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ABSTRACT

The spectrum of transient heat flux in the midlatitude troposphere has a maximum at a synoptic scale. The
same is true of the transient energy. The wavenumber of these maxima can be explained by the theory of
nonlinear baroclinic adjustment, which is also shown to predict the shape of the spectra.

According to this theory, each zonal wave has a nonlinear threshold that bounds its growth, and the bounds
are larger for longer waves. The most unstable wave grows and transports heat until it reaches its threshold, at
which point it breaks and saturates, passing off excess energy to the next longer wave. The process repeats,
with energy cascading upscale, until the total heat transport is sufficient to reduce the meridional temperature
gradient down to a relatively constant equilibrium level, independent of forcing. Thus at higher forcings more
heat must be transported and the cascade extends to longer scales. At equilibrium, the longest heat-transporting
wave has not saturated but rather has been rendered linearly neutral by the reduction in the temperature gradient.

Observations from the real atmosphere, and computations with a quasigeostrophic two-level model in a beta-
plane channel, corroborate the theory presented.

1. Introduction

The behavior of transient eddies in the midlatitudes
yields a maximum of heat flux at a synoptic scale. This
is shown for the different seasons and hemispheres in
Fig. 1 (redrawn from Fig. 2 of Randel and Held 1991).
A similar peak at synoptic scales is found in the spec-
trum of transient energy (discussed later). Various the-
ories have been proposed to explain the presence of this
synoptic maximum of heat flux or energy.

The synoptic peak has been identified with baroclinic
instability, for observations of the dominant eddies in
the atmosphere have shown them to be of synoptic scale
and baroclinic in nature (Charney 1971). The simplest
explanation for their dominance would be linear: the
most unstable wave from a linear analysis of the zonally
averaged atmosphere would dominate the spectrum. For
example, Stone (1978) proposed a theory of ‘‘baroclinic
adjustment’’ in which he argued that the most unstable
wave in a two-level model would do all of the heat
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transport at equilibrium. However, simulations in Welch
and Tung (1998) showed that, when nonlinear interac-
tions between waves are included in such a model, a
longer wave emerges as dominant. This is found in the
real atmosphere as well. Gall (1976) determined that the
linearly most unstable waves in a continuous atmo-
sphere are zonal wavenumbers 12–15, with maxima near
the surface of the earth. Meanwhile, the transient eddies
that dominate in the real (nonlinear) atmosphere are
wavenumbers 4–7 (as in Fig. 1) and have largest am-
plitude near the tropopause (Gall 1976). Thus a linear
explanation predicts the wrong wave as dominant and
hence is unable to account for the synoptic energy max-
imum.

To reconcile for this discrepancy, a nonlinear upscale
cascade of energy, as presented in the geostrophic tur-
bulence study of Charney (1971), is often cited. Salmon
(1980) united Charney’s upscale cascade with the con-
cept of energy injection at synoptic scales due to bar-
oclinic instability. He argued for a balance at the short
scales between energy extraction from the mean flow
and nonlinear transfer toward long scales. Such dynam-
ics could yield an energy maximum at a synoptic scale
that is longer than that of the most unstable wave.

Salmon’s theory, however, does not explain why or
how a particular wavenumber comes to dominate either
the energy or the heat flux spectrum. For example, it
cannot explain why in Fig. 1, in the Southern Hemi-
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FIG. 1. Observed spectra of transient eddy heat flux vs nondimen-
sional zonal wavenumber m for the different seasons and hemispheres.
Each point represents the heat flux ( ) at 478 and 700 mb. Re-y9T9m m

drawn from Randel and Held (1991). For comparison, lines of slope
23 (thin solid), 23.5 (thin dashed), and 24 (thin dotted) have been
included in this log–log plot.

sphere summer (thick solid line), there is a maximum
of heat flux at the synoptic zonal wavenumber m 5 6.
Why does the cascade not continue to a longer (or short-
er) scale? Why in the Southern Hemisphere winter (thick
dashed line) is the maximum at the longer wave m 5
5? Also, given this seasonal shift in the peak wavenum-
ber, why is the heat flux for the shorter waves m $ 6
the same season to season? Can the wavenumber of
maximum heat flux, and the shape of the spectrum, be
predicted? Can such predictions be made for any cli-
mate? Can the same be done for the energy spectrum?

Rhines (1975) proposed a theory for the selection of
the peak wavenumber. He reasoned that Charney’s cas-
cade would dominate at small scales, whereas linear
Rossby wave dynamics would be present for the largest
waves. At the scale where these two mechanisms have
roughly the same magnitude, Rhines said the cascade
would stop, and there the energy would be a maximum.
He offered a formula for calculating this dominant
‘‘wavenumber of cascade arrest.’’ However, his theory
is not predictive, requiring information about the root-
mean-square wave speed at equilibrium. A formula to
predict which wave will dominate at equilibrium, based
only on external parameters, still needs to be derived.

Here we will show that the theory of nonlinear bar-
oclinic adjustment (Cehelsky and Tung 1991; Welch and
Tung 1998) can answer the above questions. The theory
has two main points. First, for a given solar forcing (i.e.,
imposed meridional temperature gradient), there is a
certain amount of heat that must be transported poleward
in order to equilibrate the system, and the magnitude of
this heat transport rises linearly with the forcing. Sec-
ond, each wave has a nonlinear threshold, above which
it can no longer grow or transport heat, and the thresh-

olds increase with the zonal wavelength. With these two
precepts, we can explain which wavenumber dominates
at equilibrium for any level of forcing and why for most
forcings this wave must be longer than that most un-
stable. Furthermore, we can predict the shape of the
spectra of heat flux and of energy for synoptic transient
waves in the midlatitude troposphere.

We will verify our theory by comparing its predic-
tions with observations of heat flux, and also by using
simulations from a high-resolution two-level quasi-
geostrophic baroclinic model in a b-plane channel with
a flat bottom. Although simple, the model can be val-
idated by comparing its heat flux spectrum and merid-
ional temperature gradient with those from the real mid-
latitude troposphere. It will be shown that the model
simulations match the magnitude and shape of observed
spectra, as well as the magnitude of observed temper-
ature gradients, for both winter and summer seasons.
Moreover, the model accurately simulates the shift in
peak wavenumber from 6 to 5, winter to summer, that
is shown in Fig. 1.

In section 2 the nonlinear baroclinic adjustment the-
ory will be reviewed and then used to explain the spec-
trum of transient heat flux, including its peak wave-
number and shape. Such explanations will then be ap-
plied to the transient energy spectrum. In section 3 these
predictions will be compared with model simulations
and observations. Alternate theories by Rhines, Salmon,
James, Farrell, and Lindzen are discussed in section 4,
and numerical modeling issues in section 5. Section 6
contains conclusions.

2. Nonlinear baroclinic adjustment

a. Selection of the dominant heat-transporting wave

To explain the synoptic peak in the transient heat flux
spectrum, we will use the theory of nonlinear baroclinic
adjustment. This theory was introduced in the study of
Cehelsky and Tung (1991) and elaborated by Welch and
Tung (1998). Here we will review the concept and show
how it determines the wave scale of maximum heat
transport.

Nonlinear baroclinic adjustment is motivated by the
recognition of an ‘‘atmospheric thermostat.’’ There
seems to be a mechanism that maintains the midlatitude
temperature gradient in the middle troposphere at a fair-
ly constant value season to season (Stone 1978). This
is true even though the radiative forcing varies consid-
erably with the seasons. This implies that there must be
a flexible component of the system that moderates the
imposed forcing, responding more for higher forcings
and less for lower. The theory posits that this flexible
component is the meridional heat transport of baroclin-
ically unstable waves excited by the temperature gra-
dient. For a given level of forcing, there must be a
certain amount of heat that the sum of all baroclinically
unstable waves transport poleward. The total amount of
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heat transported must increase linearly with the forcing
so that the temperature gradient that results is about the
same regardless of forcing.

Note that the theory does not assume that the heat is
transported by the most unstable wave alone, which was
Stone’s (1978) original proposal of linear baroclinic ad-
justment. He argued that no other waves would partic-
ipate because they would be linearly stabilized by the
action of the most unstable wave, which would reduce
the flow to the minimum critical shear or temperature
gradient. In the theory of nonlinear baroclinic adjust-
ment, the heat transport is spread over many scales, and
the wave that ends up dominating this process at equi-
librium is usually not the most unstable wave.

The rule determining how heat transport is distributed
among the various wavelengths is based on the concept
of a nonlinear threshold for each wave, above which it
can no longer grow. At this limiting magnitude, the
wave will break and saturate, shedding excess energy
to other scales.

This idea is motivated by the criterion for instability
given by the Charney–Stern theorem: if the background
potential vorticity gradient Q y is negative somewhere
in the fluid, then the fluid may be unstable to small-
scale secondary perturbations (Charney and Stern
1962). (Here Q is the potential vorticity (PV), y is the
north–south coordinate, and the overbar represents a
zonal mean.) This theorem was derived for the case of
a zonally uniform flow, and here we simply extend it
to include the contribution from a synoptic or planetary
scale heat-transporting wave. That is, we claim that
when the total PV gradient Qy 5 Q y 1 becomesQ9y
negative, the flow becomes unstable. (A prime indicates
deviation from the zonal mean state.) The dominant
wave then breaks and cannot grow further.

We can show that this generalized Charney–Stern the-
orem translates into a nonlinear threshold of heat trans-
port for each wave. By definition, the wavy component
of PV gradient oscillates in sign with longitude. If its
magnitude is large enough, then in its negative phase it
will outweigh the zonal-mean gradient and render the
total PV gradient negative. Hence the above condition
for instability can be rewritten as | | . Q y (GarciaQ9y
1991). At such a magnitude, the wave will break and
no longer gain amplitude. This yields the following cri-
terion for saturation:

| | ø Q y.Q9y (2.1)

The magnitude of Q y does not change sign with forc-
ing. To see this, consider the (dimensional) quasigeo-
strophic PV:

2 2f ] C02Q [ f 1 b y 1 ¹ C 1 . (2.2)0 0 2 2N ]z

Here C is the streamfunction, from which velocities are
given by u 5 k 3 =C; f 0 1 b0y is the Coriolis force
in a beta-plane approximation, N is the Brunt–Väisälä
frequency, and z is the vertical coordinate. Using the

hydrostatic equation, the equilibrated zonal average can
be approximated:

f R ]T0Q ø f 1 b y 1 , (2.3)0 0 2N H ]z

where R is the ideal gas constant, H the density-scale
height of the atmosphere, and T is the zonal mean tem-
perature. Here the relative vorticity 2U y has been ne-
glected because it is usually small compared to the plan-
etary component (as confirmed by model simulations).
The meridional gradient of zonal mean PV is, then,

f R ] ]T0Q ø b 1 . (2.4)y 0 2 1 2N H ]z ]y

It has already been mentioned that the meridional tem-
perature gradient is fairly robust in the midtroposphere,
even as the forcing changes dramatically from season
to season (Stone 1978). We expect the vertical derivative
to be similarly robust, and hence Q y as well.

Because Q y is independent of forcing, it can provide
a limit on the magnitude of by (2.1). This relationQ9y
gives an order of magnitude estimate for the size of

for any saturated wave, regardless of the level ofQ9y
forcing. Model results do show a weak dependence of
| | on zonal wavenumber m, but still a good rule ofQ9y
thumb is that each wave can generate a PV gradient
only about as large as the zonal mean gradient.1

The limit on | | can be translated into a limit on heatQ9y
flux for each wave. This was discussed in Welch and
Tung (1998) for a two-level model, and here it is gen-
eralized to a continuous atmosphere. Consider a single
wave with wavenumbers m, n, and m in the zonal, me-
ridional, and vertical directions, respectively. Assume
the streamfunction has the form:

C9 5 Re{Aeim(x2ct) sinny eimz}, (2.5)

where all variables are dimensional and m and c can be
complex. (We assume A is real without loss of gener-
ality.) Using this form to calculate the eddy heat flux
convergence P yields

]
P [ 2 (y9T9)

]y

f H0 2 2mc t 22m zi i5 2 A mnm e sin2nye . (2.6)r2R

Thus, we see that

f H0 2zPz 5 mn|C9| |m |. (2.7)r2R

Here mr is the real part of m, which from (2.5) can be

1 Strickly speaking, it is the sum of all waves’ PV gradients that
is capped by Q y. However, the differing phases and wavelengths
sufficiently inhibit such overlap that each wave can be considered to
be limited independently.
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seen to measure how rapidly the phase of the wave
changes with height, that is, the vertical phase tilt. This
phase tilt is only a weak function of wavenumber, as
will be shown in section 2b.

Also using (2.5) we can develop an expression for
the meridional gradient of potential vorticity in wave
(m, n). Differentiating the wavy part of (2.2) gives

2 2] f ]02(Q9) 5 ¹ C9 1 C9y 2 2[ ]]y N ]z

2f 02 2 2 2im(x2ct) imz5 Re n 2m 2 n 2 m Ae cosnye .
25 1 2 6N

(2.8)

Thus, we have

2f 02 2 2|(Q9)| 5 n m 1 n 1 m |C9|y 21 2N
2 2ø n(m 1 n )|C9|. (2.9)

Combining (2.7) and (2.9) together yields

2 2 22R n(m 1 n )
|(Q9)| ø ÏzPzy ! f H m|m |0 r

32R nm
ø ÏzPz (2.10)! f H |m |0 r

for synoptic-scale modes (m $ 4), given that long me-
ridional wavelengths are typically dominant. When
summed over all meridional contributions n, this rela-
tion can be approximated asymptotically as2

3m
|(Q9)| ; K ÏzPz , (2.11)y !|m |r

where K represents the constant factor 2R/f 0H inÏ
(2.10). Using (2.1) to limit the size of the wavy PV
gradient and using (2.4) yields

23 2zPz(m) ; Km |m | |(Q9)|r y

23 2; Km |m |(Q )r y

2
f R ] ]T023; Km |m | b 1 , (2.12)r 0 2 1 2[ ]N H ]z ]y

where K has been redefined. (This expression has been
derived for m dimensional, but it holds as well for non-
dimensional m if K is adjusted.) Thus, we have given
reason for a saturation limit or threshold for the amount
of heat that can be transported by each wave, a limit
that depends on zonal wavenumber but is independent

2 This is the dimensional, continuous atmosphere equivalent of Eq.
(4.5) in Welch and Tung (1998).

of forcing. Including the m21 asymptotic dependence of
phase tilt to be derived below, this formula shows that
heat transport for saturated waves varies with wave-
number as m24. The overall effect of (2.12) is that sat-
uration thresholds are lower for shorter waves.

Note that this formula represents a spectrum of sat-
urated waves. A particular spectrum from the real at-
mosphere, or a model simulation, is expected to ap-
proach this shape asymptotically as waves near satu-
ration; that is, as m gets larger.

With these thresholds in mind, we can now return to
the question of how the heat transport is distributed
among the different zonal waves. For a given forcing,
a certain amount of heat must be transported to reach
the robust equilibrium. If this exceeds the threshold of
the most unstable wave (as it often does by a wide
margin), then that wave will break and the excess heat
will be taken up by the next longer wave because it has
a higher threshold. If this next longer wave reaches its
threshold, then it will break and shed its excess energy.
This process will continue until the total heat that must
be transported has been accounted for, and thus the heat
will be spread over a spectrum of baroclinic waves.
Notice that the relationship (2.12) gives another argu-
ment for the upscale cascade of Charney (1971). Energy
cannot cascade to a shorter scale, even if that scale is
linearly unstable, for it has a nonlinear threshold that is
even smaller than that of the saturating wave.

When an unstable wave reaches its saturation level,
it is ‘‘nonlinearly stabilized’’ by sending energy to other
scales. The longest wave to transport heat, however, will
not have reached its threshold, and hence it will not be
stabilized nonlinearly at equilibrium. Rather, it stabilizes
itself. Through its heat transport, it reduces the zonal
mean temperature gradient to a level at which it is lin-
early neutral, in the manner Stone envisioned for the
most unstable wave.

It is this last wave that acts as the atmospheric ther-
mostat. It is the flexible component of the system, de-
termining the equilibrium temperature gradient essen-
tially by itself via a quasi-linear mechanism. In most
cases this wave does the bulk of the heat transport and
thus we call it the dominant heat-transporting wave. For
all but the smallest forcings, this wave will be longer
than the most unstable wave, the latter having been
nonlinearly saturated.

The reason that the cascade does not continue further
upscale is that all the necessary heat transport has been
borne by the shorter waves. There appears to be an
‘‘objective’’: to transport just enough heat to maintain
the atmospheric ‘‘thermostat.’’ When that objective is
achieved, no further upscale cascade is needed, and thus
it stops at the scale of the dominant heat-transporting
wave. The dominant wave then reduces the temperature
gradient such that longer waves are linearly stabilized
and do not participate in the dynamics. This equilibra-
tion process depends on the radiative driving. For higher
forcing, more heat flux will be required and hence more
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FIG. 2. Conceptual model of nonlinear baroclinic adjustment for a geometry with many linearly
unstable waves. The most unstable is given (nondimensionally) by m*. Equilibrium temperature
gradients are indicated by crosses; the Hadley solution is given by a dashed line. Solid horizontal
lines (and dotted vertical lines) indicate DT cr for different zonal wavenumbers. Solid vertical lines
are regime boundaries.

waves needed to transport heat to achieve equilibrium.
The cascade will continue until a longer wave is selected
as dominant.

Our theory is summarized in the schematic diagram
of Fig. 2. The crosses indicate the equilibrated temper-
ature gradient over a range of forcing levels, and the
most unstable wave is denoted as m*. For low forcings,
the temperature gradient equilibrates at that of the Had-
ley solution (dashed line), for no waves are unstable
and thus there is no heat transport. For slightly higher
forcings, m* becomes unstable and grows, transporting
heat and reducing the temperature gradient down to a
level at which that wave is just critical. As the forcing
is raised, m* will reach its nonlinear threshold, at which
point it will saturate and break, and the next longer, next
most unstable wave (m* 2 1) will take over the flexible
role. This wave will then reduce the temperature gra-
dient down to its critical level, until at a high enough
forcing it also breaks. This process repeats for longer
and longer waves as the forcing is raised.

Notice that what determines when the temperature
gradient shifts to a new regime is not when waves reach
their critical gradients from a linear stability analysis,
but rather when they reach their nonlinear saturation
levels. Also, the schematic has an exaggerated ordinate
for clarity; the critical gradients of the various waves
should be much closer in magnitude. This would yield
a relatively constant temperature gradient over a range
of forcings, as found in observations (Stone 1978).

We have explained the selection of the dominant heat-
transporting mode. Now let us address the shape of the

heat transport spectrum by completing the relation
(2.12) with a discussion of the vertical phase tilt.

b. Shape of the transient heat flux spectrum

The magnitude of the heat flux, given by (2.7), in-
volves the magnitude of the phase tilt of the wave, which
we have already claimed is weak: only O(m21) for short-
er waves. This can be determined by considering a linear
wave in a vertically continuous atmosphere. The dis-
persion relation shows that phase tilt mr is proportional
to growth rate ci for shorter synoptic waves (see below).
As the waves get longer this dependence lessens. Now
linear waves by definition have exponential growth,
which we assume is balanced by dissipation, which
means that in (2.5) mci ø damping rate, giving ci ;
1/m. Therefore, for shorter waves we have mr ; ci ;
m21, while mr → m0 as m → 0.

We can now write the heat flux formula (2.12) as

|P| ; m24. (2.13)

This is valid asymptotically for waves as they approach
saturation. Thus we expect it to be best for the shorter
heat transporting waves. For the longer heat transporting
waves, which are less likely to be saturated and also
have a weaker dependence of phase tilt on ci, we expect
the spectrum might be slightly flatter in shape.

Let us confirm the above by showing an actual cal-
culation. Linearizing the quasigeostrophic potential vor-
ticity equations about a zonal-mean state profile U(z)
(Charney and Drazin 1961), and using the form (2.5)
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FIG. 3. Phase tilt mr vs (nondimensional) zonal wavenumber for a
baroclinic wave in a linearized, vertically continuous atmosphere.
Waves with three different equilibrium growth rates are considered:
O(30) days (solid curve), O(20) days (dashed), and O(6) days (dot–
dashed). The thin solid line has slope m21.

for the streamfunction, one finds the following disper-
sion relation:

2f 0b 1 U0 z2 2 2N N N H
2 2 2m 5 2 (m 1 n ) 1

2 2f f U 2 c0 0

2 2 ˆN N b(U 2 c )r2 25 2 (m 1 n ) 2
2 2 2 2[ ]f f (U 2 c ) 1 c0 0 r i

2 ˆN bci1 i , (2.14)
2 2 2f (U 2 c ) 1 c0 r i

where [ b0 1 ( /N 2H)U z and we have neglected2b̂ f 0

terms in U zz because they are typically small compared
to b0.

For nongrowing solutions to (2.14), the term in brack-
ets is positive for the typical troposphere at 850 mb (the
altitude of maximum heat transport; see Solomon 1997).
Thus mr 5 0, and by (2.7) neutral waves transport no
heat meridionally and are not of interest here.

For growing waves, the value of mr in (2.14) depends
on ci. As we are interested in the phase tilt and heat
flux of waves at equilibrium, we should not use for ci

the growth rate of baroclinic waves in the rapid growth
phase of their life cycle. Rather, at equilibrium their
growth must be balanced by dissipative forces such as
Newtonian cooling and Ekman friction. Damping time-
scales of these processes are roughly 20–30 days and
6 days, respectively; we would expect the growth rate
of a wave at equilibrium to have a timescale somewhere
in between these values. For a damping time of D days,
we can calculate ci from mci 5 1/D days for each m.
Then using typical tropospheric values for the other fac-
tors in (2.14), we can calculate mr as a function of m.
This has been plotted in Fig. 3 for three different time-
scales: 30, 20, and 6 days. Comparing against the thin
solid line, we see that mr indeed falls off with the slope
m21 for large m. The longer waves fall off less quickly,
and the longest waves’ phase tilts can even grow with
m. However, for the heat transporting waves (m $ 4),
the three curves on average decay with m, slowly for
the longest waves and approaching the rate m21 for
shorter waves.

Thus we have verified formula (2.13) above as as-
ymptotically correct for heat transporting waves. For
the longest heat transporting waves the spectrum might
be slightly flatter.3

c. The transient energy spectrum

The arguments used above for the transient heat flux
spectrum also shed light on the spectrum of total tran-

3 We note that the above development is applicable not only to the
continuous atmosphere but to a model with a rigid lid as well, with
minor modifications to allow for standing waves.

sient energy E (kinetic plus available potential), for it
has very similar features. The energy is given by

21 g
2 2 2E 5 (u9 1 y9 ) 1 T9 , (2.15)

2 22 2N T0

where g is the force due to gravity and T0 a reference
temperature. Then using the form (2.5) we have E ;
m2C92 when m is large. However, P 5 2](y9T9)/]y ;
mC92. Therefore, one would expect energy to fall off
less quickly with m than the heat flux does. From (2.13),
a rough prediction would be that the shape of the energy
spectrum be given by

E ; m23. (2.16)

3. Comparison of theory with numerical
simulations and observations

a. Numerical model

To test the theory proposed above, we run simulations
of a two-level quasigeostrophic model in a b-plane
channel. The model includes Newtonian cooling to a
radiative equilibrium temperature profile and Ekman
friction at the earth’s surface. The domain approximates
the midlatitude troposphere: a channel of 458 width cen-
tered on 508N and extending from the top of the Ekman
layer to 200 mb. We assume rigid walls, and a rigid
(and flat) top and bottom. The model is finite-differ-
enced into two levels4 in the vertical. This is the same

4 In Welch and Tung (1998) we called this same setup a two-layer
model, because it follows from the original formulation of Lorenz
(1960), which he termed the same. However, both our model and his
are actually level models, for the height at which the variables are
to be evaluated is specified. See Pedlosky (1987).
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FIG. 4. Marginal stability curve, Im{mcm} 5 0, vs zonal wave-
number m for the initial state (dashed) and the equilibrium state (solid)
at DT † 5 90 K. Each curve accounts for eigenfunctions of all possible
meridional profiles, that is, all n. Thin vertical lines denote zonal
wavenumbers m 5 1–15 for the geometry d 5 0.28. The horizontal
dotted line shows the equilibrated temperature gradient DT eq ø 18
K for DT † 5 90 K.

model as that developed in Welch and Tung (1997) ex-
cept for the values of a few parameters, which will be
discussed below.

The nondimensionalized, leveled equations in pres-
sure coordinates are

] ]C12 2¹ C 5 2dJ(C , ¹ C ) 2 db 1 v 2 vd 1 1 d 1 2 0]t ]x

(3.1)

] ]C32 2¹ C 5 2dJ(C , ¹ C ) 2 db 1 v 2 vd 3 3 d 3 4 2]t ]x

(3.2)

] 1
(C 2 C ) 5 2 dJ(C 1 C , C 2 C ) 2 2s v3 1 1 3 3 1 0 2]t 2

†2 2h0[C 2 C 2 (C 2 C ) ], (3.3)3 1 3 1

where C 5 F/ f 0 is the geostrophic streamfunction and
v 5 dp/dt is the vertical velocity. Subscripts 1 and 3
indicate the upper and lower levels, 2 the interface, and
0 and 4 the top and bottom of the model, respectively;

5 d2(]2/]x2) 1 (]2/]y2) is the nondimensionalized2¹d

Laplacian, and a † identifies the radiative forcing.
Henceforth all variables (including wavenumbers m and
n) are nondimensional unless otherwise noted.

Several nondimensional parameters have been intro-
duced: b is the meridional gradient of the Coriolis pa-
rameter f, s0 is a measure of static stability (specified
and held constant in our simulations), h0 is the relaxation
timescale for the radiative forcing, and d 5 Ly/Lx is a
horizontal aspect ratio, where Lx and Ly indicate the
scale of the domain in the zonal and meridional direc-
tions, respectively.5 Specifying d is equivalent to setting
the length scale of the gravest zonal mode allowed (for
a fixed channel width): the larger d, the shorter the
fundamental mode’s wavelength. Thus, by varying d,
the number of zonal modes that are unstable can be
varied.

In this study we are attempting to simulate a case akin
to the real atmosphere in which many waves are unstable
and participate in the baroclinic equilibration. We
choose the value s0 5 0.06 for the static stability pa-
rameter, which is in the range 0.05–0.09 calculated from
tropospheric observations (Welch 1996). We select d 5
0.28 because it corresponds to a channel that circum-
scribes the earth, that is, to the real midlatitudes. To see
this, recognize that the width of channel should corre-
spond to the meridional range in which baroclinic dis-
turbances occur. In the real atmosphere this is deter-
mined by the zonal jet, for it acts as a waveguide, con-

5 We let the nondimensional variable x̂ range over [0, 2p], whereas
ŷ only ranges over [0, p]. The latter is due to our choice of sinny as
the meridional eigenfunctions in order to satisfy the no-flow sidewall
boundary conditions. Thus d is twice the ratio of the dimensional
width to length. See Welch (1996).

fining baroclinic disturbances to approximately 308 of
latitude. The length of the channel should correspond
to one circumference of the globe at our center latitude
of 508N. Thus the dimensional width 5 2pRE(30/360)
and dimensional length 5 2pRE cos508, where RE 5
radius of the earth, giving width/length 5 1/(12 cos508).
Then d 5 Ly/Lx 5 twice dimensional width to length
5 1/(6 cos508) 5 0.26 ø 0.28.

Such a value of d allows many zonal waves to be
linearly unstable. This can be seen in Fig. 4, which
displays the marginal stability (dashed) curve of the
wave-free solution of (3.1)–(3.3). There are approxi-
mately 14 waves unstable, with the most unstable being
m 5 11. This is close to the scale of the most unstable
wave in the real atmosphere [m 5 12–15 from Gall
(1976)]. Furthermore, as we shall see in the model re-
sults (Fig. 6), this geometry with a realistic forcing of
DT † 5 90 K yields m 5 5 as the dominant heat trans-
porting wave at equilibrium, which is in the range found
in observations by Randel and Held (1991). Thus with
our chosen parameter values the model simulates the
key baroclinic wave scales of the current atmosphere.

The solution of the model is the same as in the pre-
vious two-wave study. A -type subgrid damping4¹d

term is added to the vorticity equation at each level to
represent the frictional effect of small scales. The de-
pendent variables are expanded in the eigenfunctions
of the Laplacian operator in the horizontal, and an or-
dinary differential equation solver based on the Runge-
Kutta method is used to calculate the expansion co-
efficients over time. Tests at various resolutions indi-
cate that, for this case with many waves unstable, 26
modes must be retained in both the meridional and
zonal directions to yield a convergent solution, and the
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FIG. 5. Equilibrium temperature gradients (crosses) for a range of
forcing for d 5 0.28. Also shown is the radiative equilibrium Hadley
solution (dashed line). Critical gradients from a linear stability anal-
ysis of the dominant heat-transporting wave in the equilibrated flow
are given by the squares. The solid line is the total heat flux by all
waves, (d/2h0)D]( )/]y.y9T92 2

simulations must be carried out for approximately one
year (3000 nondimensional time steps) and averaged
over the last four months (1000 time steps). All ex-
periments in the subsequent discussions were run in
this way, starting from the Hadley state (the wave-free
solution of the above equations of motion), with all
zonal and meridional wavenumbers perturbed with ran-
dom but small magnitude.

For further details of the model see Welch (1996). It
is formulated the same as that in the original study of
Cehelsky and Tung (1991), except for a few parameter
values and for a now more efficient method to calculate
the nonlinear terms. Most importantly; to simulate the
real atmosphere requires many waves to be unstable,
and hence a higher resolution was needed than the orig-
inal model study could provide (10 3 10). The current
model is the same as that used in Welch and Tung
(1998); we have simply used a smaller value of the
aspect ratio d here to yield more waves unstable.

b. Model output

We will measure the modeled climate in several ways.
One simple measure is the zonally averaged temperature
difference (or ‘‘gradient’’) across the midlatitudes in the
middle troposphere, which we label DT 2. An expression
for this can be derived by zonally averaging the ther-
modynamic energy equation (3.3) and using the hydro-
static relation T ; 2]C/]p to yield

]T ]2 †5 2d (y9T9) 1 2s v 1 2h0(T 2 T ). (3.4)2 2 0 2 2]t ]y

We are interested in the dynamics at large meridional
scales and the effect on the temperature gradient across
the channel, defined by DT [ T 2|y50 2 T 2|y5p. From
(3.4) this can be approximated at equilibrium by

s d ]0†DT ø DT 1 Dv 2 D (y9T9), (3.5)eq 2 2 2h0 2h0 ]y

where the last term is the differential eddy heat flux
convergence or ‘‘heat transport.’’ We will vary the mag-
nitude of the radiative equilibrium forcing DT † and mea-
sure the resultant DT eq and the resultant heat transport
by various waves.6 The contribution by the vertical ve-
locity was small in all cases we studied.

Figure 5 shows output from model simulations. For
a wide range of forcings, the solid line gives the total
heat transport by all waves at equilibrium, and a cross
the resultant temperature gradient. For very low forcings
there is zero heat transport and, thus, the temperature
gradient equals that of the Hadley solution (dashed line).
When the forcing rises above the minimum critical tem-

6 As in Welch and Tung (1998), heat transports are approximated
in the figures by the projection of 2d/2h0]( )/]y onto the cosyy9T9m m

mode. They are in units of K and not K s21 due to division by h0.

perature gradient, given in Fig. 4 as DT cr ø 9 K, the
heat transport becomes nonnegligible. From this point
higher, the total heat transport rises linearly with forcing,
while the temperature equilibrates at a gradient that is
lower than the Hadley solution’s and fairly constant,
even as the forcing is varied by an order of magnitude.
This corroborates the first main premise of the nonlinear
baroclinic adjustment mechanism listed in the intro-
duction.

Figure 6 shows the heat transport by each wave sep-
arately at equilibrium over the same range of forcings.
At low forcings (but above the Hadley solution) the most
unstable wave m 5 11 transports all of the heat. At a
forcing near 15 K, however, this wave’s contribution
flattens out and other waves (m 5 10 and 9) begin to
transport significant heat. Notice that wavenumber 10
starts growing not when it becomes linearly unstable
(DT † ø 10 K from Fig. 4) but rather when wavenumber
11 saturates. This agrees with the idea of a nonlinear
mechanism to select the dominant wavenumber; a sim-
ple linear theory based on stability analysis would not
be in accord with the results here. At a slightly higher
forcing of DT † ø 18 K, m 5 10 takes over dominance
until, at DT † ø 40 K, it reaches its saturation level and
dominance passes to wavenumber 9. The cascade con-
tinues to longer and longer scales as the forcing is raised.

Thus we confirm the upscale cascade theorized in
section 2 above. Figure 6 also demonstrates the nonlin-
ear wave thresholds directly. For 100 # DT † # 150 K,
wavenumbers 8–11 each have a heat transport that does
not rise much with the forcing, indicating that these
scales have reached saturation and have passed energy
to the longer scale waves, which dominate at these forc-
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FIG. 6. Differential heat flux convergences, (d/2h0)D]( )/]y, projected onto the cosy mode,y9T92 2

at equilibrium vs forcing for d 5 0.28. Legend indicates wavenumbers. Only waves with non-
negligible heat transport are included. (This is the same data as in Fig. 9 but plotted differently.)

ings. Furthermore, the saturation level for the shorter
waves are lower than for the longer waves:

(P ) , (P ) , (P ) , (P ) ,11 satn 10 satn 9 satn 8 satn

which agrees with the relation (2.13).
To investigate the nature of the equilibration, a linear

stability analysis has been performed on the zonal mean
state of the flow at equilibrium for each forcing. From
Fig. 6, the dominant heat transporting wave can be iden-
tified for each equilibrium, and the critical gradient de-
termined for that wave in the equilibrated flow. These
values have been plotted on Fig. 5 as squares. That the
critical temperature gradients (crosses) lie near or on
the critical gradient of the dominant heat transporting
waves at equilibrium (squares) agrees with the concep-
tual model of nonlinear baroclinic adjustment presented
in Fig. 2 above. The flow has been made approximately
neutral with respect to the dominant wave, implying that
this wave acts in a quasi-linear fashion [as envisioned
by Stone (1978) for the most unstable wave]. In the
process, all longer waves have been rendered linearly
stable. This can be seen from the marginal stability
curve for the equilibrated flow at DT † 5 90 K (solid
line) in Fig. 4. Wavenumber 5 is the longest wave to
transport heat in this case (as given by Fig. 6), and it
reduces DT down to near its critical gradient, DT cr,5,
rendering itself approximately neutral. As this is lower

than the critical gradient for longer waves, wavenumbers
m 5 1 2 4 are linearly stabilized as well.

The process of wave breaking also can be demon-
strated with model output. Figure 7 shows various snap-
shots in time of a model run at DT † 5 120 K. Each
frame shows contours of upper-layer PV versus x and
y at a point in time in the evolution to equilibrium, with
solid (dotted) contours indicating total PV greater (less)
than the average planetary contribution, f 0. The run is
started from the (perturbed) Hadley solution, which at
this forcing is supercritical to wavenumbers 1–14 (Fig.
4, dashed curve). Early on at 1.2 days, the most unstable
wave (wavenumber 11) is the primary perturbation to
the PV contours, as can be seen from the number of
peaks in the perturbed f 0-contour in panel a. This wave
does not maintain dominance, however. As the evolution
proceeds, the dominant wave observed becomes longer
and longer: from m 5 11 initially to m 5 10 (not shown)
to m ø 9 at 2.3 days (panel b) to m ø 8 at 3.5 days
(panel c), etc. Finally at equilibrium, it is m ø 6 that
is dominant, as shown at 92.6 days in panel d (and which
agrees with Fig. 6).

Dominance shifts to a longer scale when the PV con-
tours of the currently dominating wave curl up such that
regions of negative PV gradient are created. Initially the
gradients are dominated by b0 and hence are everywhere
positive, as in panel a. Waves then begin to grow, dis-
torting the contours. If a wave becomes very large, long
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FIG. 7. Contour maps over time of potential vorticity in the upper layer vs x and y for DT † 5
120 K. Thick solid line is the f 0 contour; thin solid and broken lines indicate Q1 . f 0 and Q1 ,
f 0, respectively. (The contour interval is not constant but rather has been chosen to demonstrate
most clearly the process of wave breaking.)

thin fingers of PV start to form, as in panel b for wave-
number 9. Eventually these fingers begin to curl over
onto themselves, creating regions of negative PV gra-
dient; for example, see the top left section of panel b
or the top of panel c. Where this occurs, small-scale
instabilities begin to grow. Panel c shows PV fingers
that curl over and are being ‘‘pinched off’’ by insta-
bilities that have arisen on the side(s). Small ‘‘blobs’’
of PV thus are created, and these are in turn broken up,
as they have negative PV gradients due to their closed
contours. The blobs become smaller and smaller until
they are dissipated by (subgrid) friction. In this way,
further growth of wavenumber 8 in panel c is prevented.
The next longer wave begins to emerge in the PV con-
tours as it grows larger than the breaking wave.

Another demonstration of the generalized Charney–
Stern theorem specifically addresses (2.1). From this
relation we expect that each saturated wave will have
yielded a that is about equal in magnitude to Q y.Q9y
This is demonstrated by Fig. 8, which shows the upper-
level wavy and zonal mean PV gradients over time for
DT † 5 100 K. The top panel is for values at y 5 p/2
and shows the initial evolution from the Hadley state.
At a short time of t ø 40 (about 5 days) several waves
grow to large amplitude because they are baroclinically
unstable, and hence their | | grow large as well. TheseQ91,y

waves extract energy from the mean flow, reducing the
cross-channel temperature gradient and hence Q 1,y by

relation (2.4).7 In the process, at some point | | .Q91,y

Q 1,y, and thus the breaking criterion of Garcia is satisfied
and the waves break. A series of peaks in wavy PV
gradient occurs in Fig. 8 for the different waves, and
each PV gradient then successively falls. This reduction
of the wave amplitudes allows the temperature gradient
and thus Q 1,y to increase, bringing the wavy and zonal
mean PV gradients back into approximate equality. In
the long run, the waves maintain an amplitude such that
| | ø Q 1,y for the saturated modes at equilibrium. ThisQ91,y

is shown in the lower panel for later times and a different
latitude within the channel. (Both panels are similar at
other values of y.)

Finally, we consider spectra of heat flux and energy
from model output. Figure 9 shows the same data as in
Fig. 6, but it has been rearranged so that each curve
corresponds to a single forcing, giving the transient heat
transport by each zonal wave at equilibrium. Also on
this log–log chart are thin lines of constant slope 23
to 24. It can be seen that overall the model spectra do
vary approximately as m24. This graph shows evidence
of the saturation thresholds discussed in the previous
section. Notice how, as the forcing is raised, the spectra

7 Note that ]T /]y , 0, but this gradient generally decreases in
magnitude with height in the upper troposphere such that ]/]z (]T /
]y) . 0 at level 1. Thus decreasing the magnitude of ]T /]y in (2.4)
also decreases its vertical gradient and hence Q 1,y.
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FIG. 8. Meridional gradients of potential vorticity vs time at the upper level: Q 1,y (heavy dark
line) and | | for zonal wavenumbers m 5 5, 7, 9, 11 (thin solid lines). Top panel is at y 5 p/Q91,y

2 starting at t 5 0, and bottom at y 5 p/3 for later times.

FIG. 9. Spectra of transient eddy heat flux for various forcings in
model simulations: DT † 5 40 K (solid), 60 K (dashed), 80 K (solid
with circles), 100 K (dotted), 120 K (dot–dashed), and 140 K (solid
with stars). For each point, the heat flux convergence, 2(d/
2h0)]( )/]y, has been projected onto the cosy mode. (This is they9T9m m

same data as in Fig. 6 but plotted differently.) Thin lines as in Fig. 1.

in the heat transporting range asymptotically approach
an enveloping curve, roughly given by the curve for the
highest forcing plotted (DT † 5 140 K). This envelope
is the locus of saturation levels for each wavelength.

Figure 9 also shows the wave that dominates the heat
transport moving to a longer and longer scale as the

forcing is raised. For example, as the forcing changes
from DT † 5 60 K (a proxy for summer; dashed line)
to 80 K (proxy for winter; line with circles), the dom-
inant heat transporting wave in the model shifts from
m 5 7 to m 5 6. A similar shift occurs in the real
observations in Fig. 1; in the Southern Hemisphere the
dominant wavenumber moves from 6 to 5, summer to
winter. Interestingly, this sort of shift does not occur in
the model if we raise the forcing yet higher. Figure 9
shows that, even for forcing levels about twice that in
our current climate, the dominant wave remains m ø
6. This is because wavenumber 6, by (2.13), has a high
nonlinear threshold that has not yet been reached by
DT † 5 140 K. Thus the theory of nonlinear baroclinic
adjustment not only allows us to understand observa-
tions, but also to make predictions, as in the following.
If the effective solar forcing were to increase from the
current value, the impact on the heat flux spectrum
would be small. The amount of heat transport by syn-
optic-scale waves m $ 7 would remain at their saturated
values, and the dominance by wavenumber 6 would
continue. Only the amount of heat transport by this dom-
inant wave would change, increasing linearly with the
forcing to maintain the same overall robust temperature
gradient.

Let us now consider the spectrum of transient energy.
First we show with model results that it has similar
features to the heat transport spectra above. In Table 1
we compare the synoptic wavenumber of maximum per-
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TABLE 1. The zonal wavenumbers of maximum perturbation energy
(in the synoptic range) and maximum transient heat flux convergence.
All calculations are at equilibrium.

DT†
(K) (mmaxE)syn mmaxP

20
50
80

110
140

10
7
5
5
4

10
6
6
5
6

FIG. 10. Perturbation energy spectra at equilibrium. Solid line is
for DT † 5 50 K, dashed line for 80 K, dot–dashed line for 110 K,
and dotted for 140 K. Thin lines as in Fig. 1.

turbation energy (departure from the time and zonal
mean) with that of maximum heat flux convergence
(taken from Fig. 6) for various forcings in the two-level
model. It can be seen that the wavenumbers are very
close at all forcings. There is indeed a difference be-
tween the dominant heat-transporting mode and the syn-
optic-scale mode with maximum perturbation energy.
First, the wave of maximum energy is not necessarily
the wave of maximum energy extraction from the mean
flow. Model simulations here and in other studies do
show them to be close, however (Larichev and Held
1995). The wave of maximum energy often is just slight-
ly longer than that of highest extraction, seemingly a
by-product of the continual cascade of energy to longer
waves, as also found in Fig. 9 of Haidvogel and Held
(1980). Further, the wave of maximum energy extraction
is not the same as the wave of maximum heat transport.
However, both are quasi-linear quantities, measuring in-
teraction between a wave and the mean flow, and model
simulations show that these two scales are also close.
Thus one would expect that the (synoptic) wavelength
of maximum energy and that of maximum heat transport
would be similar. This similarity implies that nonlinear
baroclinic adjustment should be able to explain the oc-
currence of a synoptic-scale peak in the energy spectrum
as well as in the heat flux spectrum.

Now look at the shape of the energy spectrum for
synoptic-scale waves, as shown in Fig. 10 for several
different forcings. Note that there is again an enveloping
of the spectra as the forcing is raised, as with the heat
flux in Fig. 9. Comparing against the thin lines of con-
stant slope, it can be seen that the energy decays at a
rate similar to that of the heat flux. However, here most
of the curves are closer in slope to 23 or 23.5 than to
24, while the opposite was true in Figs. 9 and 1. This
agrees with the prediction (2.16). Therefore, the non-
linear baroclinic adjustment theory delineated above can
also explain the synoptic peak and shape of the transient
energy spectrum over a range of forcings.

We note that Fig. 10 shows a long-wave maximum
of energy as well as a synoptic wave maximum at each
forcing in model simulations. This is true of the heat
flux convergence as well. (Fig. 9 hides this fact because
its values are all projections onto cosy, whereas the long-
wave maximum usually occurs at a shorter meridional
scale.) There is some evidence of a long-wave peak of

transient energy in the real atmosphere, due to large
available potential energy at planetary scales (Willson
1975, Fig. 5; Tanaka and Kung 1988, Figs. 5 and 6).
However, in this work we are concerned with the syn-
optic part of the spectrum and will not further investigate
the long waves (except in the discussion of Rhines’
theory in section 4).

c. Observations of heat flux

Let us also test our theory against observed heat flux
spectra in the real atmosphere. Figure 1 shows obser-
vations of heat flux, , at 478 and 700 mb for eachy9 T9m m

zonal wave in four different season/hemisphere pairs
(Randel and Held 1991). The Southern Hemisphere data
provide the most direct comparison to our model, which
has no topography. These curves show the same en-
veloping described above, and the heat transporting
waves vary with zonal wavenumber roughly as m24.
Therefore, the nonlinear baroclinic adjustment theory’s
prediction for the shape of the heat flux spectrum agrees
with both model simulations and observations of the
real atmosphere.

d. Model validation

In order to use the model to corroborate the theory,
as we have done in section 3b above, we should compare
model simulations with observed data to confirm the
model’s validity. First, we recognize that the static sta-
bility varies between the seasons, and thus more specific
values of s0 have been calculated for winter and summer
separately, using data from Peixoto and Oort (1992).
From their Fig. 7.5, and with r 5 r4e2z/H with H ø 7
km and r4 ø 1.275 kg m23 from Wallace and Hobbs
(1977), we determine the following values for nondi-
mensional s0:
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FIG. 11. Transient heat flux y9T 9 at 478S and 700 mb from Randel
and Held (1991) for two seasons (thick curves), as in Fig. 1. Thin
curves are from model simulations of y9T 9 at 508 and 600 mb for
summer (solid) and winter (dashed). See text for details. Thin straight
lines as in Fig. 1.

FIG. 12. Equilibrated temperature gradients: the dashed line is the
Hadley solution, crosses are the results of model simulations, and
boxes are from observations. See text for details.

(s ) ø 0.0850 winter

(s ) ø 0.077. (3.6)0 summer

We also choose the magnitude of forcing for each season
separately, as:

†(DT ) ø 77 Kwinter

†(DT ) ø 65 K. (3.7)summer

These forcings are in the same ratio, winter to summer,
as the net radiation at the top of the atmosphere (from
Peixoto and Oort 1992, Fig. 6.14d). Finally, for com-
paring with observations we have used an 18-day time-
scale for the Newtonian cooling parameter h0. (In all
other parts of this work, the model uses a slower value
of 56 days for h0, in order to elucidate the dynamics.)

Two different comparisons were made. Figure 11
shows heat flux spectra from observations of winter and
summer in the Southern Hemisphere, as in Fig. 1. The
new graph includes spectra from winter and summer
model simulations as well, with parameter values noted
above.8 The magnitude of the model-simulated heat flux
is very near in magnitude to that of the real atmosphere,
for both seasons and all heat transporting waves. In
particular, the short-wave ends of the modeled spectra
fall right on top of the observed, showing approximately
the same slope. Also, the peak of the modeled summer
spectrum is at m ø 6, shifting to m 5 5 in the winter.
This duplicates the shift that has already been mentioned

8 The output of the model has been translated, from the projection
of the heat flux convergence onto the cosy mode, to the heat flux at
midchannel, which is approximately the measure used by Randel and
Held (1991).

in the real data. Notice also that the model results show
no difference in heat flux in the shorter waves season
to season, which is the same as in the observations and
which was explained by the saturation mechanism in
the baroclinic adjustment theory. One discrepancy be-
tween the model and the real atmosphere is in the long
waves: they have smaller amplitude in the former than
in the latter. This is presumably due to the absence of
any forcing mechanisms other than baroclinic instability
in the model. In the real atmosphere many processes
exist that can generate nonstationary long waves, among
them topography and other longitudinally asymmetric
forcings such as diabatic heating. By omitting such in-
fluences from our model, we reduce the amplitude and
heat transport possible by long waves.

We also consider temperature gradients produced by
the same two model runs; these are shown as crosses
in Fig. 12. They are compared against observed values
(squares) of the temperature gradient in midchannel; that
is, 22]T obs/]ŷ at ŷ 5 p/2 (Peixoto and Oort 1992, Fig.
7.5). Figure 12 shows that the results of the model are
strikingly close to the observations. First, the model has
approximated well the large reduction of the tempera-
ture gradient from the radiative equilibrium value, given
by the dashed line. Second, the model and observed
values are fairly robust in spite of large differences in
seasonal forcing, agreeing with Stone (1978). Finally,
the model results show a slight rise in equilibrium gra-
dient from summer to winter. This meets with our ex-
pectations and agrees qualitatively with the observa-
tions. The difference between winter and summer in the
real atmosphere is larger than what the model predicts,
but given that the model results are projected onto cosy
and are the result of many simplifications, such a dis-
crepancy is not surprising or alarming.

Therefore we have some evidence that our model,
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FIG. 13. Perturbation energy vs zonal wavenumber m (abscissa)
and adjusted meridional wavenumber n/d (ordinate) at equilibrium
for DT † 5 50 K. The contour interval is not constant for E # 1e 2
4 (and hence is labeled), and for E . 1e 2 4 it is constant at 1e 24.

TABLE 2. Rhines total wavenumber, (m2 1 n2/d2)b, for various forc-
ings as calculated from the rms eddy velocity, Urms, according to (4.1).
The synoptic wavenumber of maximum perturbation energy from
model runs, (m2 1 n2/d2) , is also included. All calculations are at1/2

Emax

equilibrium.

DT† Urms (m2 1 n2/d2)b (m2 1 n2/d2)1/2
Emax

20
50
80

110
140

0.04
0.11
0.16
0.21
0.24

8.0
4.8
4.0
3.5
3.3

10.6
6.1
6.1
6.1
5.3

albeit a simple two-level quasigeostrophic model in a
beta-plane channel, has relevance to the real atmo-
sphere. Hence we expect that the mechanism of non-
linear baroclinic adjustment, which the model demon-
strates, is similarly meaningful.

4. Relation to other theories

Several theories have been proposed by other authors
to explain various aspects of the equilibration of bar-
oclinic flows. Let us consider the argument given by
Rhines (1975) for the wavenumber of maximum energy.
He developed a formula based on geostrophic turbu-
lence arguments for the wave scale that would dominate
in a flow subject to both turbulence and Rossby wave
dynamics. This is relevant to our present parameter re-
gime. Rhines reasoned that nonlinear triad interactions
among short waves would result in a reverse cascade
of energy upscale (Charney 1971), but that such inter-
actions would diminish at the large scales, which are
dominated by the linear dynamics of Rossby waves due
to the large Coriolis force. Thus the upscale cascade
would terminate at some wavenumber for which the
Coriolis force and the nonlinear terms have the same
magnitude. Rhines calculated this wavenumber of cas-
cade arrest as kb [ (b/Urms)1/2, where kb is a total (two-
dimensional) wavenumber and Urms 5 (u2 1 y 2)1/2 is
the magnitude of the root-mean-square eddy velocity.
This can be expressed for our study as

2n 1 b
2m 1 [ (4.1)

21 2 !d d Urmsb

(all quantities are nondimensional).
To test whether the Rhines wavenumber of cascade

arrest accords with our energy maximum, we must con-
sider energy versus total horizontal wavenumber, not

just zonal wavenumber. Therefore we have plotted in
Fig. 13 the perturbation energy versus both zonal and
meridional wavenumber for DT † 5 50 K at equilibrium.
The meridional wavenumber n has been adjusted so that
equal distances along the abscissa and ordinate represent
equal dimensional wavelengths. The Rhines theory pre-
dicts that energy would be a maximum in a circular arc
around the origin and that the radius of this arc would
be that given by (4.1). For the moderate forcing of Fig.
13 we see two regions of maximum energy: one at syn-
optic scales of m 5 5–7, n 5 1 (n/d ø 3.6) and the
other a long wave at m 5 2, n 5 2 (n/d ø 7.1). These
two maxima are at approximately the same distance
from the origin, that is, have the same total (dimen-
sionless) wavenumber (m2 1 (n/d)2)1/2 ø 6–7. Thus it
is possible that the two extrema are just different ori-
entations of the same isotropic maximum. (Because the
meridional wavenumber n can take only integral values,
the energy is quantized in that dimension and thus the
maximum arc is broken up into distinct peaks, but its
underlying circular nature can still be deduced.) Note
also that the contours of energy for shorter waves form
roughly circular arcs centered at the origin.

Therefore, could we explain the presence of the two
peaks of energy in each curve in Fig. 10 by Rhines’
theory? The answer appears to be no. The quasi-isotropy
in Fig. 13 is not found consistently at other forcings.
At low DT †, the maxima of energy are sufficiently weak
that a two-dimensional plot of energy has no clear struc-
ture. As the forcing is raised to high values, the two
maxima seen for DT † 5 50 K both move in toward the
origin, but not uniformly so, and thus the circular
‘‘Rhines ring’’ is lost. For all forcings the energy at the
longest scales is distinctly anisotropic. In addition, in-
vestigations into the energetics of the evolution to equi-
librium at various forcings show a nonlinear cascade
that does not always flow to, and only to, the isotropic
Rhines total wavenumber. This is not really surprising,
given the difference between our model and Rhines’
assumptions. (See below.) Thus, in its strict two-di-
mensional sense the Rhines mechanism does not seem
to be operating here.

However, as we are interested primarily in the syn-
optic heat transporting waves, let us see if the Rhines
mechanism can explain the synoptic energy maximum.
In Table 2 Rhines’ total wavenumber is compared
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FIG. 14. Equilibrium for DT† 5 90 K. Panel (a) shows zonal mean
zonal velocities: solid lines are u 1 (upper) and u 3 (lower); dashed
line is baroclinic velocity uBC 5 (u 1 2 u 3) and dot-dashed is bar-1

2

otropic velocity uBT 5 (u 1 1 u 3). Panel (b) shows components of1
2

zonal mean thermodynamic energy equation (3.4): radiative equilib-
rium temperature T† (dashed line), heat flux convergence 2(d/
2h0)]( )/]y (dot–dashed line), vertical velocity (s0/h0)v 2 (circles),y9T92 2

and resultant equilibrium temperature T 2,eq (solid line).

FIG. 15. Components of perturbation energy growth rate at equi-
librium for DT † 5 90 K: quasi-linear extraction from the mean flow
(solid line), nonlinear transfer (dashed line), and dissipation plus
forcing (dot–dashed line). The thin solid line is the total rate of change
of energy in each mode.

against the total synoptic wavenumber of maximum en-
ergy for various forcings. In each case Urms is time- and
channel-averaged at equilibrium; thus it is a measure of
the barotropic energy in the channel, as in the study by
Haidvogel and Held (1980).

It can be seen that Rhines’ wavenumber is indeed a
proxy for the synoptic scale of maximum energy. Fur-
thermore, there is nonlinear flow to this synoptic wave
during the evolution to equilibrium, as Rhines’ theory
predicts. We do note that in all cases his wavenumber
is smaller than the actual dominant wavenumber, a fea-
ture found by Whitaker and Barcilon (1995) as well.
There could be a number of reasons for this. First, we
must recognize that the Rhines calculation is based on
a simple balance of terms and hence is intended as a
ball park figure, not a precise prediction. Second,
Rhines’ theory neglects viscosity and thermal forcing.
These both act as damping on the waves, and such a
drain of energy from the cascade has been thought to

prevent it from reaching as far upscale as it would with-
out the damping (Panetta 1993; Lilly 1972). Thus, a
viscous kb would be larger than the prediction of (4.1)
and likely more in agreement with the simulation results.

Another possible reason for the difference is that
Rhines’ ideas were developed for a fluid in a state of
homogeneous isotropic turbulence, whereas our model
has intentionally been run in a parameter regime, that
is more like the real atmosphere: a channel that is not
infinitely wide and throughout which the eddies can
change the mean flow. In studies with models forced to
be homogeneous (Haidvogel and Held 1980; Panetta
1993; Pavan and Held 1996), the isotropic results are
indeed found to match with the Rhines theory. Here our
simulations are clearly less isotropic. Thus Rhines’ as-
sumptions do not really match with our situation, and
it is not not surprising that his wavenumber of cascade
arrest cannot explain all of our energetics. However, his
theory does seem to explain the dynamics of the syn-
optic wave of maximum energy and can roughly de-
termine its scale.

Our nonlinear baroclinic adjustment theory also ac-
cords with the wave–wave equilibration theory of Salm-
on (1980) in his study of quasigeostrophic turbulence.
This can be seen in Fig. 15, which shows the pertur-
bation energy growth, and components thereof, for each
zonal mode at equilibrium for a winterlike forcing of
DT † 5 90 K. [Calculations follow the method of Whi-
taker and Barcilon (1995).] The solid line represents
quasi-linear extraction of energy from the mean flow,
the dashed is nonlinear energy transfer between waves,
and the dot–dashed line is the total of the linear pro-
cesses: Ekman friction, subgrid damping, and Newto-
nian cooling. Note that the components of energy
change sum to approximately zero in our time average,
as indicated by the thin solid line, proof that the system
is indeed at equilibrium.
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The figure shows that there is nonlinear transfer of
energy out of wavenumbers 5–12, whereas wavenum-
bers 1–4 gain energy nonlinearly. That is, the most un-
stable waves lose energy to longer, less unstable waves.
This is due to the fact that these shorter heat transporting
waves have reached their saturation levels and are break-
ing, as described above, and their energy is taken up
always by waves of longer scale due to the relation
(2.13). Figure 15 also shows that the longer waves are
losing energy to dissipation. Because the most unstable
waves continually lose energy nonlinearly, they can be
maintained in a state in which they are linearly unstable.
This is confirmed by the marginal stability curve at
equilibrium for the case DT † 5 90 K in Fig. 4 (solid
line). The mean flow is supercritical to the most unstable
waves at equilibrium. (We note that the results in our
Fig. 15 are very similar to those of Whitaker and Bar-
cilon (1995); cf. their Figs. 7 and 9.)

The above energetics fit with Salmon’s wave–wave
equilibration theory, which he developed to explain
equilibration in a fluid with a forced mean baroclinic
state, including Ekman friction at the earth’s surface
(Salmon 1980). An equilibrium is achieved in which
the most unstable waves gain energy quasi-linearly from
the forcing (i.e., from the mean flow) and lose it non-
linearly to longer, less unstable waves on which dissi-
pation acts. With such an energy balance, an equilibrium
that is ‘‘supercritical’’ relative to the most unstable
waves is possible.

We can summarize the main elements of the dynamics
displayed in Fig. 15 by dividing all zonal wavenumbers
into two groups. Wavenumbers 1–4 in net gain energy
from the mean flow, but not as much as m $ 5. Wave-
numbers 1–4 gain energy nonlinearly, while m $ 5 lose
energy. Finally, the longer waves lose more energy to
forcing and damping than the shorter waves. It is now
apparent that this is exactly the dynamics studied in
Welch and Tung (1998), in which only two waves were
unstable. In that case all the dynamics was compressed
into the only two active waves: the longer wave m 5
1 played the role of the long-wave group here (wave-
numbers 1–4) and the short-wave m 5 2 played the role
of the shorter waves m $ 5. (See their Fig. 6T.)

Thus Salmon’s theory can successfully describe the
equilibrium dynamics of our baroclinic model in dis-
parate parts of parameter space, and our theory agrees
with his in this sense. We note that nonlinear baroclinic
adjustment goes a step further, giving the dynamic
mechanism for each wave and explaining how the waves
interact over time to yield the final equilibrium state.

As an aside we note that there is some stabilization
of the flow due to the barotropic governor effect (James
1987). This can be seen from Fig. 14a, which shows
the zonal mean zonal velocities at equilibrium for the
case DT † 5 90 K. The barotropic velocity uBT (dot-
dashed line) is slightly larger in magnitude than the
baroclinic flow uBC (dashed line), and the former has
somewhat of a barotropic shear as well. These two fea-

tures suggest a lessening of the baroclinic instability of
the flow by the James barotropic governor mechanism.
Figure 4 shows the result of this effect: the marginal
stability curve for the equilibrated flow (solid curve) is
higher than that for the initial Hadley flow (dashed
curve). (Note that the stability analysis performed in-
corporates the meridional profile of the flow being an-
alyzed; hence it includes any barotropic governor effect
automatically.) The influence of the barotropic governor
is not dominant, however, in that the flow at equilibrium
is still unstable to the smaller-scale synoptic waves.

Yet another explanation of baroclinic equilibration
has been espoused by Farrell and collaborators (Farrell
and Ioannou 1994; DelSole and Farrell 1995; Farrell
and Ioannou 1995; DelSole and Farrell 1996). In the
studies listed, the authors used linearized quasigeo-
strophic equations and showed how the nonnormality
of the linear operator can lead to transient growth of
nonmodal waves. Starting with a single initial value
problem, Farrell (1989) demonstrated that an optimal
perturbation to the mean atmosphere in such a system
can mimic the development of a single midlatitude cy-
clone. He reasoned that the combined effects of many
cyclones, that is, the effect of baroclinic instability on
climate, then can be simulated by continuously forcing
the linearized system. This was done by modeling the
omitted nonlinear interactions as a stochastic forcing in
all wavelengths (plus a linear dissipation). Using this
technique, the above authors were able to generate the
eddy variance, that is, heat and momentum fluxes,
among other features observed on synoptic scales in the
real atmosphere. They argued, therefore, that it is tran-
sient growth due to nonnormality of the linearized op-
erator that we observe as baroclinic phenomena.

In this study we have not made any assumption con-
cerning the modal structure of the solution. Our cal-
culations were done by stepping the fully nonlinear
equations forward in time, allowing many waves to in-
teract with each other and with the mean flow. Thus
both normal modes and nonmodal waves are allowed.
That our results can be explained with only normal mode
thinking may be an issue of the function of nonlinear-
ities, as we now discuss.

In a linearized problem for which the operator pos-
sesses normal modes but is nonnormal, transient growth
at small times gives way to normal mode (exponential)
growth or decay at later times. This has been demon-
strated by Farrell (1982) for the most unstable wave in
the Eady problem. (See his Fig. 4.) Farrell and col-
leagues’ nonnormal linear theory of statistical baroclinic
equilibration assumes that the system never proceeds
past the transient stage to see the effects of growing (or
decaying) normal modes. Energy is scattered by non-
linearities (parameterized as stochastic forcing), pre-
venting evolution to an equilibrium state. On the other
hand, our calculation of nonlinear clinic adjustment al-
lows for short-term transiency, but it does not require
that the system remain in this linear phase. The flow in
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our simulations evolves past the transient stage into a
nonlinear regime, wherein the amplitudes of the normal
modes are kept in check by nonlinear interactions among
waves. The discussion of section 2 is particularly simple
because the nonnormal growth does not alter the mean
flow significantly in our case; hence normal modes of
the original wave-free state are similar to those of the
final state.

A key difference between the nonnormal theory and
ours, then, is the nonlinear interactions and the time-
scales over which they are presumed to have impact.
Farrell and colleagues assume that nonlinearities act rap-
idly and catastrophically to scatter energy and interrupt
the evolution to equilibrium. In this study we have made
no such assumption, allowing the nonlinear interactions
to occur at whatever pace the governing equations dic-
tate. Our simple two-level simulations show nonlinear-
ities acting in a different manner than Farrell’s theory.
Rather than stoking the nonnormal behavior, the non-
linear interactions here gradually overpower the tran-
sient growth and ultimately balance the (linear) growth
of normal modes.

Whether the character of our nonlinearities is found
in a more sophisticated model or in the real atmosphere
is not yet known. A more detailed inspection of the
observed wave–wave (and wave–mean) interactions in
the real atmosphere, and a comparison thereof with the
stochastic forcing suggested by Farrell and with our
equilibrium dynamics, should be done. We point out
that Farrell’s theory is diagnostic and not prognostic,
for one needs to know the equilibrated state in order to
linearize the system about it, that is, to calculate the
linear operator.

Finally, we note that Lindzen (1993, 1994) has pro-
posed an alternative theory for the equilibration of bar-
oclinic flows. He suggests a mechanism of neutraliza-
tion, in which the atmosphere is continually striving for
a state that is linearly neutral or stable to perturbations.
That theory is clearly different from ours, for the former
requires all waves to be linearly stable at equilibrium.
Nonlinear baroclinic adjustment proposes that waves
can be stabilized by different methods, in particular non-
linearly; not all waves must be linearly stabilized in
order to achieve an equilibrium. This is evident in the
marginal stability curve at equilibrium of Fig. 4 (dashed
line); only the long waves have been linearly neutral-
ized, while the short waves remain linearly unstable
even at equilibrium. This was also found in the two-
wave study of Welch and Tung (1998), and thus appears
to be true over a wide range of parameter space.

5. Model issues

In this study we have chosen to use the simplest pos-
sible model that still allows for baroclinic dry dynamics
to occur, neglecting more realistic features such as a
variable static stability, topography and hence stationary
waves, a spherical geometry, or moisture. Our goal has

been to investigate and demonstrate in the clearest way
the qualitative features of meridional heat transport.
However, issues arise as to the consequences of some
of our simplifications, which we must now address.

A model with only two levels in the vertical cannot
properly simulate the real atmosphere. However, there
is a correspondence between linear stability analysis of
a two-level model and tropospheric observations: the
critical gradient in the former corresponds to the cutoff
in the atmosphere between shallow waves, ineffective
at transporting heat, and long deep waves, which can
efficiently flux heat poleward (Held 1978). Furthermore,
it appears that adding more levels in the vertical may
not change the qualitative results of the model. Pavan
(1996) showed in her quasigeostrophic Boussinesq
model that increasing the layers from 3 to 20 had little
effect on the main features of the solution. High vertical
resolution was needed for qualitative convergence only
when eddy momentum flux was crucial, for example,
in situations with a strong barotropic governor effect
(James 1987).

We point out that the static stability has been held
constant over time in this study. However, an important
process in equilibrating baroclinic flows, in addition to
the reduction of the horizontal temperature gradient, is
the adjustment of the vertical temperature profile via
vertical eddy heat fluxes. Gutowski et al. (1989) showed
that, in a quasi-linear model, both of these processes
contribute about equally to adjusting the mean flow.
Moreover, when the vertical temperature profile was cal-
culated internally, there was less modification of the
meridional temperature gradient than when the static
stability was fixed. Also, Zhou and Stone (1993) showed
with a spherical nonlinear two-level model that forcing
of the mean flow by vertical eddy heat fluxes is more
than half as large as by the meridional eddy heat fluxes,
and thus not negligible. Our model, therefore, may over-
estimate the change in the meridional temperature gra-
dient relative to the real atmosphere. However, these
last authors also demonstrated a few key ways in which
the fixed versus variable nature of the static stability
was not paramount. Their equilibrium state, by several
different measures, did not change much in going from
a varying to a constant value of the Brunt–Väisälä fre-
quency. In addition, the heat flux spectra resulting from
the upscale cascade were similar in the two cases (their
Fig. 9). Thus, we have neglected here the complication
due to variable static stability in order to focus on the
interaction of horizontal heat transport and the horizon-
tal temperature profile, consistent with the quasigeo-
strophic formulation adopted. In the future our results
should be tested with a model that allows for vertical
heat fluxes and variation of the vertical temperature pro-
file.

We have used quasigeostrophic scaling in our for-
mulation, which is based on the Rossby number being
small: Ro [ U/f 0L K 1. However, as the driving in-
creases the advective timescale, L/U becomes small. The
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underlying expansion in Ro will not be valid, and hence
neither will be our model output at very high forcings.
This issue and that of fixed static stability are the main
limitations of the model.

The value of the Newtonian cooling parameter h0 in
this study has been set at 56 days. As in Welch and
Tung (1998), this very slow value has been chosen be-
cause it elucidates the dynamics of the different waves.
Simulations with a more realistic value of 18 days yield
the same qualitative behavior, but the different waves
are difficult to distinguish one from another.

Finally, there is an issue as to how a channel model,
having rigid walls, can be physically realistic for our
study. Do the rigid walls introduce spurious dynamics
into the problem? Consider Fig. 14b, which shows com-
ponents of the zonal-mean thermodynamic energy equa-
tion (3.4) at equilibrium for the wintertime case of DT †

5 90 K. There are indeed boundary layers in the vertical
velocity v 2 and the heat flux convergence P, forced by
our choice of streamfunction to satisfy the no-flow
boundary conditions at the walls. However, what de-
termines the resultant equilibrium is neither of these
components separately but rather their sum, in the form
of the transformed Eulerian mean (TEM), defined by:

[ v 2 2 (d/2s0)]( )/]y, where the asterisk in-v* y9T92 2 2

dicates the TEM. From (3.4) at equilibrium we then
have

s0†T ø T 1 v *. (5.1)2,eq 2h0

One can see from Fig. 14b that the net effect of the
TEM is to modulate the forced temperature T †, from its
large amplitude to a smaller amplitude in T eq, while
retaining the cosy profile. No boundary layers are cre-
ated in T eq. Thus our sidewall boundary conditions are
not introducing artificial dynamics into the results. Note
that we could have taken a different modeling approach,
pushing the meridional boundaries far away from the
center of the channel so that there is only negligible
eddy activity at the walls. Instead, we have chosen to
use a channel width more akin to the real midlatitudes
in our study, drawing on evidence from other authors
that channel models with ‘‘near’’ walls that confine dis-
turbances can accurately simulate baroclinic dynamics
on a rotating sphere, in which the midlatitude jet acts
as a waveguide (Yang et al. 1997). It is interesting and
encouraging that we have obtained some similar results
to those produced by models designed to be homoge-
neous and isotropic (e.g., Haidvogel and Held 1980).
Both types of models are no doubt important tools of
discovery for this problem.

6. Summary and conclusions

We have shown that the theory of nonlinear baroclinic
adjustment can explain the maximum in the spectrum
of meridional heat flux versus zonal wavenumber. Start-
ing with the most unstable wave from a linear stability

analysis, successively longer and longer waves grow and
transport heat until they reach their nonlinear saturation
threshold, at which point they break and pass off excess
energy upscale. The largest heat flux occurs at the lon-
gest wave that grows but does not saturate. This wave
acts as the atmosphere’s thermostat, reducing the me-
ridional temperature gradient down to a level that is
linearly critical with respect to that wave. As the forcing
is increased, the cascade of energy results in a longer
and longer wave dominating. However, because the crit-
ical gradients of many synoptic waves are similar in
magnitude, the resultant temperature gradient varies
very little over a wide range of forcing, a feature which
is also seen season-to-season in our current climate. This
is true even though the dominant wave shifts by five or
six wavenumbers as the forcing rises.

The synoptic maximum in the spectrum of pertur-
bation energy can also be explained by this mechanism,
as it is virtually the same as the heat flux maximum.
The theory predicts an m24 shape of the heat flux spec-
trum and approximately m23 for the energy spectrum,
which are corroborated by model simulations and (for
the heat flux) observations.

Combined with the results of Welch and Tung (1998),
the nonlinear baroclinic adjustment mechanism has been
shown to work through a broad region of parameter
space, explaining the equilibration of baroclinic flows
with any number of waves unstable and over a wide
range of forcings. This mechanism can account for the
observed flexibility of meridional eddy heat transport
in the atmosphere. An important part of the theory is
that waves can be stabilized by different methods, linear
and nonlinear, so that not all waves must be linearly
stabilized in order to achieve an equilibrium.
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