
The Influence of the Solar Cycle and QBO on the

Late Winter Stratospheric Polar Vortex

Charles D. Camp∗and Ka-Kit Tung

Department of Applied Mathematics

University of Washington, Seattle

∗Corresponding author address:Charles D. Camp, University of Washington, Box 352420, Seattle, WA 98195.
E-mail: cdcamp@amath.washington.edu



Abstract

Using more than four decades of NCEP/NCAR Reanalysis data, we show that

in late winter (February) in the Northern Hemisphere, the 11-year solar cycle (SC)

provides a perturbation to the polar stratospheric vortex comparable to that of the

Quasi-Biennial Oscillation (QBO). In a four-group (SC max vs. min and east- vs.

west-phase QBO) discriminant analysis, the state of the westerly phase QBO during

SC min emerges as a distinct least-perturbed (and coldest) state of the stratospheric

polar vortex. Relative to this least-perturbed state, SC max and easterly QBO each

provides perturbation and warming. When only years during QBO westerly phase are

considered, the polar temperature is positively correlated with the SC, with a statisti-

cally significant zonal mean warming of approximately 4◦C in the 10-50 hPa layer.

This magnitude of warming in winter is too large to be explainable by UV radiation

alone. The evidence seems to suggest that the polar warming in NH late winter during

SC max is due to the occurrence of Sudden Stratospheric Warmings during QBO west-

erly phase, which normally do not have Sudden Warmings. Our observational result

gives the first suggestion of a powerful dynamical amplifier for solar-cycle radiative

heating in the polar stratosphere.

The Holton-Tan effect, whereby the polar vortex is warmer in QBO easterly phase

than in QBO westerly phase, is also seen in our data and was found to be statistically

significant prior to the last solar cycle. However, it found to not be robust when data

from the latest solar cycle is included in the analysis.
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1. Introduction

The polar stratosphere in the Northern Hemisphere has large interannual variability during win-

ter. The lower stratosphere is much warmer than can be explained from radiative considerations

alone, especially during the polar night. The difference in temperature between the observed polar

temperature and its radiative equilibrium value is now understood to be provided by the dynami-

cal heating by the planetary waves forced near the surface and propagated upward into the lower

stratosphere, where they sometimes break and as a consequence deposit their momentum and heat

energy. The most spectacular of these breaking events occur in Stratospheric Sudden Warmings

(SSW), when, in the course of one week, the temperature of the polar stratosphere can increase by

several tens of degrees. It is well known that the easterly phase of the QBO (eQBO) preconditions

the polar stratosphere for mid- and late-winter SSWs (McIntyre 1982; Butchart et al. 1982; Smith

1989; Tung and Lindzen 1979a,b; Tung 1979). Dunkerton et al. (1988) found that none of the

observed SSWs (up to 1987) had occurred while the QBO was in a deep westerly phase. While the

polar vortex during westerly years of the QBO tends to be less perturbed and generally less prone

to SSW occurrences, there are nevertheless exceptional years when SSWs do occur (Naito and

Hirota 1997, hereafter denoted NH97); these occur during solar-cycle (SC) max. Labitzke (1987)

suggested that during westerly QBO years (wQBO), the polar stratosphere is positively correlated

with the solar cycle, being warmer during SC max than during SC min. Later, Labitzke and van

Loon (1988) further suggested that during eQBO years, the relationship is reversed. That is, dur-

ing the years when the equatorial QBO is in its easterly phase, the polar stratosphere cools during

SC max. The modeling work of Gray et al. (2004) appears to offer some support to this puzzling

result, possibly caused by changes in the timing of SSWs; however, as they point out, this part of

their result is not statistically significant.
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The existence of an 11-year solar-cycle response in the atmosphere has recently been estab-

lished statistically in Coughlin and Tung (2004a) for the stratosphere and Coughlin and Tung

(2004b) in the troposphere, among others (Haigh 2003; Gleisner and Thejll 2003), without regard

to the phase of the QBO and without separating into seasons. To help shed some light on possible

mechanistic explanations of the SC response, we focus in this paper on the winter season, which

is the time of the maximum response, and consider separately the two QBO phases. The method

we use in this study is discriminant analysis.

2. Methodology

Linear discriminant analysis (LDA) is a long-standing statistical technique used for the classi-

fication of multivariate data into predefined groups (Wilks 1995; Ripley 1996). Schneider and

Held (2001) have demonstrated its usefulness for identifying spatial patterns associated with in-

terdecadal variations of surface temperatures. In this study, we apply the technique to identify the

spatial patterns that best distinguish the behavior of the stratosphere during the westerly and east-

erly phases of the equatorial QBO and during SC max and min. LDA focuses on coherent spatial

variability as opposed to total variance at each individual grid point. As such, it can often isolate

large-scale spatial variability with greater statistical significance than studies using correlations of

individual time series. On the other hand, the method may not find statistically significant differ-

ences amongst groups if the dominant spatial differences between the groups are not consistent in

time.

For a set of multivariate observations, LDA seeks a linear combination of variables, aka canon-

ical variates (CV), for which the separation among pre-defined groups is maximized. A measure of

separability can be defined by the ratio of among-group variance to within-group variance, denoted
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R. The first CV maximizes this ratio; higher order CVs also maximize this ratio subject to the con-

straint of being uncorrelated with all lower order discriminants. Associated with each canonical

variate is a discriminating pattern defined as the regression of the data onto the canonical variate.

Alternatively, we can consider the patterns to be the spatial structures which best distinguish the

observations of each group, while the associated CVs are the time series constructed by projecting

the observations onto the patterns. A more detailed discussion of the technique can be found in the

appendices of this paper and in Schneider and Held (2001).

It is important to note that the apparent separation, as measured byR, is not a robust feature

of the analysis. It is biased to large values and in particular is dependent upon the choice of

truncation parameter used to reduce the degrees of freedom in the dataset prior to performing the

LDA; see Appendix B for more details on this parameter. As such, it should not be used directly

to test the statistical significance of our results. Therefore, to test the statistical robustness of

each analysis, we perform a bootstrap Monte Carlo tests using 3000 synthetic datasets constructed

by resampling with replacement our set of observations while preserving the group structure and

truncation parameter of the original analysis. In other words, we randomly choose observations

from the original dataset and assign them to a group regardless of their original physical state

while preserving the number of observations in each group. For an example, we might need nine

randomly chosen years to put into the SCmin-eQBO category. One year randomly picked could be

1990, which originally was a SCmax-eQBO year. “With replacement” means that the next time we

pick a year, all the years, including 1990, are again available to be picked. This assures that each

random choice is drawn from the same distribution. An LDA is then performed on each synthetic

dataset using the same truncation parameter as that used in the original (observed) LDA to create a

distribution of variance ratios. The percentile of the observed variance ratio within the distribution
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of synthesized variance ratios denotes the statistical significance of that observed ratio;i.e., the

percentile subtracted from 100 is the percentage of a random realizations that have a separation

equal to or greater than the observed separation.

3. Datasets

We use data from the NCEP/NCAR Reanalysis from post Internal Geophysical Year to present,

specifically from the late winter of 1958/1959 to the late winter of 2004/2005. We consider the

mean temperature in the 10-50 hPa layer, as represented by difference between the 10 and 50

hPa geopotential height surfaces. We use monthly mean data on a2.5◦ × 2.5◦ latitude-longitude

grid restricted to latitudes north of 30◦N excluding the pole. Separate analyses are carried out for

individual months and for certain 2 and 3 month averages during the northern winter. The resulting

annual datasets are centered by subtracting the mean height difference at each grid point from the

corresponding time series. Both the full two-dimensional fields and the corresponding zonally

averaged fields are studied. The 2D fields are scaled at each grid point by the square root of the

cosine of the latitude to account for the change in the area represented by each grid point.

Observations are assigned to one of four groups: SCmax-wQBO, SCmin-wQBO, SCmax-

eQBO, SCmin-eQBO, based on the phases of the indices used in each analysis. For a solar-cycle

index, we use the monthly means of the observed daily noon 10.7cm Solar Radio Flux from Ot-

tawa/Penticton for 1949 - 2005. SC-max(min) months are those with fluxes greater(less) than

140(125) solar-flux units (s.f.u.); the mean flux was 132.5 s.f.u. For the equatorial QBO index,

we use the monthly mean 30 hPa zonal wind at the equator from the NCEP/NCAR Reanalysis

for 1956 - 2005; westerly(easterly)-phase months are those with wind speeds greater(less) than

2.0(-2.0) m/s.
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We have found that the correlation of the mean temperature in the 10-50 hPa layer with the solar

cycle is different in early winter (centered in November, but can include October and December)

from the correlation found in late winter (centered in February, but can include January and March).

Therefore, the selection of months in late winter for this study is important. Early winter results

will be presented separately in another paper. Because of the large variability in the Northern

Hemisphere polar vortex during winter, multiple-month averaging is needed to achieve statistically

confident results. Three-month averaging is usually best, but we have attempted to better pinpoint

the time by using one- and two-month averages. In general, early winter results can be significant

if the chosen period does not include much influence from SSWs which can occur as early as

December in some years. Late winter results are similar as long as the averaging period includes

February.

4. Four Group Analysis

We attempt to discriminate the behavior of the northern hemisphere stratosphere during these years

amongst these four groups using the method of Linear Discriminant Analysis (LDA). Figure 1a

shows the February-March average of the years used in the analysis, denotedµ (x). This mean

state shows a moderately cold polar vortex displaced toward western Europe by a warm wave-one

planetary wave.

For a four group analysis there exist three discriminants, consisting of the spatial patterns which

best distinguish each group from the other groups and of an associated time series or canonical

variate (CV) constructed by projecting the data onto each of the patterns. The CVs are denoted

by C1 (t), C2 (t) andC3 (t), while the associated patterns are denotedP1 (x),P2 (x) andP3 (x),

respectively. This calculation is done with truncationr = 15 in an EOF expansion. The technical
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details on how to choose a truncation level are discussed in the Appendix B. Briefly, since the

LDA method attempts to maximize the ratio of between-group variance to within-group variance,

R, it requires that enough EOFs are kept that help maximize the between-group variance, but

not so many are retained that one is in effect fitting smaller-spatial-scale noise to minimize the

within-group variance in the denominator ofR. Figure 1b is a scatter plot of the projection of

the years onto the first two discriminant patterns,i.e., C2 (t) vs. C1 (t). It is seen thatC1, shown

as the horizontal axis, primarily isolates the SCmin-wQBO state from the other three states; the

separability measure forC1, R1, is approximately 2. The 2nd and 3rd discriminants (not shown)

distinguish amongst the other three states, withR2 ≈ 0.5 andR3 ≈ 0.4; these values are rather

small implying that the three perturbed states are not well separated by this analysis. Figure 1c

shows the spatial pattern of the first discriminant,P1 (x), with warming (cooling) of the polar

vortex whenC1 is positive (negative). Furthermore, the the vortex is displaced further off the

pole for positiveC1. Figure 1d showsC1 (t) as a function of year and shows that negative values

of C1 nicely isolate the SCmin-wQBO years as being colder and less perturbed when compared

to the other three groups. It does not appear to distinguish SC-max perturbations from eQBO

perturbations, but shows that these two perturbations are comparable in magnitude. Hence the four-

group analysis is not statistically significant; yet Figure 1d clearly shows that the SCmin-wQBO

group is distinct from the other groups. Representative examples of the unperturbed and perturbed

vortex are shown in Figure 2. These are the sum of the mean state and the projection onto the 1st

discriminant pattern,P1 (x), for individual observations;µ(x) + C1 (t∗) · P1 (x). A observation

from the (SCmin-wQBO) group,t∗ = 1988, depicts the unperturbed vortex (Figure 2a), while an

observation from the (SCmax-wQBO) group,t∗ = 1978, depicts the perturbed vortex (Figure 2b).

The perturbation associated withP1 (x) (with positiveC1 (t)) greatly warms and weakens the polar
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vortex. It should be noted that these figures do not capture the full variability of the polar vortex,

only that portion which projects ontoP1 (x). Furthermore,P1 (x) does not distinguish between

perturbations of the polar vortex during SC max from those during the easterly QBO. Therefore,

we will perform a series of two-group LDAs to isolate SC effects from QBO effects.

5. Solar Cycle Discriminants

To isolate the solar-cycle effect, we perform two-group analyses discriminating SC max from SC

min for various sets of years based on the phases of the QBO. This is suggested by the result

in Figure 1b, which shows that the SC-max years are separated from the SC-min years during

the westerly phase of the QBO, while the separation during the easterly phase is much smaller.

Furthermore, since the leading discriminant pattern has a strong zonal mean structure, we analyze

the zonally-averaged field. This analysis is simpler to depict and proves to be more statistically

significant than the full 2D analysis. We use the same two-month temporal average (February-

March) as that used in the four-group LDA done above. The results for other late winter time

periods,e.g., January-February, are qualitatively similar but do not prove to be as statistically

significant.

The first analysis, shown in Figure 3, discriminates between SC max and SC min for all years,

regardless of the phase of the QBO. With only two groups, there is only one discriminant, con-

sisting of the spatial pattern which best distinguishes SC-max years from SC-min years and of the

associated canonical variate time series. The analysis is done with ar = 14 truncation. The first

discriminant pattern,P1 (x), (Figure 3a) displays warming at the pole balanced by cooling in the

midlatitudes whenC1 (t) is positive. Figure 3b displaysC1 (t) as a function of years. It shows

that SC-max years have predominately positiveC1 values and are reasonably separated,R ≈ 2,
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from most of the SC-min years,i.e., whenC1 is either negative or near zero. The difference of the

mean ofC1 during high solar flux years from the mean during low solar-flux years corresponds

to a zonal-mean warming of the pole of approximately 2.5◦C. This can be more readily seen in

Figure 3c which gives an alternate presentation of the information already contained in Figures

3a and b. It shows the sum of the spatial pattern,P1 (x), and the overall mean (shown in black)

where the amplitude ofP1 (x) is determined from the mean ofC1 within each group of years.

The SC-max years are in red and the SC-min years are in blue. Shaded regions denoted the one-

standard-deviation projections within each group. Figure 3c shows that the SC-max years, when

projected onto this coherent spatial pattern, are separated from the SC-min years but with some

overlap. However, the Monte Carlo test, Figure 3d, shows that the observed variance ratio is not

significant; only achieving a 74% confidence level. Random assignation of observations to each

group can provide the observed degree of separation approximately 26% of the time.

5a. Westerly QBO years

Another two-group LDA is performed discriminating SC max from SC min, but using only years

during the westerly phase of the equatorial QBO (see Figure 4). Ar = 5 truncation is used. As

in the previous analysis (all QBO years), the resulting pattern shows a warming of the pole and a

cooling of the midlatitudes during SC max, Figure 4a. This pattern is generally consistent with the

warming and cooling structure resulting from the deposition of easterly momentum in the high-

latitude stratosphere (Garcia 1987) and, in particular, with the predicted pattern during a SSW

(Matsuno 1971). Compared to the all-QBO-years analysis, the wQBO analysis has a much larger

separation,R ≈ 6, with a clean separation between the positiveC1 values of the SCmax-wQBO

group and the mostly negative values of the SCmin-wQBO group; see Figure 4b. This corresponds
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to a mean warming of the pole of approximately 3.7◦C. The Monte Carlo test shows that the

separation is significant at the 99% confidence level. This is the key positive result of this study.

5b. Easterly QBO years

A third two-group LDA is carried out on the zonally averaged field to distinguish the SC-max years

from SC-min years during the eQBO phase, with ar = 9 truncation; see Figure 5. Qualitatively,

the pattern of the solar-cycle effect on the polar vortex during easterly QBO years is similar to

the pattern during the westerly QBO years albeit with a smaller amplitude and no reversal in the

midlatitudes. The discriminant pattern, Figure 5a, displays a warming of the pole of approximately

1.5 ◦C, as well as a slight warming at the midlatitudes, for positive values of its associatedC1 (t),

Figure 5b. As seen in the westerly phase analysis, high solar-flux years tend to have positiveC1

values denoting a warming of the pole compared to low solar-flux years. However the separation

between the groups is not large (R ≈ 2) and, unlike the westerly phase result, fails to be statistically

significant (34th percentile) when the Monte Carlo test is applied. Our result is different than the

conclusion of Labitzke and van Loon (1988), who showed that the effect of solar cycle is reversed

in the easterly QBO years. However, neither our result nor their result for the eQBO is statistically

significant.

5c. Summary

We find a highly statistically significant solar-cycle signal in the polar stratosphere during late

winter. It warms the 10-50 hPa layer in the polar stratosphere by about 4◦C during SC-max as

compared to SC-min, during the westerly phase of the QBO. Similar effects are found during the
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easterly phase of the QBO, as well as over all years regardless of QBO phase, except that these

results are not statistically significant.

6. QBO Discriminants

Two-group LDA analyses are also performed to distinguish the behavior of the polar vortex be-

tween the westerly and easterly phases of the equatorial QBO using various sets of years associ-

ated with the solar cycle. A three-month average, January - March, is used for all of the QBO

discriminant analyses described in this section.

The results of a two-group LDA discriminating westerly vs. easterly phases of the equatorial

QBO, using all years regardless of the phase of the SC are shown in Figure 6; ar = 14 truncation

is used. The discriminant pattern, see Figure 6a, shows an oscillation similar to that seen in pre-

vious studies (e.g., Holton and Tan 1980, hereafter denoted HT80). When the equatorial QBO is

easterly, the polar vortex is warmed by approximately 2◦C. The separability is reasonable,R ≈ 3.

However, the Monte Carlo test shows that it is not significant; only achieving a 77% confidence

level.

6a. Solar Cycle Min

Given the results of our 4-group analysis, Section 4, and of NH97, our expectation is that the QBO

effect may be better isolated during the years of the SC min. Limiting the analysis to SC-min

years (r = 6 truncation), we get a discriminant pattern, see Figure 7a, with a similar pattern to that

found in the previous (all SC years) analysis albeit with a slightly larger amplitude; warming the

pole by approximately 3◦C during eQBO. However, the separability is actually smaller,R ≈ 1,
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than the all-SC case and is still not significant (24th percentile). A more careful examination of the

temporal projections in Figure 7b reveals that the poor separation is primarily caused by the years

during the latest SC min during the mid 1990s. If the analysis is repeated with only the years from

1958/9 to 1989/90 (r = 4 truncation), a statistically significant separation is achieved (R ≈ 7,

92% confidence level); see Figure 8. The 1959-1990 result has a warming of the pole associated

with the easterly QBO of approximately 4.5◦C.

6b. Solar Cycle Max

When we repeat the analysis, limiting it to years during SC max (r = 7 truncation), there is a much

smaller warming, approximately 1.5◦C, associated with the eQBO and no significant separation

between the wQBO and eQBO data,R < 1; see Figure 9. Unlike the SC-min analysis, Section

6a, this lack of separability is not obviously caused by any one particular solar cycle. It is most

likely caused by similarities in the zonal behavior of the SC-max and eQBO perturbations to the

unperturbed (SCmin-wQBO) vortex.

6c. Summary

These results may imply that the part of the zonal-mean result reported by HT80 may not be robust

to the addition of more years. This fact was previously pointed out by NH97. They, however,

thought that it was caused by the number of solar maxima vs. solar minima within the period

analyzed by HT80. Here we find that, consistent with NH97, there is no Holton-Tan phenomenon

in the SC-max years. However, we also find that the highly significant effect found by NH97 for

SC-min years is not robust to the addition of another solar cycle.
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7. Discussion

We observe warming of the polar stratospheric vortex during solar-cycle maxima as compared to

solar-cycle minima during late winter. The zonal-mean warming by the solar cycle is statistically

significant only when the equatorial QBO is in its westerly phase. This solar-cycle-induced warm-

ing during westerly QBO is large, about 4◦C in the zonal mean temperature over the broad layer

of 10-50 hPa and appears to be due to dynamical heating arising from SSWs. Although individ-

ual SSWs warm the pole by more than 4◦C, their typical duration is approximately one week and

therefore a smaller average warming is expected from the multi-month averages used here. The en-

ergy for SSWs originates from the denser troposphere; therefore, a modulation of the frequency of

SSW occurrence can provide a powerful dynamical amplifier for radiative effect of the solar cycle.

Solar-cycle-max conditions appear to precondition the lower stratosphere for SSWs in a similar

way as the easterly phase of the QBO preconditions it for SSWs. Thus, we find, as first pointed

out by NH97 that the exceptional years when SSWs occur in the westerly phase of the QBO are

years of SC max. Our result put this on firmer statistical ground. How the SC max preconditions

the stratosphere for SSWs will be studied in a separate paper, which examines its effect on the

stratosphere during early winter. In the paper, we have isolated the rather large amplitude of the

solar-cycle effect on the polar temperature during February. Since this time is during polar night, it

is unlikely to be a radiative effect. While SC max apparently also increases the occurrence of SSW

during the easterly phase of the QBO, this effect is not significant probably because easterly phase

of the QBO already perturbs the polar stratosphere sufficiently by itself. We are unable to dis-

tinguish between SC-max-induced and eQBO-induced perturbations in the zonal-mean analysis.

Zonal-wavenumber discriminants will be examined in a separate paper.

We also observe similar warming of polar vortex during the easterly phase of the equatorial
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QBO as compared to the westerly phase. The zonal-mean warming induced by the QBO is signif-

icant only during solar-cycle minima and only if the data from the latest SC min is excluded from

the analysis. The observed warming is about 3◦C in the zonal-mean temperature for the 10-50 hPa

layer. Once again, the lack of significance during solar cycle maxima is due, at least in part, to a

conflation of SC-max and eQBO perturbations to the unperturbed (SCmin-eQBO) vortex. How-

ever, there seems to be a further lack of robustness for the QBO effect caused by changes in the

response during the latest solar cycle.
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Appendix A

Discriminant Analysis

For a set of multivariate observations,X, linear discriminant analysis (LDA) seeks a linear

combination,Xu, for which the separation among pre-defined groups is maximized. The separa-

tion can be defined as the ratio of among-group variance to either within-group or total variance.

Suppose that we have a centered dataset,X (n× p), consisting ofn observations ofp variables,

xi (1× p). Centering is performed by removing the mean observations from the original data.

Furthermore, suppose that we can partition the observations intog groups,Gj (j = 1, . . . , g), with

nj observations in each group. Letµj (1× p) denote the mean of the observations inGj and[i]

denote the group of observationxi. We can define the group matrixG (n× g) = [gij], where
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gij = 1 if j = [i] and equals0 otherwise. Note thatGTG = diag (nj). Let

M (g × p) =
(
GTG

)−1
GTX =

[
µT

]

be the matrix of group means. Then the within-group-covariance matrix can be defined as

Σw (p× p) =
1

n−g
(X−GM)T (X−GM) ,

the among-group-covariance matrix as

Σa (p× p) =
g

n (g−1)
(GM)T (GM)

=
g

n (g−1)
XTG

(
GTG

)−1
GTX

and the total-covariance matrix as

Σt (p× p) =
1

n−1

(
(n−g)Σw +

g

n (g−1)
Σa

)
.

A separability measure for any linear combinationXu can then be defined byγ =
(
uTΣtu

)−1 (
uTΣau

)
.

The canonical variates,ck = Xuk (k = 1, . . . , g−1), are the linear combinations which optimize

γ, which implies thatuk must satisfy∂γ/∂u = 2
(
uTΣtu

)−1
Σau−2

(
uTΣtu

)−2 (
uTΣau

)
Σtu =

0. Therefore, theuk must satisfyΣ−1
t Σauk = γkuk, where theγk are the ordered eigenval-

ues ofΣ−1
t Σa and theuk are the associated right eigenvectors. This is equivalent to maxi-

mizing R =
(
uTΣwu

)−1 (
uTΣau

)
. The canonical variates,ck, can be normalized such that

var (ck) = uT
k Σtuk = 1. The discriminating patterns are then defined as the regression coeffi-
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cients,pk =
(
uT

k Σtuk

)−1
Σtuk of the centered data,X, onto theck’s.

Appendix B

Truncation

Since the number of variables (grid points) exceeds the number of observations, the system to

be analyzed is overdetermined and the LDA is ill-posed. Therefore, the analysis must be regular-

ized (Schneider and Held 2001; Hansen 1998). The LDA is performed using a truncated principal-

component representation of the dataset; keeping only the leadingr modes. Figure 10a depicts

the dependence of the variance ratio,R = vb/vw, on the choice of the truncation parameter,r.

This example is drawn from the 2D LDA analysis performed in section 5a. The between-group

variance,vb, and within-group variance,vw, are also independently shown. We can see that asr in-

creases, bothR andvb increase whilevw decreases. As the number of degrees of freedom grow, the

discriminant is able to capture more of the large-scale variance between the groups while simulta-

neously becoming more orthogonal to the within-group variability. However, relative importance

of vb andvw toR does not stay consistent. Initially asr grows,r ≤ 5, the change inR is caused

by changes in bothvb andvw. For5 < r < 8,R is relatively stable. Forr ≥ 8, increases inR are

caused almost entirely by decreases invw, which is not desirable. This can seen more clearly in

Figure 10b which depicts the ratio ofR for neighboring values ofr: ∆R1(r) = R1(r)/R1(r− 1).

Similar ratios forvb andvw are also shown.

If r is too small, the model is missing variability important to the discrimination of the groups.

This can be seen in rapid growth ofR for r ≤ 5. On the other hand, ifr is too large, the model

is overfitting the data. Since the number of observations in each group is small, choosing a large
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r gives the model enough degrees of freedom to find a pattern which is nearly orthogonal to the

within-group variability. This rapid decrease invw and associated rapid increase inR is most likely

an artifact of the small sample size. For this example, choosing5 ≤ r ≤ 7 seems appropriate; we

usedr = 5 for this analysis in this study.

It is important to note that the qualitative nature of results is robust for all but the smallest values

of r. It is only the quantitative results, such as the variance ratio and its statistical significance,

which depend upon this choice.
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Figure 1: Results of a 4-group LDA for the Feb.-Mar. average of the difference between 10-50
hPa geopotential surfaces for 1959 to 2005. Grouping based on both the solar cycle and 30 hPa
equatorial QBO indices.∆z = 50 m corresponds to∆T ≈ 1 ◦C. (a) Mean state (b) Scatter plot
of the 1st two canonical variates:C1 andC2. (c) 1st discriminant pattern,P1 (x), (d) 1st CV time
series:C1 (t)
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Figure 2: Sum of the mean from the 4-group LDA and two projections onto the 1st discriminant
pattern:µ (x) + C1 (t∗) · P1 (x). (a) SCmin-wQBO case:t∗ = 1988. (b) SCmax-wQBO case:
t∗ = 1978.
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Figure 3: Results of a 2-group LDA for the Feb.-Mar. average of the difference between 10-50
hPa geopotential surfaces from 1959 to 2005. Grouping based on phase of solar cycle only. (a)
Discriminant pattern,P1 (x), (b) CV time series,C1 (t), (c) Mean state (black line) plus group-
mean projections ontoP1 (x) for SCmax (red, x) and SCmin (blue,◦) groups. Shaded regions
show 1σ projections for both groups. (d) Monte Carlo distribution of variance ratios showing
percentile of observed variance ratio,R1.
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Figure 4: As Figure 3 except LDA based on phase of solar cycle during westerly QBO years only.
(red, +) denotes the SCmax-wQBO group; (blue,◦) denotes the SCmin-wQBO group.
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Figure 5: As Figure 3, except LDA based on phase of solar cycle during easterly QBO years only.
(black, x) denotes the SCmax-eQBO group; (green, *) denotes the SCmin-eQBO group. (a) as
Figure 3c for eQBO years. (b) CV times series,C1 (t).
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Figure 6: Results of a 2-group LDA for the Jan.-Mar. average of the difference between 10-50 hPa
geopotential surfaces for 1959 to 2005. Grouping based on phase of 30 hPa equatorial QBO only.
(a) Mean state (black line) plus group-mean projections ontoP1 (x) for wQBO (red,◦) and eQBO
(green, *) groups. Shaded regions show 1σ projections for both groups. (b) CV time series,C1 (t).

27



Figure 7: As Figure 6 except LDA based on QBO phase during solar cycle minimums only.
(blue,◦) denotes the SCmin-wQBO group; (green, *) denotes the SCmin-eQBO group.
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Figure 8: As Figure 7 except using only data from 1959 to 1990.
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Figure 9: As Figure 6 except LDA based on QBO phase during solar cycle maximums only. (red, +)
denotes the SCmax-wQBO group; (black, x) denotes the SCmax-eQBO group.
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Figure 10: (a) Dependence of the variance ratio,R, on the EOF truncation number,r, for the
2-group LDA from Section 5a. Between-group variance,vb, and the inverse of the within-group
variance,v−1

w , also shown. (b) Ratio of neighboring values for the variances shown above;e.g.,
∆R = R (r) /R (r − 1).
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