the enstrophy cascade yielded
confusing reports of various numerical slopes. Consequently,
alternative theories have been proposed over the past 30 years
to explain them (Moffatt, 1986; Polyakov, 1993; Saffman,
1971). Recently, in carefully set up experiments, it was
shown that it is possible to obtain the enstrophy cascade
in agreement with the KLB theory (Ishihira and Kaneda,
2001; Lindborg and Alvelius, 2000; Pasquero and Falkovich,
2002) . A numerical simulation with very good diag-
nostics has shown that the inverse energy cascade can
be obtained accordingly (Boffetta et al., 2000). There are
also however many papers that question the universality of
these results (Danilov, 2005; Danilov and Gurarie, 2001a,b;
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Tran and Bowman, 2003, 2004). A review can be found in
Gkioulekas and Tung (2005c) and Tabeling (2002).

Further confusion has resulted from efforts to explain the
observed energy spectrum of the atmosphere with the KLB
theory. Observations show that there is a robust energy spec-
trum with slope−3 which transitions at large wavenum-
bers into slope−5/3 (Gage, 1979; Gage and Nastrom, 1986;
Nastrom and Gage, 1984; Nastrom et al., 1984). In the KLB
theory, on the other hand, one expects that at small wavenum-
bers the energy spectrum will have slope−5/3 from the in-
verse energy cascade, which will then transition at the forc-
ing wavenumber, into a−3 slope from the direct enstrophy
cascade. The apparent contradiction between these two pre-
dictions has led to various explanations and debate (Dewan,
1979; Lilly, 1989; Lindborg, 1999; VanZadt, 1982).

It was conjectured by Tung and Orlando (2003a) that the
observed atmospheric energy spectrum results from the down-
scale cascade of enstrophy and energy injected at the large
scales by baroclinic instability and dissipated at the smallest
length scales. Ifηuv is the downscale enstrophy flux andεuv

is the downscale energy flux, it was suggested that they would
coexist on the downscale side of injection and that their sep-
arate contributions to the energy spectrum would give the lat-
ter a compound spectral shape, with a−3 slope transition-
ing to a shallower−5/3 slope as the wavenumber increases.
The transition from−3 slope to−5/3 slope occurs at the
transition wavenumberkt with order of magnitude estimated
by kt ≈

√

ηuv/εuv. Tung and Orlando (2003a) have also
demonstrated numerically that a two-layer quasi-geostrophic
channel model with thermal forcing, Ekman damping, and hy-
perdiffusion can reproduce this energy spectrum. The diag-
nostic shown in figure 7 of (Tung and Orlando, 2003a), shows
both the constant downscale energy and enstrophy fluxes co-
existing in the same inertial range. Furthermore, recent mea-
surements and data analysis by (Cho and Lindborg, 2001)
have confirmed the existence of a downscale energy flux and
estimateηuv ≈ 2 × 10−15s−3 andεuv ≈ 6 × 10−11km2s−3.
From these estimates we find the mean value of the tran-
sition scalekt =

√

ηuv/εuv ≈ 0.57 × 10−2km−1 and
λt = 2π/kt ≈ 1 × 103km which has the correct order of
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magnitude.
This theory is contrary to the widely accepted misconcep-

tion that the argument by (Fjørtøft, 1953) forbids a down-
scale energy flux in two-dimensional turbulence, and through
the isomorphism theorem of Charney (1971) also in quasi-
geostrophic turbulence. This misconception has been clar-
ified by Merilees and Warn (1975), Tung and Welch (2001)
and Gkioulekas and Tung (2005a).

As has been pointed out by previous authors (Borue, 1994;
Eyink, 1996), as long as the dissipation terms at large-scale
and small scales have finite viscosity coefficients and the in-
ertial ranges exist, the downscale enstrophy flux will be ac-
companied by a small downscale energy flux, and the upscale
energy flux will be accompanied by a small upscale enstrophy
flux. Dimensional analysis arguments are premised on the
assumption that these additional fluxes can be ignored, con-
sequently the energy spectrum predictions obtained by such
arguments are valid only to leading order. While this assump-
tion can be justified for strictly two-dimensional turbulence,
we will argue in this paper that it cannot obviously be justi-
fied for models of quasi-geostrophic turbulence, such as the
two-layer model, where the subleading contributions can be
important in the inertial range. Predicting the form of these
subleading corrections requires a subtle mathematical argu-
ment, given by Gkioulekas and Tung (2005b), that goes be-
yond dimensional analysis.

In particular, Gkioulekas and Tung (2005b) have shown
that the subleading fluxes are associated with a subleading
downscale energy cascade and a subleading inverse enstrophy
cascade that contributelinearly to the total energy spectrum
in addition to the dominant contributions. As a result, in the
downscale inertial range, the total energy spectrumE(k) has
the following three contributions:

E(k) = E(ε)
uv (k) + E(η)

uv (k) + E(p)
uv (k), ∀kℓ0 ≫ 1, (1)

whereE(ε)
uv (k),E(η)

uv (k) are the contributions of the downscale
energy and enstrophy cascade, given by

E(ε)
uv (k) = auvε

2/3
uv k

−5/3
D

(ε)
uv (kℓ(ε)uv )

E(η)
uv (k) = buvη

2/3
uv k

−3[χ+ ln(kℓ0)]
−1/3

D
(η)
uv (kℓ(η)

uv ),
(2)

with D
(ε)
uv andD

(η)
uv describing the dissipative corrections. The

scalesℓ(ε)uv ,ℓ(η)
uv are the dissipation length scales for the down-

scale energy and enstrophy cascade. Finally,E
(p)
uv (k) is the

contribution from the effect of forcing and the sweeping in-
teractions. The latter can become significant via the violation
of statistical homogeneity caused by the boundary conditions
(see Gkioulekas (2005) for details). Thus, in the inertial range
where the effect of forcing and dissipation can be ignored, the
energy spectrun will take the simple form

E(k) ≈ auvε
2/3
uv k

−5/3 + buvη
2/3
uv k

−3[χ+ ln(kℓ0)]
−1/3. (3)

It should be emphasized that the formation of cascades ob-
servable in the energy spectrum is by no means guaranteed.
There are two prerequisites that need to be satisfied: first, the

contribution of the particular solutionE(p)
uv (k) has to be neg-

ligible both downscale and upscale of the injection scale, i.e.

E(p)
uv (k) ≪ E(ε)

uv (k) + E(η)
uv (k), ∀kℓ0 ≫ 1

E
(p)
ir (k) ≪ E

(ε)
ir (k) + E

(η)
ir (k), ∀kℓ0 ≪ 1.

(4)

Second, the dissipative adjustmentD(η)
uv (kℓ

(η)
uv ) and

D
(ε)
uv (kℓ

(ε)
uv ) of the homogeneous solution has to be such

that it does not destroy the power law scaling in the inertial
range. Furthermore, the dissipation scalesℓ

(η)
uv andℓ(ε)uv have

to be positioned so that the incoming energy and enstrophy
can be dissipated.

This principle of linear superposition of the enstrophy cas-
cade and the energy cascade is similar to the superposition
of isotropic and anisotropic contributions to the generalized
structure functions (Arad et al., 1999; Biferale and Procaccia,
2005) and the principle ofZ(h) covariance in the direct energy
cascade of three-dimensional turbulence (Belinicher et al.,
1998a,b; L’vov and Procaccia, 1998); the same idea is implicit
in the multifractal model of Frisch (1995). It has been ob-
tained by exploiting the mathematical structure of the exact
statistical theory of two-dimensional turbulence (i.e. the com-
plete infinite system of equations governing the relevant struc-
ture functions). Nonlinear results, such as the one that was
proposed by Lilly (1989), follow from closure models instead
of the exact theory.

In two-dimensional turbulence, the fluxesεuv andηuv are
constrained by an inequality, that was communicated to us by
Danilov (Gkioulekas and Tung, 2005c) . This constraint im-
plies that the contribution of the downscale energy cascade
to the energy spectrum is overwhelmed by the contribution
of the downscale enstrophy cascade and cannot be seen visu-
ally on a plot. This result was conjectured earlier by Smith
(2004) who claimed that the downscale energy cascade can
never have enough flux to move the transition wavenumber
kt into the inertial range. The two-layer model is a different
dynamical system than the two-dimensional Navier-Stokes
equations, and although the superposition principle is a deep
mathematical result that is valid in both cases, the validity of
the Danilov inequality in the two-layer model is not obvious
(Gkioulekas and Tung, 2005c; Tung, 2004).

In the present paper we will show that in the two-layer
model when the Ekman dissipation coefficientνE is below
a critical value, then the Danilov inequality will be satisfied.
We will also argue that the asymmetric presence of Ekman
damping on the bottom layer but not the top layer may cause
the violation of the Danilov inequality for larger values ofthe
Ekman dissipation coefficient. In this case, the top layer has
more energy than the bottom layer, as is realistic in the atmo-
sphere, and provided that the difference in energy between the
two layers is large enough, the downscale energy cascade will
be made observable in the energy spectrum. The simulation
of Tung and Orlando (2003a) has shown that it is possible to
have an observable downscale energy cascade, which implies
a violation of the Danilov inequality. The role of the argument
in this paper is to explain how and why this can happen, given
that it is a surprising and very unexpected result.
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An immediate implication of our argument is that the exis-
tence of an extensive observablek−5/3 in the energy spectrum
of the atmosphere has the physical interpretation that the at-
mosphere is very baroclinic. We will also show that in the
surface quasi-geostrophic model, which represents the most
extreme case of baroclinicity, the downscale energy cascade
becomes completely dominant.

The paper is organized as follows. The Danilov inequality
is reviewed in section 2 where we make some simple general-
izations. Its implications for two-dimensional turbulence,α-
turbulence, and SQG turbulence are discussed in section 3.The
surface quasi-geostrophic model is discussed in section 4 and
that the two-layer model in section 5. Conclusions and some
further remarks are given in section 6.

2. THE DANILOV INEQUALITY IN ONE-LAYER MODELS

The governing equation for a wide range of one-layer hy-
drodynamic models takes the form:

∂ζ

∂t
+ J(ψ, ζ) = D + F, (5)

whereF is the forcing andD is the dissipation andζ = −Lψ.
Here,L is a linear isotropic operator involving the derivatives
with respect to the horizontal coordinates. For a general com-
bination of hyper- and hypo-diffusion:

D = −ν0(−∆)pζ − ν1(−∆)−hζ, (6)

with p, h, positive integers.p = 1, h = 0 yields the combina-
tion of molecular viscosity and Ekman damping.

For 2D turbulence,L is given byL = −∆, where∆ is the
Laplacian operator and the streamfunctionψ is related to the
2D nondivergent velocity as

(u, v) =

(

−∂ψ
∂y
,
∂ψ

∂x

)

(7)

For barotropic QG turbulence, also known as Charney-
Hasegawa-Nima (CHM) turbulence (Charney, 1948;
Hasegawa et al., 1979; Hasegawa and Mima, 1978),L is
given instead byL = −∆ − λ2, whereλ2 is a given positive
constant. Another interesting family of one-layer models are
theα-turbulence models whereL = Λα with Λ ≡ (−∆)1/2.
The caseα = 1 corresponds to surface quasi-geostrophic
turbulence (SQG) which is an extreme baroclinic model,
and not a barotropic model like 2D turbulence or CHM
turbulence.

2.1. Conservation laws

Let ‖f‖ be the norm off(x, y) defined as

‖f‖ ≡
∫∫

(f(x, y))dxdy. (8)

There are two inviscid quadratic invariants for (5), which are:

A = (1/2)‖(−ψζ)‖, (9)

B = (1/2)‖ζ2‖. (10)

Note thatB is always conserved, whereas the conservation
law ofA requires thatL be self-adjoint, i.e.

‖f(Lg)‖ = ‖(Lf)g‖. (11)

For example in 2D turbulence it is seen that,

E ≡ (1/2)‖(u2 + v2)‖ = (1/2)‖|∇ψ|2‖ (12)

= (1/2)‖(−ψζ)‖ ≡ A, (13)

is the kinetic energy of the 2D fluid, and

G ≡ (1/2)‖ζ2‖ ≡ B (14)

is the enstrophy. The energy spectrumE(k) and enstrophy
spectrumG(k) are defined so thatE =

∫∞

0 E(k)dk and
G =

∫∞

0 G(k)dk, wherek = |k| is the isotropic wavenum-
ber magnitude. In the more general case,A(k) is similarly
defined as the spectrum ofA, andB(k) the spectrum ofB.
In the general caseA(k) may not necessarily be the energy
spectrum, as will be demonstrated.

The relationship,ζ = −Lψ, translates into the spectral re-
lationships in the Fourier space

ζ̂(k) = L(|k|)ψ̂(k), B(k) = L(k)A(k), (15)

where

ψ̂(k, t) =

∫∫

ψ(x, t)e−ik·xdx. (16)

We will assume thatL(k) > 0, so that bothA(k) andB(k)
are positive. Furthermore, we will assume thatL(k) is a
monotonically increasing function ofk. In 2D turbulence,
L(k) = k2; in CHM turbulence,L(k) = k2 + λ2; in α-
turbulence,L(k) = kα, and in SQG,L(k) = k.

Furthermore,A(k) andB(k) satisfy the following spectral
equations:

∂A(k)

∂t
+
∂ΠA(k)

∂k
= −DA(k) + FA(k) (17)

∂B(k)

∂t
+
∂ΠB(k)

∂k
= −DB(k) + FB(k). (18)

Here,DA(k) andDB(k) are the spectral dissipations rate of
A(k) andB(k), respectively, with

DB(k) = L(k)DA(k), (19)

DA(k) = [ν0k
2p + ν1k

−2h]A(k) > 0, (20)

for a combination of hyper- and hypo-viscosities. Further-
more,FA(k) andFB(k) are the spectra of forcing also re-
lated byFB(k) = L(k)FA(k), and,ΠA(k) andΠB(k) are
the spectral fluxes ofA andB. Ensemble average is taken in
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(17) and (18), but will not be denoted with different symbols
here. The Leith (1968) constraint on the fluxes generalizes to

∂ΠB(k)

∂k
= L(k)

∂ΠA(k)

∂k
, (21)

and it shows that ifΠB(k) is constant, thenΠA(k) is also
constant. The conservation laws forA andB come out as the
following boundary conditions onΠA(k) andΠB(k):

ΠA(0) = lim
k→+∞

ΠA(k) = 0 (22)

ΠB(0) = lim
k→+∞

ΠB(k) = 0. (23)

2.2. The Danilov inequality

Assuming that the injection (forcing) ofA andB occurs in
[k1, k2], then at statistical equilibrium, we have, from (17) and
(18):

ΠA(k) =

∫ +∞

k

DA(q) dq, for k > k2 (24)

ΠB(k) =

∫ +∞

k

DB(q) dq, for k > k2 (25)

ΠA(k) = −
∫ k

0

DA(q) dq, for 0 < k < k1 (26)

ΠB(k) = −
∫ k

0

DB(q) dq, for 0 < k < k1 (27)

sinceFA(k) = 0 andFB(k) = 0 for 0 < k < k1 andk > k2.
For wavenumbersk > k2, we have therefore

L(k)ΠA(k) − ΠB(k) =

∫ +∞

k

[L(k) − L(q)]DA(q) dq < 0

(28)

Similarly, for wavenumbers0 < k < k1, we have:

L(k)ΠA(k) − ΠB(k) = −
∫ k

0

[L(k) − L(q)]DA(q) dq < 0

(29)

Consequently, for all wavenumbersk ∈ (0, k1) ∪ (k2,+∞)
not in the forcing range, we have:

L(k)ΠA(k) − ΠB(k) < 0 (30)

This inequality was brought to our attention by Danilov (2004,
personal communication) for the case of 2D turbulence.

Previously, Fjørtøft (1953) and Eyink (1996) derived a sim-
ilar, but looser, bound, for the downscale energy fluxΠE :
ΠE(k) < η0/k

2, involving the total rate of enstrophy in-
jection η0. This looser inequality is often used to show
(Salmon, 1998) that in two-dimensional turbulence with an in-
finite downscale range, the energy fluxΠE(k), vanishes. This
is not true for the case of small but finite viscosity where the
downscale spectral range is finite. It is also not true for the
kind of quasi-geostrophic turbulence which is not 2D-like.

3. IMPLICATIONS FOR THE ENERGY SPECTRUM

The significance of the inequality (30) is that it decides
whether the transition wavenumberkt is within the inertial
range, thus making a transition from the leading cascade to the
subleading cascade observable in the energy spectrumE(k).
Whether this happens depends on the baroclinicity of the sys-
tem, as we will show below by considering different cases.

It should be noted that in the following arguments it isas-
sumedthat an inertial range exists either upscale or downscale
of injection. Unlike the case of 3D turbulence, where the
downscale energy cascade is very robust, it is well known that
in 2D turbulence there are circumstances where the leading
inverse energy cascade (Danilov, 2005; Danilov and Gurarie,
2001a,b; Gkioulekas and Tung, 2005c) or the leading down-
scale enstrophy cascade (Tran and Bowman, 2003, 2004;
Tran and Shepherd, 2002) may fail to appear as expected.
Some of these issues are also relevant to the case ofα-
turbulence (Tran, 2004).

In general, the failure of cascades is to be attributed to the
absense of a sufficiently strong large-scale dissipation sink.
Since the observational evidence suggests that cascades exist
in atmospheric turbulence, we will simply assume that without
further discussion.

3.1. Two-dimensional turbulence

We begin with the classic case of 2D turbulence in finite
domain with finite viscosity for the infrared and ultraviolet
dissipations. In the inertial range on the downscale side of
injection,ΠA(k) = ǫuv, andΠB(k) = ηuv. The inequality
(30) implies thatǫuvk

2 < ηuv for all k in this inertial range.
The energy spectrum in (1), valid in the inertial range, can be
rewritten to leading order, omitting the logarithmic correction:

E(k) ∼ C1ε
2/3
uv k

−5/3 + C2η
2/3
uv k

−3 (31)

∼ C2η
2/3
uv k

−3

(

1 +
C1

C2

(

εuvk
2

ηuv

)2/3
)

(32)

≈ C2η
2/3
uv k

−3 (33)

where we useǫuvk
2 < ηuv. This sequence of steps is valid

asymptotically in the limit of large separation between the
forcing scale and the dissipation scale, for wavenumbersk
in the inertial range. A similar argument can be made for the
inertial range upscale of injection.

As shown previously by Gkioulekas and Tung (2005b,c) on
the downscale side of injection the dominant cascade is the en-
strophy cascade withE(k) ∼ k−3, and on the upscale side of
injection the dominant cascade is the inverse energy cascade
with E(k) ∼ k−5/3. By “dominant” we mean that even for
finite Reynolds numbers the contributions of the subleading
downscale energy cascade and the subleading inverse enstro-
phy cascade are hidden forall the wavenumbersk in the iner-
tial range.

This argument proves more rigorously a conjecture by
Smith (2004) that in 2D turbulence, on the downscale side of
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injection, we have no transition to shallower scalingE(k) ∼
k−5/3. His other conjecture, that the same result also holds
for the two-layer QG model, can be justified only when the
Ekman dissipation coefficientνE is below a critical value.

3.2. α-turbulence and SQG turbulence

This argument can be extended to the case ofα-turbulence,
which includes the case of SQG (α = 1). HereL(k) = kα

and we assumeα > 0. Using the linear superposition prin-
ciple discussed in Gkioulekas and Tung (2005b) the spectrum
of A(k) andB(k) are, in the downscale inertial range:

A(k) = C1(ΠA)2/3k−
7

3
+ 1

3
α + C2(ΠB)2/3k−

7

3
− 1

3
α (34)

B(k) = |k|αA(k). (35)

Here, ΠA and ΠB are the constant fluxes on the down-
scale side of the forcing range. The inequality (30) becomes
kαΠA < ΠB for all k in the inertial ranges. Consequently,
for wavenumbersk in the inertial range, the spectrumA(k) is
given by

A(k) ∼ C2(ΠB)2/3k−
7

3
− 1

3
α

(

1 +
C1

C2

(

ΠAk
α

ΠB

)2/3
)

(36)

∼ C2(ΠB)2/3k−
7

3
− 1

3
α, (37)

again in the limit of large separation between the forcing scale
and the dissipation scale. Thus, in the downscale range, there
is no observable transition and therefore:

A(k) ∼= C2(ΠB)2/3k−
7

3
− 1

3
α, (38)

B(k) ∼= C2(ΠB)2/3k−
7

3
+ 2

3
α. (39)

In the upscale range, the fluxes in the inequality (30) become
negative. The spectra become then

A(k) ∼= C1(ΠA)2/3k−
7

3
+ 1

3
α, (40)

B(k) = kαA(k). (41)

For the SQG model, we show in the next section that the
visible energy spectrum actually has the shallower−5/3 slope
even though the Danilov inequality is also satisfied, because
actually it isB(k) which is the 2D energy spectrum andA(k)
is instead the 3D energy spectrum; there is no enstrophy cas-
cade.

4. PHYSICAL INTERPRETATION OF A(k) AND B(k) IN
SQG TURBULENCE

There has been considerable confusion over the physical in-
terpretation of the surface quasi-geostrophic model. Although
its mathematical formulation is in the form of a one-layer
model, it represents a three-dimensional system that corre-
sponds to the baroclinic limit of the three-dimensional quasi-
geostrophic model. Once that is taken into account, the phys-
ical interpretation of the spectraA(k) andB(k) and the phys-
ical implications of the Danilov inequality have to be revised.

As derived by Charney (1971), 3D QG flow conserves the
3D potential vorticityξ, which is advected horizontally by the
streamfunctionψ. Here, bothψ andξ are 3D fields. For con-
stant Coriolis parameterf , the governing conservation law for
ξ takes the form:

∂ξ

∂t
+ J(ψ, ξ) = 0, (42)

with ξ given by

ξ = ∆ψ +
f2

ρ0

∂

∂z

(

ρ0

N2

∂ψ

∂z

)

≡ Pψ, (43)

whereρ0(z) is the ambient air density, andN2(z) the Brunt-
Väisälä frequency. Here we have omitted the forcing and dis-
sipation terms.

In SQG this potential vorticityξ is assumed, a priori, to be
identically zero forz > 0. The streamfunctionψ is solved
from ξ = Pψ = 0. With ρ0 andN2 taken to be constants, the
horizontal Fourier transform ofψ(x, y, z, t) is obtained as

ψ̂(k, z, t) = ψ̂0(k, t)e
−|k|(N/f)z, (44)

using the boundedness boundary condition asz → ∞.
Most of the dynamics in this model are occurring at the

surface, where the boundary condition of vanishing vertical
velocity,w, applied to the potential temperature (Θ) equation
leads to:

∂Θ

∂t
+ J(ψ,Θ) = D + F, (45)

where

Θ =
g

N

T

T0
=

f

N

∂ψ

∂z
, (46)

now plays the role of the conserved quantityζ in (5), D =
ν∆Θ is the thermal diffusion, and

F = Q = αE(Θ0 − Θ) (47)

is the thermal heating in the commonly used form of Newto-
nian cooling (see Tung and Orlando (2003b)) which includes
a forcing termαEΘ0 and the Ekman damping term−αEΘ.
This equation is to be solved on a 2D surfacez = 0. It has
the same form as the vorticity equation for 2D turbulence (e.g.
(5)), except that the spectral relationship between the advected
quantityΘ and the advecting fieldψ is given instead by

Θ̂(k, z, t) =
f

N

∂

∂z

(

ψ̂0(k, t)e
−|k|(N/f)z

)

(48)

= −|k|[ψ̂0(k, t)e
−|k|(N/f)z] (49)

= −|k|ψ̂0(k, z, t) (50)

which reduces tôΘ(k, t) = −|k|ψ̂(k, t) at z = 0. Thus SQG
corresponds toL(k) = k.

It can be shown (Charney, 1971; Tung and Orlando, 2003b)
that the 3D QG energy density

E ≡ 1

2
ρ0

[

|∇ψ|2 +
f2

N2

(

∂ψ

∂z

)2
]

, (51)
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is an invariant (i.e. independent of time),when integrated
over the 3D domain.E is the sum of the kinetic energy density
EK and the potential energy densityEP which are given by

EK = (1/2)ρ0(u
2 + v2) = (1/2)ρ0|∇ψ|2 (52)

EP =
1

2
ρ0

(

f

N

)2(
∂ψ

∂z

)2

=
1

2
ρ0Θ

2 (53)

For SQG, using Parseval’s identity, the energies integrated
over the horizontal surface are given by

EP = ‖EP ‖ =
1

2
ρ0‖Θ2‖ (54)

EK = ‖EK‖ =
1

2
ρ0‖|∇ψ|2‖ (55)

=
1

2
ρ0

∫

(ikψ̂(k, t)) · (−ikψ̂∗(k, t)) dk (56)

=
1

2
ρ0

∫

(| − kψ̂(k, t)|)2 dk =
1

2
ρ0‖Θ2‖ = EP (57)

It is thus seen that the kinetic energy density and the avail-
able potential energy density, when integrated horizontally,
are equipartitioned in flows such as SQG where potential vor-
ticity is zero, and that

2B ≡ ‖Θ2‖ = (EP + EK)/ρ0 = E/ρ0 (58)

is the total energy at the lower surface. The 3D energy is,
instead.

E3D ≡
∫ ∞

0

‖E‖dz =

∫ ∞

0

ρ0dz‖Θ2‖

=

∫ ∞

0

ρ0dz

∫∫

dkxdky

∣

∣

∣
Θ̂|z=0

∣

∣

∣

2

e−2|k|(N/f)z

=
1

2
ρ0

∫∫

dkxdky
f

N |k| Θ̂Θ̂∗

∣

∣

∣

∣

z=0

=
1

2
ρ0

∫∫

f

N

(

−ψ̂Θ̂∗|z=0

)

dkxdky

=
1

2
ρ0
f

N
‖(−ψΘ|z=0)‖.

This expression for 3D energy turns out to beρ0(f/N)A,
with A defined earlier asA ≡ (1/2)‖(−ψΘ)‖. Previ-
ous authors have made use of the similarity between the
form of vorticity equation (5) in 2D turbulence and the
temperature equation (45) in SQG turbulence to identify,
by analogy,A as the “energy” andB as the “enstrophy”
(Held et al., 1995; Pierrehumbert et al., 1994). As pointed out
in Tung and Orlando (2003b) and also here,2B is the total
energy integrated over the lower surface, and includes kinetic
plus available potential energy. The physical interpretation for
Awas not given, but can now be seen to be the total energy in-
tegrated over the 3D domain. There is no potential enstrophy
(ξ2/2) per se in SQG turbulence, because potential vorticityξ
has been taken to be zero identically. There is also no flux of
potential enstrophy in SQG.

In an inertial range where both fluxes ofA andB are simul-
taneously present, the energy spectrum is the same as that for

2B(k) in α-turbulence withα = 1:

E(k) = 2B(k) = C1(ΠA)2/3k−1+C2(ΠB)2/3k−5/3. (59)

From the Danilov inequality we learn that the visible energy
spectrum in the inertial range downscale from the injection
scale is given by

E(k) ∼= C2ǫ
2/3k−5/3, (60)

where ΠB(k) = ǫ, a positive constant in the downscale
range. Thisk−5/3 energy spectrum is now predicted by
our theory. The fluxǫ is not the “enstrophy” flux, nor is it
the flux of 3D energyA, but is the 2D flux of 2D energy
2B = E. This k−5/3 shape is also seen in numerical sim-
ulations (Hoyer and Sadourny, 1982).

For the spectral region upscale from that of injection the
energy spectrum should have the form:

E(k) ∼= C1(ΠA)2/3k−1, (61)

whereΠA is the inverse flux of the 3D total energy in the
horizontal spectral direction.

5. TWO-LAYER QG MODELS

The results in the previous sections demonstrate that QG
turbulence can exhibit a variety of behaviors. Barotropic mod-
els possess an energy spectrum with−3 spectral slope, as
in 2D turbulence, while SQG turbulence, which is baroclinic
(with its exponential decay with height), has a spectrum with
a−5/3 slope, in the downscale inertial range. Two-layer QG
models have both a barotropic and a baroclinic component
(see Salmon (1978, 1980, 1998)), and we therefore expect a
mixture of−3 and−5/3 slopes depending on the degree of
baroclinicity. The governing equations can be rewritten inthe
form of the conservation law withζ = −Lψ, if we makeL

into a matrix andψ into a column vector. The results obtained
so far for scalar relations do not hold in this case. We will
discuss the more general theory of multi-layers in a future pa-
per. Here we only wish to explain why and how the Danilov
inequality can fail.

A relatively realistic version of two-layer model applica-
ble to studying atmospheric turbulence in the troposphere was
adopted in Tung and Orlando (2003a). In this model forcing
is due to thermal heating, which injects energy directly into
the baroclinic part of the total energy. The two-layer fluid sits
atop of an Ekman boundary layer near the ground, which in-
troduces Ekman pumping in the lower layer (Holton, 1979)
but not in the upper layer. If one artificially adds an identi-
cal Ekman damping in the upper layer it can be easily shown
that Danilov’s inequality applies, and we leave the proof tothe
interested reader.

Two-layer QG models conserve potential vorticity in each
layer in the absence of forcing and damping. In the forced-
dissipative case, the governing equations read:

Top layer:
∂ζ1
∂t

+ J(ψ1, ζ1) = D1 + F1 (62)

Bottom layer:
∂ζ2
∂t

+ J(ψ2, ζ2) = D2 + F2, (63)
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where

ζ1 = ∆ψ1 −
k2

R

2
(ψ1 − ψ2), ζ2 = ∆ψ2 +

k2
R

2
(ψ1 − ψ2),

are the potential vorticity in each layer.kR ≡ (2
√

2f)/(hN)
is the Rossby radius of deformation wavenumber and is taken
as a given constant (h is the height). The dissipation terms,
Di, include momentum dissipation of relative vorticity,∆ψi,
in each layer, and Ekman damping from the lower boundary
layer:

D1 = ν(−∆)p+1ψ1, D2 = ν(−∆)p+1ψ2 − νE∆ψ2. (64)

The forcing terms can be shown to satisfy

F1 = −k
2
R

2f
Q, F2 = −k

2
R

2f
Q (65)

whereQ is the radiative heating term to the temperature equa-
tion.

The two inviscid quadratic invariants are the total energy
A = E and potential enstrophyB = G, defined as

E ≡ 1

2
‖ − (ψ1ζ1 + ψ2ζ2)‖ (66)

=
1

2
‖{|∇ψ1|2 + |∇ψ2|2 +

k2
R

2
(ψ1 − ψ2)

2}‖, (67)

where the first two terms represent the kinetic energy in each
layer, and the last term is the so-called available potential en-
ergy; and

G ≡ 1

2
‖(ζ2

1 + ζ2
2 )‖ =

1

2
‖{(∆ψ1)

2 + (∆ψ2)
2 +

k2
R

4
[k2

R(ψ1 − ψ2)
2 + 2|∇ψ1 −∇ψ2|2]}‖. (68)

In the above defined conserved quantities, the contributions from the two layers are summed, which allows us to discuss the
spectral fluxes of E and G through the horizontal wavenumber domaink. The governing spectral equations now have the same
form as (17) and (18), but the appropriate spectral dissipation rates are different. They are given byDE(k) = 2πkdE(k) and
DG(k) = 2πkdG(k), wheredE(k) anddG(k) are the one-dimensional dissipation rates which read

dE(k) = νk2pk2|ψ̂1|2 + (νk2p + νE)k2|ψ̂2|2 > 0

dG(k) = (k2 + k2
R)dE(k) − k2k2

R[νk2p +
1

2
νE ]Re{ψ̂1ψ̂

∗
2}

= k2dE(k) + (2νk2p + νE)
k2

R

2
k2[|ψ̂1|2 + |ψ̂2|2 −Re(ψ̂1ψ̂

∗
2)] + νE

k2
R

2
k2[|ψ̂2|2 − |ψ̂1|2].

It is seen that the the first two terms indG(k) are positive but the sign ofdG(k) is indeterminant, depending on the difference in
kinetic energy in each layer((1/2)k2|ψ̂1|2 vs (1/2)k2|ψ̂2|2). So

k2ΠE(k) − ΠG(k) =

∫ ∞

k

2πq[k2dE(q) − dG(q)]dq

=

∫ ∞

k

2πq

{

(k2 − q2)dE(q) + νE
k2

R

2
q2[|ψ̂1(q)|2 − |ψ̂2(q)|2]

−(2νq2p + νE)
k2

R

2
q2[|ψ̂1(q)|2 + |ψ̂2(q)|2 −Re(ψ̂1(q)ψ̂

∗
2(q))]

}

dq. (69)

The first and third terms in the integrand are negative. It follows that Danilov’s inequality holds, i.e.k2ΠE(k) − ΠG(k) < 0,
if either the top layer has no more kinetic energy than the lowerlayer (i.e.|ψ̂1(q)|2 − |ψ̂2(q)|2 < 0) or if kR = 0, which is the
barotropic limit where the two layers do not interact. Thereis a wider sufficient condition in terms ofνE , which can be derived
by requiring that the sumA12(k, q) of the first two terms in (69) should be negative. Using the identity

|ψ̂1(q)|2 + |ψ̂2(q)|2 −ℜ(ψ̂1(q)ψ̂
∗
2(q)) > 0, (70)

it is easy to see that

k2ΠE(k) − ΠG(k) ≤
∫ ∞

k

2πqA12(k, q) dq (71)

thus it is sufficient to show thatA12(k, q) < 0 for all k < q < kmax.
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Note thatA12(k, q) can be bounded from above as:

A12(k, q) = (k2 − q2)dE(q) + (1/2)νEk
2
Rq

2[|ψ̂1(q)|2 − |ψ̂2(q)|2] (72)

= (k2 − q2)[νq2pq2|ψ̂1(q)|2 + (νq2p + νE)q2|ψ̂2(q)|2] + (1/2)νEk
2
Rq

2[|ψ̂1(q)|2 − |ψ̂2(q)|2] (73)

= [νq2pq2(k2 − q2) + (1/2)νEk
2
Rq

2]|ψ̂1(q)|2 + [(k2 − q2)(νq2p + νE)q2 − (1/2)νEk
2
Rq

2]|ψ̂2(q)|2 (74)

≤ [νq2pq2(k2 − q2) + (1/2)νEk
2
Rq

2]|ψ̂1(q)|2 (75)

This leads to the followingsufficient condition to satisfy
Danilov’s inequality:

νE < 2νk2p
max

(

kmax

kR

)2

(76)

wherekmax is either the truncation wavenumber in the numer-
ical model, or, in the theoretical case of infinite resolutions, is
the hyperviscosity dissipation wavenumber, beyond which the
spectral enstrophy dissipation rate becomes negligible. There-
fore anecessarycondition toviolateDanilov’s inequality is

νE > 2νk2p
max

(

kmax

kR

)2

(77)

.
It is interesting to note that in the numerical simu-

lation of the two-layer model the algorithm adopted by
Tung and Orlando (2003a) for determining the magnitude
of the hyperviscosity coefficient isνE ≫ νk2p

max, for
all but the last twenty wavenumbersk in the dissipation
range. Tung and Orlando (2003a) obtained an energy spec-
trum with the compound slope configuration and the transition
wavenumberkt occured in the inertial range downscale from
injection in agreement with the conditionkt ≈

√

ηuv/ǫuv,
thus implying a violation of Danilov’s inequality.

6. CONCLUSIONS AND DISCUSSION

The classical KLB theory of 2D turbulence relies for its
mathematical simplicity and elegance on two unrealistic as-
sumptions: that the domain is infinite, and that the Reynolds
number approaches infinity. When these two assumptions are
relaxed, the situation becomes more complicated. The down-
scale enstrophy cascade is accompanied with a hidden down-
scale energy cascade, and similarly the inverse energy cascade
is accompanied with a hidden inverse enstrophy cascade. This
is true as long as the leading cascades themselves exist, which
requires the presence of a sufficiently strong dissipation sink
at small wavenumbers. The fluxes associated with the sub-
leading cascades are constrained by the Danilov inequality,
and as a result the subleading cascades cannot contribute large
enough terms to the energy spectrum to create an observable
effect. This situation changes, however, in baroclinic models
of quasi-geostrophic turbulence.

The surface quasi-geostrophic model represents an ex-
treme baroclinic case where the entire behavior in the three-
dimensional domain is constrained by the behavior of the sys-

tem at thez = 0 layer. In this model there is no enstrophy,
and the dominant feature is the downscale energy cascade.

We have shown that in the two-layer quasi-geostrophic
model, the violation of the Danilov inequality is possible only
as a result of asymmetric Ekman damping operating on only
one of the two-layers. This creates an imbalance between the
amount of energy accumulated in one layer versus the amount
accumulated in the other layer, and the downscale energy cas-
cade will become observable on the condition that this imbal-
ance is sufficiently large. We have derived in the present paper
a sufficient condition fornot violating the Danilov inequal-
ity which explains why thek−5/3 spectrum has not been ob-
served in previous simulations of the two-layer model. Deriv-
ing a theoretical sufficient condition for violating the Danilov
inequality remains an open question. However, the numerical
simulation by Tung and Orlando (2003a) has confirmed that a
double cascade with the transition wavenumber located in the
inertial range can be realized. This can only occur when the
Danilov inequality is violated for some wavenumbersk in the
inertial range. The parameterization of the Ekman damping
in that simulation does in fact satisfy the necessary condition
derived in this paper.

As long as we operate within the framework of multiple-
layer models with a finite number of layers, one cannot
rule out the alternative theory that the atmospheric energy
spectrum might reflect a double downscale cascade of helic-
ity and energy instead of enstrophy and energy (see discus-
sion in section 6.5 of Branover et al. (1999), and figure 3 of
Bershadskii et al. (1993)). However, most of the current de-
bate has been focused on the somewhat mysterious nature of
the very extensive and robustk−5/3 spectrum.

Our work in the present paper explains why it can be re-
produced in numerical simulations that use baroclinic mod-
els, while the same effect cannot be realized in simulations
of two-dimensional turbulence. On the other hand our work
here does not rule out the possibility that the shallower part of
the spectrum observed by Nastrom and Gage (1984) over the
mesoscales can be due to dynamics other than QG, whether
it is barotropic or baroclinic, especially for scales of100 km
or less (see e.g. Lindborg (2005) with Bousinesq dynamics).
Our present work serves to point out that over the larger scales
(' 600km), where the transition to shallower spectrum oc-
curs, baroclinic QG theory is a viable mechanism for explain-
ing the transition from−3 to −5/3 slopes.

Furthermore, as proposed first by Tung and Orlando
(2003a), the downscale energy flux, which is important in ex-
plaining thek−5/3 energy spectrum over the mesoscales in
most theories, originates at larger scales (the synoptic scales).
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Its contribution to the energy spectrum is hidden for smaller
wavenumbers under thek−3 part of the spectrum, and then
emerges for largerk past the transition scale. It remains an
open question, one that is beyond the scope of this paper, to
explain how this downscale energy flux can be continued into
length scales too small for QG theory to describe, and how it
is eventually dissipated.
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