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ABSTRACT 

The coupled atmosphere-ocean models participating in the 4th Assessment Report (AR4) 

of the Intergovernmental Panel on Climate Change (IPCC) span a large range in their 

transient climate response (TCR). Using observational results on the response to the 11-

year solar variation, we derive a constraint for the TCR. We use five global datasets of 

long duration, including reanalysis datasets (NCEP/NCAR and ERA-40) and blended in 

situ land-ocean data (GISS, HadCRUT3 and NCDC), and discuss the impact of missing 

coverage in the in situ datasets on our conclusion.    It is seen that, compared with our 

derived constraint, most models assessed by IPCC AR4 have too low a TCR, although 

their equilibrium climate sensitivity, calculated using a slab ocean model, is close to our 

lower bound.  It appears that in the transient experiments these models may have too high 

an ocean heat uptake. As a consequence the current models may likely under-predict the 

transient global warming from increasing greenhouse gases. 
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Transient Climate Response (TCR) is defined in IPCC 4th Assessment Report (AR4) as 

the global mean warming in response to 1% per year compound increase in CO2 at the 

time of its doubling.  TCR is deemed more relevant in calibrating models on their ability 

of predicting the warming resulting from transient increases in CO2 than the equilibrium 

climate sensitivity (ECS), which is defined as the equilibrium global mean surface 

change at doubled CO2.  The coupled atmosphere-ocean models participating in AR4 

produce a range of TCR from 1.2 to 2.6 K [Randall, et al., 2007]. This rather large range 

is difficult to constrain with independent observations, since transient response does not 

easily discriminate between models with different climate feedback processes [Hansen, et 

al., 1985].  Stott et al. [2006] used the observed 20th century temperature change to 

constrain three models (HadCM3, GFDL-R30 and PCM) and then applied these models 

to the calculation of TCR for the future. The calculated TCR is around 2.1 K and the 

calculated 5-95% probability range is 1.5 to 2.8 K.  The rather large range is a result of 

combining the probability density functions of the three models, which included a model 

(NCAR’s PCM) that is known to have a low climate sensitivity compared to other models.  

In this work, we propose that the temperature response at the earth’s surface to the 11-

year solar-cycle variation in total solar irradiance (TSI) can yield a useful constraint on 

the transient climate response.  

2. Datasets and methods. 

The solar cycle temperature signal near the surface stands out among larger unforced 

variability in our climate because its globally coherent spatial structure is mostly one 

signed (warming) in the zonal mean. The coupled atmosphere-ocean system naturally 
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produces decadal variability of larger amplitude, but this unforced variability often takes 

the latitude-compensating form of annular modes of warming and cooling [Marshall, et 

al., 2007] and so can be filtered out using a spatial filter or a simple global average.  El 

Nino-Southern Oscillation (ENSO), although an internal mode of oscillation in the 

atmosphere-equatorial ocean system, appears to the atmosphere as an “externally forced” 

response, in the sense that the temperature changes even when globally averaged.  

Nevertheless, the ENSO spatial pattern is different from the solar response, with warming 

in the tropics and cooling in the mid-latitudes [Seager, et al., 2003]. (The removal of 

volcanic-aerosol- induced cooling and the secular trend of global warming, in addition, 

has been discussed previously [Camp and Tung, 2007; Tung and Camp, 2008].) To 

extract the solar cycle response signal by taking advantage of its spatial signature, it is 

preferable that the dataset we use be globally complete.  This was the reason that in our 

previous work the geographically complete reanalyzed datasets of NCEP/NCAR and 

ERA-40 were used [Camp and Tung, 2007; Tung and Camp, 2008].  Both reanalysis data 

use available station measurements, plus satellite, buoy and other forms of data.  These 

are assimilated by a model, which dynamically supplies the missing information for one 

variable from constraints provided by other variables.  In NCEP/NCAR [Kalnay, et al., 

1996], the surface air temperature is derived from observations of upper air variables and 

surface pressure. In ERA-40 [Uppala, et al., 2005], the surface temperature is called the 

2-m temperature.  It is not obtained directly as part of the three-dimensional variational 

analysis of atmospheric fields, but is an interpolation from the lowest model level (at 

~10-m) and the background forecast of the skin temperature. Without supplementation by 

satellite or other data, datasets using in situ station measurements of surface temperature 
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have large areas with missing or sparse coverage; these include the Antarctic and the 

Artic, central African continent, central South America continent, and the northern Asian 

continent.  Interpolation in time and in space tends to reduce the amplitude of the 

response, which depends on the difference in the anomaly between the solar-max years 

and the solar-min years.  

The land component of the Goddard Institute for Space Studies (GISS) global 

surface temperature dataset [Hansen, et al., 1999] consists of the monthly mean station 

data of the Global Historical Climatological Network (GHCN) version 2 of [Peterson and 

Vose, 1997] and the Scientific Committee on Antarctic Research (SCAR) data from 

Antarctic stations. All station records within 1200 km of a grid point are averaged.  In 

data-sparse regions a single station is used to fill in the estimated temperature up to 1200 

km.  The ocean component uses the sea-surface temperature (SST) [Reynolds and Smith, 

1994] rather than the marine air temperature (MAT) because of historical measurement 

non-uniformity (with respect to ship height and speeds) associated with the latter.  From 

1982 on, satellite measurements of SST are used, calibrated with the help of thousands of 

ship and buoy measurements.  The same satellite-derived empirical orthogonal functions 

(EOF) were applied to the period prior to satellite observation [Smith, et al., 1996].  Ship 

measurements were fitted into these predefined EOFs, which were then used to extend to 

regions without ship measurements. The Reynolds and Smith SST data are not defined 

south of 45° S, where available meteorological station measurements over land/islands 

were used to extend into the ocean area. 

HadCRUT3 [Brohan, et al., 2006] is the latest version of the historical blended air 

surface temperature over land and SST over ocean.  The SST in HadSST2 [Rayner, et al., 

 



2006] consists of gridded dataset from in situ ship and buoy observations from the new 

International Comprehensive Ocean-Atmosphere dataset (ICOADS). Over 4000 land 

stations are used, with additional monthly data obtained from stations in Antarctica.  

Infilling of missing grid box values using data from surrounding grid boxes, used in the 

previous versions, is no longer done.  Consequently coverage is sparsest over the interior 

of the continents of Africa and South America, and over Antarctica.   
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National Climate Data Center (NCDC)’s global merged land-air and SST surface 

temperature reconstruction [Smith and Reynolds, 2005] uses GHCN station data of 

[Peterson and Vose, 1997] and SST data from ICOADS.  Approximately 60% of the land 

surface is sampled, and missing data are filled in using covariance modes but the 

anomalies are damped to zero in data-sparse areas. 

The annual average used here (see legend of Figure 1) starts in December and is 

slightly different from the calendar year average we used previously.  This accounts for 

the slight difference in the results, of about 0.01K.  The period considered is from 1959-

2004 for NCEP, GISS, HadCRUT3 and NCDC.  ERA-40 is available only up to 2002. 

3. Results 
Figure 1 shows the 2D composite mean difference (CMD) of the surface temperature of 

the solar max years and the solar min years for each of the five datasets.  Missing data 

areas are left blank.  This figure serves to show that in situ dataset such as HadCRUT3 is 

missing data over large areas in the continents. This situation has not improved in recent 

decades. It also shows the effect of different interpolation schemes used in filling in the 

missing data in GISS and NCDC.  Figure 2 shows the CMD zonal mean latitudinal 

patterns.  The zonal mean is taken provided that data are available for 2/3 of the 
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longitudes. Otherwise it is left blank.  Thus, there is no useful zonal mean information 

south of 45° S in any of the in situ datasets.  It is seen in Figures 1 and 2 that the spatial 

features revealed by all five datasets are very similar.  Not surprisingly, the in situ 

datasets with their many regions with missing data requiring interpolation show smaller 

anomalies than the reanalysis data.  NCDC, which damps its anomalies in data-sparse 

regions, shows the smallest anomaly amplitude.  HadCRUT3 has the most missing data, 

but at where it does have data coverage, its amplitudes are quite similar to the other 

datasets. The results for the two geographically complete datasets, NCEP and ERA-40, 

are strikingly similar in the latitude and longitude locations of warming and cooling.  The 

zonal-mean latitudinal profiles for the two reanalysis results are very close to each other, 

including even the Antarctic, except the rather larger cooling in Siberia seen in ERA-40 

than in NCEP.   GISS data is more similar to NCEP than ERA-40 in the Arctic region, 

with no zonally averaged cooling near 70° N.  NCDC also does not show the severity of 

cooling in Siberia.  We therefore find no support in the in situ data for the zonally 

averaged cooling found in the ERA-40 data in the Arctic. 

The CMD Projection method [Camp and Tung, 2007] can be used to project the 

surface temperature from each of the dataset onto its own spatial pattern as determined by 

CMD.  This results in a time series, which we then correlate with the solar TSI index to 

yield a correlation coefficient ρ.  We test the statistical significance of this observed ρ for 

each dataset by generating 10,000 synthetic data using random assignment of years to 

solar groups, while preserving the same numbers of years in each group as in the 

observed case.   Two confidence levels (in %) are listed in the figures.  The first is 

obtained by counting the ratio of the realizations when ρ >the observed value, and the 136 

 



second when ρ > the observed value. By the first, more conservative, test, none of the in 

situ data reach statistical significance when projected onto the zonal mean CMD pattern, 

because of the missing data. However, since there is physical reason to believe that solar 

max warms [Tung and Camp, 2008], the second test is also a valid one, and by that test 

all datasets yield close to statistically significant positive correlations.  The two reanalysis 

results are highly significant, as previously reported [Camp and Tung, 2007].   
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Next, we assume that the correct zonal-mean latitudinal structure for the solar 

cycle response should be given by that of NCEP, discussed above.  We then proceed to 

project all five datasets onto the same geographically complete pattern determined by 

NCEP, normalized to have a global average of 1.  The global mean surface temperature 

time series are shown in Figure 3.  By filling in the area with missing data, this procedure 

yields a slightly larger global mean solar signal for the in situ dataset. A conservative 

measure of the amplitude of the response is given by κ, which is the regression 

coefficient of the projected time series shown in Figure 3 against the TSI time series, also 

shown.  Discarding NCDC, whose interpolation scheme is not suitable for our study of 

anomaly signal, we see that in situ data yield a solar cycle signal of κ~0.12 K per 1 Wm-2 

variation of solar constant.  The amplitude of the solar cycle signal is larger in the 

reanalysis, as expected.  NCEP is 0.19 K, and ERA-40 is 0.14 K.  Note that these are not 

the peak-to-peak amplitudes, which are slightly over 0.2 K for both reanalysis dataset, 

and slightly less than 0.2 K for the GISS dataset.  In subsequent sections we will adopt 

the range  

κ~0.12 – 0.19 K /(Wm-2).                                               (1) 

 



The 2σ regression errors, indicated in the range of κ in Figure 3, are related to the 

goodness of fit of temperature response with TSI, and are affected by trend removal and 

method of analysis. These errors can be cut in half by using the LDA method [Tung and 

Camp, 2008], to 0.03-0.04 K/Wm
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-2, smaller than the differences of the mean values 

between datasets indicated above, and will not be discussed further here. 

 HadCRUT3 data, when projected instead onto its 2D CMD pattern (see Figure 1), 

shows a statistically significant solar cycle signal despite its missing large amounts of 

data over continents.  This appears to be due mostly to the solar cycle signal in the SST 

data over oceans, and the magnitude of the solar cycle signal, κ ~0.1 K per Wm-2, is 

about the same as that found for sea-surface temperature [White, et al., 1997].   

4. Climate sensitivity parameter. 

A measure of climate sensitivity can be defined as the ratio of the global-temperature 

response to the radiative forcing change,  

λ=δT/(εδF),                                                                      (2) 

where δF is the radiative forcing (RF) change for the troposphere, evaluated above the 

top of the troposphere.  This quantity λ, called the climate sensitivity parameter, is 

expected to be different for different time scales.  In order that the definition of the 

climate sensitivity parameter be more general, and applicable to the greenhouse forcing 

as well as solar-cycle forcing, the RF change in Eq. (2) is multiplied by the efficacy factor 

ε, which measures the ratio of a unit of RF of say the solar-cycle phenomenon to a unit of 

RF of CO2 in terms of their effect in causing global warming, with the efficacy of the 

latter defined as identically 1.  The models in AR4 have calculated values of efficacy for 
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solar forcing close to 1, and all models in AR4 fall within the range of 0.7 to 1.0.  Thus 

for solar-cycle forcing and response, we have 

λsolar-cycle = δT/(εδF )≥ δT/(δF).                                                    (3) 

Eq (1) yields δT/(δS).  Using δFsolar cycle = δS(1-α)/4 , where the factor of four accounts 

for the geometry of the circular disk on which the solar constant is measured and the 

spherical area on which the RF is expressed and α≈0.3 is the albedo, the fraction of the 

radiation reflected back to space by the surface and the clouds, Eq. (3) becomes 

λsolar cycle ≥ 0.68 to1.08 K/(Wm-2) .                                              (4) 

The definition of RF used by IPCC differs from the usual top of atmosphere value in that 

the former is evaluated at the top of the tropopause after the stratosphere has adjusted. 

Absorption of UV radiation by stratospheric ozone reduces the RF reaching the 

tropopause from the top of the atmosphere.  Since 12-15% of the solar variability lies in 

the UV range (below 295 nm)[Lean, et al., 1997], this reduction can potentially be as 

large as 12-15%.  The stratospheric adjustment involves both the warmer temperature by 

the enhanced UV heating, which increases the longwave radiation reaching the 

troposphere, and the enhanced production of stratospheric ozone.  More ozone not only 

reduces further the shortwave radiation to the troposphere not absorbed by the existing 

ozone, but enhances the downward longwave radiation.  There is some uncertainty in the 

net change in RF caused by the different predicted vertical distribution of enhanced 

ozone, as reviewed in Table 4.1 of Gray et al. [2005].  We take the result from Larkin, et 

al. [2000], RF~0.18 Wm-2, which happens to be the same as the top of atmosphere 

estimate. This is also consistent with Chapter 2 of the latest IPCC report [Forster, et al., 

2007], where the RF of the 11-year solar-cycle variability is not reduced by the 

 



stratospheric absorption, citing compensation by indirect effect of solar-ozone interaction 

in the stratosphere (see footnote 11 therein). This solar RF turns out to be almost 1/20 

that for the total change in RF due to a doubling of CO
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2 (RF≈3.7 Wm-2).  Therefore the 

annual rate of increase in radiative forcing of the lower atmosphere during the five years 

from solar min to solar max happens to be equivalent to that from an average simple 1% 

per year increase in greenhouse gases.  The global pattern of warming and cooling for the 

solar cycle signal shown in Figure 1 is also quite similar to the IPCC AR4 global 

warming runs as shown in [Leroy, et al., 2006].    

A climate sensitivity parameter for model TCR can be defined as 

λTCR=δT/δF=TCR/3.7 Wm-2.                                                        (5) 

Since TCR is defined as the δT at the time of doubled CO2 after it has been increasing at 

a compounded rate of 1% per year, the instantaneous change in RF responsible for TCR 

is larger than the average annual rate, and so we expect the response, which is the TCR, 

to be larger than the average δT.  Thus 

λTCR >λsolar cycle ≥0.68 to1.08 K/(Wm-2).                                                   (6) 

By multiplying Eq. (6) by δF=3.7 Wm-2 we obtain the desired constraint: 

TCR >2.5 to 4.0 K.                                                                      (7) 

The equilibrium climate sensitivity (ECS) should be greater than TCR, constrained by (7). 

The difference in the time scales between an oscillatory forcing and a secular 

forcing works in the direction of the inequality in (7).  For the TCR, at the time of 

evaluation, there have been 70 years of compound 1% increase in RF, and the delayed 

heating due to ocean inertia adds to the instantaneous heating, while for the solar-cycle 

response at solar max, there have only been only five heating years. 
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The TCRs of 19 coupled atmosphere-ocean GCMs in IPCC AR4 listed in Table 1 

fall within the rather low range of 1.2-2.2 K with the exception of one, and thus fail the 

lower constraint of 2.5 K determined by the interpolated in situ data of GISS and 

HadCRUT3. The only exception is the Japanese MIROC (hi-res), with a TCR of 2.6 K.  

All models fail the higher constraint of 4.0 K determined by the NCEP data.   

5. Conclusion 

 We have examined five datasets on global surface temperature, two reanalyses and three 

in situ.  We can establish the existence of a solar cycle signal in all five datasets at a 

confidence level above 95%.  The magnitude of the signal is less in the in situ data than 

in the reanalysis data, due to the missing data coverage.  Nevertheless, the peak-to-peak 

amplitude in the in situ data is only slightly less than the 0.2 K of the two reanalysis 

datasets.  The measured solar response is then used to provide a constraint on the 

transient climate response of models. 

It is seen that most of the current generation of general circulation models 

assessed by IPCC, AR4, are found to have too low a transient climate response as 

compared with the observed transient climate sensitivity obtained by our method.  This is 

consistent with the independent finding by Forest et al. [2006] that models simulate too 

large an ocean heat uptake as compared to observations of ocean temperature changes 

during the period 1961-2003.  This excessive heat into the oceans tends to reduce the 

transient climate response for the atmosphere, but does not affect the modeled 

equilibrium climate sensitivity, which was calculated with a slab ocean in thermal 

equilibrium with the atmosphere. 
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Table 1. Equilibrium Climate Sensitivity and Transient Climate Response for various 

Atmosphere-Ocean GCMs assessed by IPCC AR4. 
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Figure 1. Composite mean difference between solar max-min years in surface 

temperature in K; missing data areas are left blank, except for HadCRUT3, where the 

composites are calculated with 5/6 of data available at that location. Annual average is 

the average of seasons, provided that at least three seasons are available and the missing 

season is not winter or summer.  Seasonal average is the average of three months in the 

season, provided that at least two months are available. 
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Figure 2.  Zonal mean composite mean difference between solar max years and solar min 

years.  Zonal means are taken if  2/3 of the data are available on a zonal circle. 
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Figure 3. Surface temperature CMD Projection of each of the five datasets onto the zonal 

mean spatial pattern determined by the geographically complete NCEP reanalysis, 

normalized in such a way that the left axis indicates the globally averaged value.  The 

dotted line is the TSI index, whose scale is shown on the right axis. 
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