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In systems governing two-dimensional turbulence, surface quasi-geostrophic turbulence,
(more generally α-turbulence), two-layer quasi-geostrophic turbulence, etc., there often
exist two conservative quadratic quantities, one “energy”-like and one “enstrophy”-like.
In a finite inertial range there are in general two spectral fluxes, one associated with each
conserved quantity. The energy spectrum in general has a contribution from each of the
fluxes, and our previous work showed that these two contributions to the energy spectrum
can be linearly superimposed despite the highly nonlinear nature of the problem. Often,
one of the fluxes is dominant and the energy spectrum then has the visual shape of the
case with a single flux; the contribution from the subdominant flux is effectively hidden.
The relative magnitudes of the spectral fluxes depend on the dissipative sinks in the
system, and varies according to the physical/mathematical system under consideration.
We derive an important inequality involving the “energy” and enstrophy” fluxes for
each representative system. This result then allows us to determine the effective energy
spectral shape in the general case of double cascades.

1. Introduction
In the theory of three-dimensional (3D) turbulence of incompressible fluids (Batchelor

1947; Kolmogorov 1941a,b), there is one conserved quantity, the kinetic energy of the
flow. In the inertial range, where forcing and dissipation can be ignored, this conserved
quantity “cascades” from low to high wavenumbers through triad interactions. In two-
dimensional (2D) turbulence, there are two conserved quantities, kinetic energy and
enstrophy, the latter being half of the square of vorticity. Conserved quantities are still
transferred in wavenumber space through triad interactions, but the situation is now more
complicated. In the classical theory of Kraichnan (1967), Leith (1968), and Batchelor
(1969), a simpler picture was adopted under, however, rather unattainable assumptions.
In the KLB theory, there are two inertial ranges, one located upscale of the spectral region
of injection and another on the downscale side of injection. In the upscale side, there is
only an upscale flux of energy, and no flux of enstrophy. On the downscale side, there
is only a downscale flux of enstrophy, and no flux of energy. There are also theoretical
extensions of the KLB model (Falkovich & Lebedev 1994a,b; Yakhot 1999) that explain
the absense of intermittency corrections.

The theory is very elegant, but it requires both inertial spectral ranges to be infinite.
This has proved difficult to implement numerically, with the consequence that reports of
various numerical slopes and alternative theories abound over the past 30 years (Mof-
fatt 1986; Polyakov 1993; Saffman 1971). Recently, in carefully set up experiments, the
prediction of the KLB theory appears to have been verified under some conditions in
one or the other inertial range (Boffetta, Celani & Vergassola 2000; Ishihira & Kaneda
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2001; Lindborg & Alvelius 2000). There are also many more cases however where different
slopes are found numerically (Danilov 2005; Danilov & Gurarie 2001a,b; Tran & Bowman
2004). A review can be found in Gkioulekas & Tung (2005b) and Tabeling (2002).

It has been shown in Gkioulekas & Tung (2005a,b) that in 2D as well as in quasi-
geostrophic (QG) turbulence, energy flux (ε) and enstrophy flux (η) in general coexist
in a finite spectral inertial range. Finite spectral ranges apply to the more realistic cases
of finite domains and small but finite viscosities. The energy spectrum associated with
each flux can be linearly superimposed to form a compound power law, with components
ε2/3k−5/3 and η2/3k−3, where k is the wavenumber. Thus in an inertial range on the short-
wave side of injection, where both energy and enstrophy cascade downscale (ε > 0, η > 0),
the energy spectrum takes the form

E(k) ∼ C1ε
2/3k−5/3 + C2η

2/3k−3, (1.1)

where C1 and C2 are order-one universal, dimensionless constants. This energy spectrum
in principle has the compound shape of −3 slope transitioning to −5/3 slope as k in-
creases; asymptotically the first term dominates for small k and the second term for large
k. The transition wavenumber occurs at kt ∼ (η/ε)1/2, which is where the first and second
terms on the right-hand side of (1.1) are of the same order of magnitude. Whether or not
such a double-slope shape can be realized depends on the relative magnitudes of ε and
η. Since, at least in the case of 2D turbulence, both energy and enstrophy are dissipated
by the same molecular viscosity (or hyperviscosity), one may anticipate a relationship
between ε and η based on their respective dissipation rates at the ultraviolet end of the
spectrum.

A very elegant inequality between energy and enstrophy fluxes was suggested to us
by Danilov (2004, personal communication). A general derivation of what we called the
“Danilov inequality” was given in Gkioulekas & Tung (2005b) for the case of 2D tur-
bulence. We speculated that it probably does not apply to the two-layer QG model
considered by Tung & Orlando (2003a), whose numerical result on the energy spectrum
shows the anticipated compound shape consistent with atmospheric observation(Gage
1979; Gage & Nastrom 1986; Nastrom & Gage 1984; Nastrom, Gage & Jasperson 1984).
Smith (2004), on the other hand, thought the compound slope could be due to the finite
resolution of the numerical model. The present article is the first of two papers extend-
ing the Danilov inequality to QG turbulence. Here we deal with the general case where
the conserved quantity, called potential vorticity in QG theory, is a linear differential
operator of the streamfunction. Multi-layer baroclinic models require the modification
involving turning the linear operator into a matrix operator, and will be considered in
a separate paper. We will nevertheless point out towards the end of this paper how
Danilov’s inequality is violated in QG models which are more baroclinic than barotropic.

2. Common mathematics for QG turbulences which are 2D-like
2.1. Conservation laws

In QG turbulence, potential vorticity, ζ = −Lψ, is conserved (in the absence of forcing
and dissipation). L is a linear isotropic operator involving the derivatives with respect
to the horizontal coordinates. For 2D turbulence, L = −∆, where ∆ is the Laplacian
operator. For barotropic QG turbulence, also know as Charney-Hasegawa-Nima (CHM)
turbulence ((Charney 1948; Hasegawa, Maclennan & Kodama 1979; Hasegawa & Mima
1978), L = −∆ − λ2, where λ2 is a given positive constant. In α-turbulence, L = Λα

with Λ ≡ (−∆)1/2. SQG is the special case of α = 1.
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The governing potential-vorticity conservation equation takes the following form:

∂ζ

∂t
+ J(ψ, ζ) = D + F , (2.1)

where F is the forcing and D is the dissipation. The stream-function ψ is related to the
2D nondivergent velocity as (u, v) = (−∂ψ/∂y, ∂ψ/∂x). For a general combination of
hyper- and hypo-diffusion: D = −ν0(−∆)pζ − ν1(−∆)−hζ, with p, h, positive integers.
p = 1, h = 0 yields molecular viscosity.

There are two inviscid quadratic invariants for (2.1), which are, using the notation
‖f‖ ≡ ∫∫

(f(x, y))dxdy:

A = (1/2)‖(−ψζ)‖, and B = (1/2)‖ζ2‖,
under a certain condition, which is essentially that the Fourier transform of L, denoted
as L(k), is either real-valued or imaginary-valued. For example in 2D turbulence it is seen
that, E ≡ (1/2)‖(u2 + v2)‖ = (1/2)‖|∇ψ|2‖ = (1/2)‖(−ψζ)‖ ≡ A is the kinetic energy
of the 2D fluid, and G ≡ (1/2)‖ζ2‖ ≡ B is the enstrophy. The energy spectrum E(k)
and enstrophy spectrum G(k) are defined so that E =

∫ ∞
0
E(k)dk and G =

∫ ∞
0
G(k)dk,

where k = |k| is the isotropic wavenumber magnitude. In the more general case, A(k) is
similarly defined as the spectrum of A, and B(k) the spectrum of B. In the general case
A(k) may not necessarily be the energy spectrum, as will be demonstrated.

We will assume that L(k) > 0, so that both A(k) and B(k) are positive. Furthermore,
we will assume that L(k) is a monotonically increasing function of k.

2.2. The spectral equations
The relationship, ζ = −Lψ, translates into the spectral relationships in the Fourier space

ζ̂(k) = L(|k|)ψ̂(k), B(k) = L(k)A(k),

where ψ̂(k, t) =
∫∫

ψ(x, t)e−ik·xdx. For example, in 2D turbulence, L(k) = k2, and so
G(k) = k2E(k). In CHM turbulence, L(k) = k2 + λ2. So G(k) = (k2 + λ2)E(k) is the
relationship between potential enstrophy and total energy in CHM turbulence, where the
total QG energy, E, is A and the QG potential enstrophy, G, is B.

Furthermore, A(k) and B(k) satisfy the following spectral equations:

∂A(k)
∂t

+
∂ΠA(k)
∂k

= −DA(k) + FA(k) (2.2)

∂B(k)
∂t

+
∂ΠB(k)
∂k

= −DB(k) + FB(k). (2.3)

DA(k) and DB(k) are the spectral dissipations rate of A(k) and B(k), respectively, with

DB(k) = L(k)DA(k), and DA(k) = [ν0k2p + ν1k
−2h]A(k) > 0,

for a combination of hyper- and hypo-viscosities. FA(k) and FB(k) are the spectra of
forcing, and, ΠA(k) and ΠB(k) are the spectral fluxes of A and B. Ensemble average is
taken in (2.2) and (2.3), but will not be denoted with different symbols here.

2.3. The Danilov inequality
Assuming that the injection (forcing) of A and B occurs in [k1, k2], then at statistical
equilibrium, we have, from (2.2) and (2.3):

ΠA(k) =
∫ ∞

k

DA(q)dq, ΠB(k) =
∫ ∞

k

DB(q)dq, k > k2. (2.4)
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Since

L(k)ΠA(k) − ΠB(k) =
∫ ∞

k

[L(k) − L(q)]DA(q)dq < 0, (2.5)

we have
L(k)ΠA(k) < ΠB(k) for k > k2. (2.6)

Similarly, we can show that

L(k)ΠA(k) > ΠB(k) for k < k1. (2.7)

These inequalities were brought to our attention by Danilov (2004, personal communi-
cation) for the case of 2D turbulence. Previously, Eyink (1996) derived a similar, but
looser, bound, for the downscale energy flux ΠE : ΠE(k) < η0/k

2, involving the total rate
of enstrophy injection η0.

2.4. The energy spectrum
The significance of the inequalities (2.6) and (2.7) is that, combined with the usual
assumption of the existence of universal local cascades, we can obtain a prediction about
the energy spectrum E(k) in the inertial range. For example, for the classic case of
2D turbulence in a finite domain with finite viscosity for the infrared and ultraviolet
dissipations, following the argument given in Gkioulekas & Tung (2005a,b), we learn
that on the downscale side of injection the dominant cascade is the enstrophy cascade
with E(k) ∼ k−3, and on the upscale side of injection the dominant cascade is the inverse
energy cascade with E(k) ∼ k−5/3. According to our theory, in both cases, the energy
spectrum is a superposition of the contributions to E(k) from both cascades, which are in
fact present both downscale and upscale of injection. However, the inequalities (2.6) and
(2.7) imply that the transition wavenumber kt where the subleading cascade would be
exposed is in the corresponding dissipation range, thereby hiding the subleading cascade
in the energy spectrum.

This argument can be extended to the case of α-turbulence, which includes 2D and
SQG turbulence. The spectrum of A(k) and B(k) are, in the downscale inertial range:

A(k) = C1(ΠA)2/3k−
7
3+ 1

3α + C2(ΠB)2/3k−
7
3− 1

3α

B(k) = |k|αA(k).

If we assume that the transition wavenumber kt is in the inertial range, then kt ∼
(ΠB/ΠA)1/α, and by applying the inequality (2.6), which yields ΠAk

α < ΠB for any k
in the inertial range, we find that k < (ΠB/ΠA)1/α ∼ kt for all k in the inertial range,
in contradictton with our assumption. Therefore, in the downscale range, there is no
observable transition and:

A(k) ∼= C2(ΠB)2/3k−
7
3− 1

3α, B(k) ∼= C2(ΠB)2/3k−
7
3+ 2

3α. (2.8)

In the upscale range, the inequality in (2.7) is the reverse of (2.6). The spectrum becomes
then

A(k) ∼= C1(ΠA)2/3k−
7
3+ 1

3α, B(k) = kαA(k). (2.9)
This argument proves more rigorously a conjecture by Smith (2004) that in 2D turbu-

lence (with α = 2), on the downscale side of injection, we have no transition to shallower
scaling E(k) ∼ k−5/3. His other conjecture, that the same result also holds for two-layer
QG model, appears to be false. The energy spectrum for that model, where the sublead-
ing direct energy cascade can be observed, entails a violation of the inequality (2.6). For
the SQG model, we show in the next section that the visible energy spectrum actually
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has the shallower -5/3 slope even though the Danilov inequality is also satisfied, because
B(k) is the 2D energy spectrum and A(k) the 3D energy spectrum; there is no enstrophy
cascade.

It should be noted that in the argument above it is assumed that inertial ranges exist
either upscale or downscale of injection. Unlike the case of 3D turbulence, where the
downscale energy cascade is very robust, it is well known that in 2D turbulence there
are circumstances where the leading inverse energy cascade (Danilov 2005; Danilov &
Gurarie 2001a,b; Gkioulekas & Tung 2005b) or the leading downscale enstrophy cascade
(Tran & Bowman 2003, 2004; Tran & Shepherd 2002) may fail to appear as expected.
At least some of these issues also apply to the case of α-turbulence (Tran 2004).

3. Physical Interpretation of A(k) and B(k)
There has been considerable confusion over the reported spectral shape for the energy

spectrum in SQG. This is due partly to the problem of identifying one of the two con-
served quantities as the energy. As derived by Charney (1971), 3D QG flow conserves the
3D potential vorticity ξ, which is advected horizontally by the streamfunction ψ. Here,
both ψ and ξ are 3D fields. For constant Coriolis parameter f , the conservational law for
ξ takes the form:

∂ξ

∂t
+ J(ψ, ξ) = 0, (3.1)

with ξ given by

ξ = ∆ψ +
f2

ρ0

∂

∂z

(
ρ0

N2

∂ψ

∂z

)
≡ Pψ,

where ρ0(z) is the ambient air density, and N2(z) the Brunt-Väisälä frequency. In SQG
this potential vorticity ξ is assumed, a priori, to be identically zero for z > 0. The
streamfunction ψ is solved from ξ = Pψ = 0. With ρ0 and N2 taken to be constants, the
horizontal Fourier transform of ψ(x, y, z, t) is obtained as

ψ̂(k, z, t) = ψ̂0(k, t)e−|k|(N/f)z, (3.2)

using the boundedness boundary condition as z → ∞.
Most of the dynamics in this model are occurring at the surface, where the boundary

condition of vanishing vertical velocity, w, applied to the temperature (T ) equation leads
to:

∂Θ
∂t

+ J(ψ,Θ) = D + F , (3.3)

where Θ ≡ (g/N)(T/T0) = (f/N)(∂ψ/∂z) now plays the role of the conserved quantity
ζ in (2.1), D = ν∆Θ is the thermal diffusion, and F = Q is the thermal heating (see
Tung & Orlando (2003b)). This equation is to be solved on a 2D surface z = 0. It has
the same form as the vorticity equation for 2D turbulence (e.g. (2.1)), except that the
spectral relationship between the advected quantity Θ and the advecting field ψ is given
instead by Θ̂(k) = −|k|ψ̂(k). That is, L(k) = k.

It can be shown (Charney 1971; Tung & Orlando 2003b) that the 3D QG energy
density

E ≡ 1
2
ρ0

[
|∇ψ|2 +

f2

N2

(
∂ψ

∂z

)2
]
, (3.4)

is an invariant (i.e. independent of time),when integrated over the 3D domain. E is the sum
of kinetic energy density: EK = (1/2)ρ0(u2 + v2) = (1/2)ρ0(∇ψ)2 and available potential
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energy density: EP = (1/2)(f2/N2)ρ0(∂ψ/∂z)2. For SQG, by Parseval’s equality, the
energies integrated over the horizontal surface is

EP ≡ ‖EP‖ = ρ0

∫∫
1
2
k2|ψ̂|2dkxdky = ρ0‖1

2
Θ2‖,

EK ≡ ‖EK‖ = ρ0

∫∫
1
2
k2|ψ̂|2dkxdky = ρ0‖1

2
Θ2‖.

It is thus seen that the kinetic energy density and the available potential energy density,
when integrated horizontally, are equipartitioned in flows such as SQG where potential
vorticity is zero, and that 2B ≡ ‖Θ2‖ = (EP +EK)/ρ0 = E/ρ0 is the total energy at the
lower surface. The 3D energy is, instead.∫ ∞

0

‖E‖dz =
∫ ∞

0

ρ0dz‖Θ2‖ =
∫ ∞

0

ρ0dz

∫∫
dkxdky

∣∣∣Θ̂|z=0

∣∣∣2 e−2|k|(N/f)z

=
1
2
ρ0

∫∫
dkxdky

f

N |k| Θ̂Θ̂∗
∣∣∣∣
z=0

=
1
2
ρ0

∫∫
f

N

(
−ψ̂Θ̂∗|z=0

)
dkxdky =

1
2
ρ0
f

N
‖(−ψΘ|z=0)‖.

This expression for 3D energy turns out to be ρ0(f/N)A, with A defined earlier as
A ≡ (1/2)‖(−ψΘ)‖. Previous authors have made use of the similarity between the form
of vorticity equation (2.1) in 2D turbulence and the temperature equation (3.3) in SQG
turbulence to identify, by analogy, A as the “energy” and B as the “enstrophy” (Held,
Pierrehumbert, Garner & Swanson 1995; Pierrehumbert, Held & Swanson 1994). As
pointed out in Tung & Orlando (2003b) and also here, 2B is the total energy integrated
over the lower surface, and includes kinetic plus available potential energy. The physical
interpretation for A was not given, but can now be seen to be the total energy integrated
over the 3D domain. There is no potential enstrophy (ξ2/2) per se in SQG turbulence,
because potential vorticity ξ has been taken to be zero identically. There is also no flux
of potential enstrophy in SQG.

In an inertial range where both fluxes of A and B are simultaneously present, the
energy spectrum is the same as that for 2B(k) in α-turbulence with α = 1:

E(k) = 2B(k) = C1(ΠA)2/3k−1 + C2(ΠB)2/3k−5/3.

From the Danilov inequality we learn that the visible energy spectrum in the inertial
range downscale from the injection scale is given by

E(k) ∼= C2ε
2/3k−5/3, (3.5)

where ΠB(k) = ε, a positive constant in the downscale range. This k−5/3 energy spectrum
is now predicted by our theory. The flux ε is not the “enstrophy” flux, nor is it the flux
of 3D energy A, but is the 2D flux of 2D energy 2B = E. This k−5/3 shape is also seen
in numerical simulations (Hoyer & Sadourny 1982).

For the spectral region upscale from that of injection the energy spectrum should have
the form:

E(k) ∼= C1(ΠA)2/3k−1,

where ΠA is the inverse flux of the 3D total energy in the horizontal spectral direction.
Constantin (2002) had earlier provided a k−2 bound, which was later refined to k−1 by
Tran (2003).
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4. Two-layer QG models
The results in the previous sections demonstrate that QG turbulence can exhibit a

variety of behaviors. Barotropic models, as typified by CHM model, possess an energy
spectrum with −3 spectral slope, as in 2D turbulence, while SQG turbulence, which is
baroclinic (with its exponential decay with height), has a spectrum with a −5/3 slope,
in the downscale inertial range. Two-layer QG models have both a barotropic and a
baroclinic component (see Salmon 1998), and we therefore expect a mixture of −3 and
−5/3 slopes depending on the degree of baroclinicity. Its governing equation does not
satisfy the form of the conservation law with ζ = −Lψ, unless we make L into a matrix
and ψ into a column vector. The results obtained so far for scalar relations do not hold
in this case. We will discuss the more general case of multi-layers in a future paper. Here
we wish to demonstrate how the Danilov inequality fails.

A relatively realistic version of two-layer model applicable to studying atmospheric
turbulence in the troposphere was adopted in Tung and Orlando (2004a). In this model
forcing is due to thermal heating, which injects energy directly into the baroclinic part
of the total energy. The two-layer fluid sits atop of an Ekman boundary layer near the
ground, which introduces Ekman pumping in the lower layer (Holton 1979) but not in
the upper layer. If one artificially removes these two baroclinic physical mechanisms, it
can be shown that Danilov’s inequality applies. The inequality is violated when they are
retained. The physical implication of the latter case is important, as will be discussed
later.

Two-layer QG models conserve potential vorticity in each layer in the absence of forcing
and damping. In their presence, the governing equations are, from Tung & Orlando
(2003a):

Top layer:
∂ζ1
∂t

+ J(ψ1, ζ1) = D1 + F1 (4.1)

Bottom layer:
∂ζ2
∂t

+ J(ψ2, ζ2) = D2 + F2, (4.2)

where

ζ1 = ∆ψ1 − k2
R

2
(ψ1 − ψ2), ζ2 = ∆ψ2 +

k2
R

2
(ψ1 − ψ2),

are the potential vorticity in each layer. kR is the Rossby radius of deformation wavenum-
ber and is taken as a given constant. The dissipation terms, Di, includes momentum
dissipation of relative vorticity, ∆ψi, in each layer, and Ekman pumping from the lower
boundary layer:

D1 = ν(−∆)p+1ψ1, D2 = ν(−∆)p+1ψ2 − νE∆ψ2.

The two inviscid quadratic invariants are the total energy A = E and potential en-
strophy B = G, defined as

E ≡ 1
2
‖ − (ψ1ζ1 + ψ2ζ2)‖ =

1
2
‖{|∇ψ1|2 + |∇ψ2|2 +

k2
R

2
(ψ1 − ψ2)2}‖,

where the first two terms represent the kinetic energy in each layer, and the last term is
the so-called available potential energy; and

G ≡ 1
2
‖(ζ2

1 + ζ2
2 )‖ =

1
2
‖{(∆ψ1)2 + (∆ψ2)2 +

k2
R

4
[k2

R(ψ1 − ψ2)2 + 2|∇ψ1 −∇ψ2|2]}‖.
In the above defined conserved quantities, the contributions from the two layers are

summed, which allows us to discuss the spectral fluxes of E and G through the horizontal
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wavenumber domain k. The governing spectral equations now have the same form as
(2.2) and (2.3), but the appropriate spectral dissipation rates are different. They are
given by DE(k) = 2πkdE(k) and DG(k) = 2πkdG(k), where dE(k) and dG(k) are the
one-dimensional dissipation rates which read

dE(k) = νk2pk2|ψ̂1|2 + (νk2p + νE)k2|ψ̂2|2 > 0

dG(k) = (k2 + k2
R)dE(k) − k2k2

R[νk2p +
1
2
νE ]Re{ψ̂1ψ̂

∗
2}

= k2dE(k) + (2νk2p + νE)
k2

R

2
k2[|ψ̂1|2 + |ψ̂2|2 −Re(ψ̂1ψ̂

∗
2)] + νE

k2
R

2
k2[|ψ̂2|2 − |ψ̂1|2].

It is seen that the sign of DG(k) is indeterminant, depending on the difference in kinetic
energy in each layer (1

2k
2|ψ̂1|2 vs 1

2k
2|ψ̂2|2). So

k2ΠE(k) − ΠG(k) =
∫ ∞

k

2πq[k2dE(q) − dG(q)]dq

=
∫ ∞

k

2πq
{

(k2 − q2)dE(q) + νE
k2

R

2
q2[|ψ̂1(q)|2 − |ψ̂2(q)|2]

−(2νq2p + νE)
k2

R

2
q2[|ψ̂1(q)|2 + |ψ̂2(q)|2 −Re(ψ̂1(q)ψ̂∗

2(q))]
}
dq.

(4.3)

The first and third term in the integrand are negative. It follows that Danilov’s in-
equality holds, i.e.

k2ΠE(k) − ΠG(k) < 0, (4.4)
if either the top layer has no more kinetic energy than the lower layer or if kR = 0. There
is a wider sufficient condition in terms of νE , which can be derived by requiring that the
last two terms in (4.3) should be negative. This leads to the following sufficient condition
to satisfy (4.4):

νE < 2νk2p
max,

where kmax is either truncation wavenumber in the numerical model, or, in the theoretical
case of infinite resolutions, is the hyperviscosity dissipation wavenumber, beyond which
the spectral enstrophy dissipation rate becomes negligible.

Therefore a necessary condition to violate (4.4) is νE > 2νk2p
max. It is interesting to note

that the algorithm adopted by Tung & Orlando (2003a) for determining the magnitude of
the hyperviscosity coefficient is νE � νk2p

max, for all but the last twenty wavenumbers k in
the dissipation range. They obtained the compound slope with a transition wavenumber
kt occuring in the inertial range downscale from injection.

5. Conclusion
The classical KLB theory of 2D turbulence relies for its mathematical simplicity and el-

egance on two unrealistic assumptions: that the domain is infinite, and that the Reynolds
number approaches infinity. What we have shown here is that although the theory be-
comes much more complicated when these two assumptions are relaxed, the energy spec-
trum in the more general set-up of finite domain with finite dissipation still reduces to
the KLB prediction visually in many cases. There are however important exceptions.

The presence of finite domains creates many important departures from the KLB
theory: There may be no cascades at all if there is no infrared sink of energy, which needs
to be remedied by the introduction of hypodiffusion (Tran & Bowman 2003, 2004; Tran
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& Shepherd 2002). The boundary effect can introduce a particular solution which may
overwhelm the universal behavior of the inertial range solution (Danilov 2005; Danilov &
Gurarie 2001a,b; Gkioulekas & Tung 2005b). With suitably chosen hypodiffusion, these
two effects can be minimized. The solution then yield a non self-similar compound energy
spectrum, one part involving the energy flux and another part involving the enstrophy
flux. Both fluxes coexist in the same inertial range (Gkioulekas & Tung 2005a,b).

Since both the energy and enstrophy are dissipated by the same dissipation, there
must be a relationship between the two. Knowing this relationship will then tell us
which part of the energy spectrum is dominant. The resulting “Danilov inequality” and
its extensions are an important, and so far, missing, component of the general theory
of double cascades in 2D and QG turbulence. Such an inequality is supplied here for
several types of barotropic turbulence, and the difference for baroclinic turbulence, such
as surface QG and 2-layer turbulences, is also noted.

The research is supported by National Science Foundation, under grants DMS-03-27650
and ATM-01-32727.
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