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ABSTRACT

Results from barotropic stability analyses of strong westerly jets generally tend to conclude that those waves
that can extract energy from the shear of the jet are largely trapped by the jet. Therefore, the available shear
encrgy of the flow cannot be transmitted by propagating waves away from the strong shear zone. We show here
that the situation is different if the jet is in the meridional instead of the zonal direction. In this case, unstable
waves are generated that are able to propagate energy eastward even in the presence of a realistic dissipation. It
is then possible for the shear energy of a western boundary current to be transported large distances into the

interior of the ocean.

1. Introduction

Two recent papers by Talley (1983a, b) have explored
the possibility that barotropic and/or baroclinic zonal
jets have linearly unstable modes with a horizontally
radiating structure. Such modes, even if slowly growing,
would propagate energy away from the jet and in the
ocean interior, and would provide a possible mecha-
nism for the observed distribution of eddy energy in
the ocean (see Schmitz et al., 1983, for a review of this
problem). i

Earlier studies (Pedlosky, 1977; Harrison and Rob-
inson, 1979) had considered the radiation of energy in
a basin with an imposed boundary forcing representing
a meandering current, and Talley extended this line of
work with a linear model explicitly including the un-
stable current itself.

The main result was that a barotropic eastward jet
does not have the required kind of radiating instability.
Modifications to the basic state, like baroclinicity either
in the jet or in the far field, were needed to support
radiating modes. The apparent reason for this failure
is that an eastward jet has only unstable modes with
eastward phase speed; modes with a negative (west-
ward) phase speed cannot be ruled out a priori on the
B-plane (see Pedlosky, 1979), but they are not found.
The far field, on the other hand, has only free modes
with westward phase speed (Rossby waves). The forcing
is thus being applied in a frequency domain in which
the far field cannot respond with wave motion, and
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the unstable modes are therefore strongly trapped near
the source.

As an alternative to the introduction of baroclinicity
either in the jet or in the far field, we observe that in
the geophysical system under consideration the unsta-
ble current is not always, and never exactly, zonal. The
Gulf Stream flows, for part of its path, in a predomi-
nantly meridional direction. A northward flowing jet
is a possible idealization of such a current, and theo-
retical models of the ocean circulation show a north-
ward flowing western boundary current. We then want
to answer the following questions: Can a meridional
jet on the B-plane have eastward radiating barotropic
instability? How susceptible are those waves to the
presence of damping? We will make use of a bottom
Ekman friction consistent with that required by Stom-
mel’s model of the western boundary current (see Ped-
losky, 1979) and we assume that the mechanism that
dissipates the wave energy is the same responsible for
the existence of the basic state current itself, We will
not be concerned with mechanisms (viz. vorticity
sources and sinks), other than Ekman pumping, that
may be needed to make our basic state a steady solution
of the barotropic vorticity equation. For mathematical
convenience we will use a piecewise constant basic state
velocity profile: it is assumed that it is maintained by
some unspecified sources that enter the O(1) (basic
state) equation, but not the O(¢) in a formal expansion
in the amplitude of the perturbation. What is studied
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here is the linear stability of such a prescribed basic
flow to barotropic disturbances.

2. The model

The problem that we consider is described by the
barotropic vorticity equation

drrpo=—vr+3, 0

where { = v, — u,and ¥ is any forcing needed to make
the basic state that we will choose a steady solution.
The x-coordinate is in the eastward direction and the
y-coordinate is northward; # and v are zonal and me-
ridional velocity, respectively; 3 is the latitudinal vari-
ation of the Coriolis parameter and v* is a dissipation
coeflicient.
Consider a steady solution ¥(x). For such a flow,
Eq. (1) becomes .
BV =—v*V, +F, 2)

which defines the forcing . We now examine small
perturbations, denoted by primed quantities, to this
steady solution. Let v = {(x) + v, u = u'. Neglecting
quadratic terms in the amplitude of the perturbation,
Eq. (1) becomes, after subtraction of (2):

@+ V)0, —u)) + wd Vit v = —v¥i—u).  (3)

The flow is nondivergent for the continuity equation
u)+ v, = 0; so we can define a streamfunction ¥ such
that ' = =y, v’ = Yy

O+ VO — Y, Vi + B+ *V=0.  (3)

This equation has coeflicients that are only functions
of x, so the normal mode assumption can be made in
the other direction

¥ =Re{¢(x)e @},
With ¢ = w + iv*/l, the equation for ¢ is

B AV | ),
Tav—o% (V—c+1)¢ 0

The presence of the first-order term makes it difficult
to extend the integral theorems (Rayleigh-Kuo, Miles-
Howard, Fjortoft) that are known for the zonal case.
It also introduces an asymmetry in the propagation
properties of the solution, as we will s¢e below.
Consider first the case with no friction. If the basic
flow V(x) is a jet on an infinite plane, i.e., assumes a
constant far-field value V; for x = *oo, the solutions
in the far field will be waves of zonal wavenumber &
satisfying the usual relation for frequency and wave-
number that holds for Rossby waves
Bk
VT By
Here c is allowed to be complex and determined by
explicitly solving the eigenvalue problem involving the

Pxx G
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shear flow. For fixed w and /, Eq. (5) gives the zonal
wavenumbers k as x —> to0.

B BZ ) 1/2
k= + = 6
21(V,—o) (4JZ(V, —c) ) ©
As boundary condition at x —> +o0, we require that
the solution goes to zero or that the group velocity is
directed outward.
We can assume V; = 0 with no loss of generality. If
we rewrite (5) with ¥, = 0 for its real and imaginary
part we get

k. ki
wr= _Ilz%k?(lz +kP);  wi= _|72_sz|2([2 = Iif?),

from which we see that only neutral waves are purely
radiating, which is consistent with the physical argu-
ment that if a disturbance is growing in time and prop-
agating, what is observed far from the source has been
generated at an earlier time, and thus with a smaller
amplitude, than what is currently observed near the
source.

For all unstable waves we then require that the two
roots (6) have opposite imaginary parts, so that one of
them is acceptable in either limit x = +o0o. That this
is always the case is easily seen from Eq. (5) rewritten
as a second-degree equation for k [the solutions of
which are (6)]:

v+Lrvr=o,
w

The product of the two roots of this equation is / 2,
which is real, so that the two (complex) roots always
have opposite phases, and so opposite imaginary parts.

For purely radiating solutions we consider the group
velocity:

0w kK2—1?
o Pur

From (6) we can evaluate k2 — /%
40)212 1/2
G ) ]

2 o B[, 402]? .

k*—1 2w2[1 7t 1
and since 0 < 1 — (4w?/?/8%) < 1 (where the lower limit
is required to have real k and thus purely radiating
waves), this is always positive for the upper sign and
negative for the lower. Consequently, the group velocity
is always eastward for the short (high wavenumber)
wave and westward for the long wave, as is commonly
known.

As discussed in Pedlosky (1965), the larger scales of
motion, as those that propagate westward, are essen-
tially unaffected by bottom friction and will be prop-
agated into the interior.

On the other hand, the short Rossby waves that
propagate energy eastward may become rapidly trapped
when frictional dissipation is incorporated. We then
want to see if unstable waves generated at a western
boundary are able to overcome dissipation and prop-
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agate energy in the interior. With this in mind, we will
solve the stability problem on a semi-infinite 8-plane,
for a rectangular jet located right at the western bound-
ary:

VO)

0, X> Xp.

O0<x<xy

x)= [

With this basic state, ¢ ~ e™* everywhere and (6) gives
the wavenumbers.

When we explicitly include dissipation, the growth
rate is decreased by an amount »*, and all of the pre-
ceding discussion still holds with w; replaced by w; + v*.
In this case, the solutions with k; = 0 become damped
in time with a decay rate w; = —v*,

For solutions with w; = 0 we will find perturbations
with a decaying (in space) envelope. We will observe
the solution as a wave if the spatial decay is slow enough
to allow for significant amplitude far from the source,
and the wave will be able to radiate energy away from
the source if, in addition to a positive group velocity,
its growth rate is high enough to overcome frictional
dissipation.

We now proceed to the explicit calculation of the
eigenvalues. If the width of the jet xg is taken as a length
scale and its velocity V; is a velocity scale, the only
nondimensional parameter is 8 = B8x,%/V, and the
equations in nondimensional form are

¢xx__6—

— ¢, — 129 =0, x>1
ile
brx - B ¢x—1%¢=0, O0<x<l.
il =¢) " ¢=0.
1.2
1.1—'1\
_"\
toF’ N\
.BF \\\
8 »‘\\
.7L \\“*~‘\
6 F e -
- ///)
.5[,
4
.3[-
2k
-
-/
o IR S |
5] 1 2 .3 4 S 6 7 B8 .9 1.0

FIG. 1. Eigenvalues for § = 0.01. Solid line: inviscid growth rate

w;; long dashed line: frequency w,; short dashed line: meridional phase
speed ¢, = w,/I.
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FIG. 2. Zonal wave numbers for § = 0.01. Solid: imaginary part
k;—spatial decay rate; dashed: real part k,—wave number of the
oscillatory part of the solution.

As shown previously, there is always one solution
satisfying the boundary conditions in the external re-
gion x > 1.

The solution is then

@' =A(etMx—ehiPxy gL x<
{ @)

I __ ik:
¢ = Be"™, x> 1.

Here the condition of no normal flow ¢ = 0 at the
solid boundary x = 0 has been applied. The wavenum-
bers are

1

(1,2)
ki 2(1—c)

{b+[b?—4(1 — 712

' 1
k=5 [~bt (5~ 4c)'")

and b = /I has been defined. The sign of k, must be
chosen appropriately, while k,*? can be interchanged
with no consequences.

The solutions (7) need to be matched at the interface
x = 1; the requirement of continuity of the displace-
ment normal to the interface and integration of (4)
across the interface give the matching conditions:

A[—?—] =0; Al(c—V)¢x+ib¢] =0,
c—V
where A[-] indicates the jump that the quantity in
brackets experiences across the interface.

The dispersion relation derived from those condi-
tions is
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[(c— 1k = Pk — ble™”
~[(c— 1Yk, @ = Pk, — ble™1 P =0,

This has been solved numerically for some values
of the parameters. Results are shown in the next sec-
tion.

3. Results

The model has one unstable mode for meridional
wavenumbers / larger than a cutoff value that is zero
for 8 = 0 and increases with increasing 3.

Figure 1 shows the eigenvalue w and the meridional
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FI1G. 3. Zonal structure of the eigensolutions. Solid: real part ¢,;
long dash: imaginary part ¢;; short dash: |¢/%, which is proportional
to perturbation kinetic energy. (a) / = 0.04, w, = 0.0412, inviscid w;
=0.0002, ¢, = 1.030, k, = —0.2360, k; = 0.0015, zonal group velocity
G = 0.1648; (b) | = 0.07, w, = 0.0759, w; = 0.0138, ¢, = 1.084, k,
= —0.0838, k; = 0.0485, ¢, = 0.5061; (c) { = 0.1, w, = 0.0991, w;
= 0.0276, ¢, = 0.9906, k, = —0.0537, k; = 0.1026, c,, = 1.625.

phase speed ¢, = w,/[ of the unstable mode for a typical
value of 8 (=0.01), and Fig. 2 gives the zonal wave-
numbers of those solutions. As / = co, the limits ¢ >
(Y, ¥2) and k, — (0, /) are reached. As / decreases, w,
and w; both decrease but the meridional phase speed
w,/l increases and reaches a maximum larger than the
maximum basic state velocity before it starts decreasing
again. We note that this never happens for the stream-
wise phase speed when the basic current is zonal, as
shown by the semicircle theorem. There is no known
extension of this for a meridional current. All these
solutions have positive zonal group velocity dw,/0k,.
For those same waves with maximum meridional
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FIG. 4. Solid: inviscid marginal stability line—the region to the

left of this curve is stable. Long dashed line: marginal stability for »

. = fB—to the left of this curve the inviscid growth rate is smaller than

the dissipation so that the mode is decaying in time. Short dashed

line: locus of the modes with |k,] = k;. We call “radiating” the region
between the two latter curves, where w; + » = § and k| = k;.

phase speed, the real part of the zonal wave number
becomes larger than the imaginary part. This seems
a reasonable minimal requirement for ‘radiating”
modes. In the case shown, this happens near / = 0.08.
This wave has a growth rate (inviscid) of 0.0188, so
this value can be taken as an upper bound on the fric-
tion coefficient » compatible with the presence of ra-
diating modes: for larger v all unstable (w; > 0) modes
are trapped (k; > |k,|); for smaller » there is'a small
interval of wavenumbers (zonal and meridional) that
have both w; > 0 and k; < |k,|. .

To estimate a typical value of » we recall that the
width of the boundary layer in Stommel’s model is
v*/B8. That is the width of the jet that we called xo. So
Xo ~ v*/B; in nondimensional form v ~ B. If we take
v = (8, we see that for the case shown, all / > 0.06 are
unstable, so the waves 0.06 < / < 0.08 can be considered
radiating modes.

It may be noted at this point that although in this
model the group velocity needs only to be positive, in
the real ocean there is a slow westward drift which feeds
the western boundary current so that the group velocity
should overcome this effect in order to have radiation
of energy. The group velocity of our solutions in the
radiating range goes from 0.34 at / = 0.06 to 0.88 at |
= 0.08; these values seem high enough to satisfy the
more stringent condition.

We show in Fig. 3 the zonal form of the solutions
for three different wavenumbers /. Figure 3a is at /
= (.04, close to the inviscid marginal stability. The
exact values of frequency, growth rate, phase speed,
group velocity and zonal wavenumber are given in the
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figure caption. It is apparent that this is a wave structure
with little spatial damping away from the source. On
the other hand, its growth rate is very small, so that
this solution is unstable only with very small or no
viscosity. / = 0.07 (Fig. 3b) is within the radiating range:
its growth rate is high enough to overcome a realistic
dissipation (a dissipation consistent with the width of
the boundary current as predicted in Stommel’s
model), while its spatial structure still gives a significant
amplitude at a distance away from the source an order
of magnitude larger than the boundary current. Finally,
Fig. 3c is at [ = 0.1; its growth rate is high, but so is k;
and the solution is bound to the source.

The behavior shown in detail for § = 0.01 is typical
of other values of this parameter. Figure 4 shows the
upper and lower bounds of the interval of radiating
modes (together with the inviscid marginal stability
curve) on the (/, §) plane. The upper bound is taken
to be where |k,| = k;; the lower where w; + v = 8. It
can be seen that the interval is small and quickly dis-
appears when 3 goes above 0.05. The radiating interval
can be larger than the one shown for smaller v and
smaller or nonexisting for larger dissipation.

4. Summary

We have shown that a simple meridional current
can have radiating barotropic instability for values of
friction consistent with the width of the boundary cur-
rent as predicted in Stommel’s model. The radiating
modes have long meridional wavelength and they have
a meridional phase speed larger than the speed of the
jet that generates them. We find radiating modes for
values of the nondimensional parameter 8x0%/Vo (Xo
width of the jet, ¥, speed of the jet) smaller than 0.05
and a dissipation time z;-= (8x) "

The model is too simplified to be directly compared
with observations but is, in our view, sufficient to point
out that the existence of barotropic radiating modes
that has been ruled out in studies of westerly zonal jets
still needs to be considered if the unstable current is-
not zonal.
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