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ABSTRACT

Previous results claiming the existence of multiple equilibria based on simple barotropic or two-layer models
of the atmosphere are reexamined. While not ruling out the existence of multiple equilibria we find that the
application of these results to the atmosphere, especially with regard to high/low zonal index and zonal/blocked
situations, is probably problematic. Results based on truncated low~order models are found to change drastically
when full nonlinearity is retained. Although multiple equilibria may still exist in some nonlinear models in
some restricted parameter regimes, it is argued that the parameter values adopted in previous studies are probably

not physically based.

Mathematically interesting properties of the nonlinear system, such as resonance bending, hysteresis, bifurcation

and multiplicity of solutions are also discussed.

1. Introduction

Based on a highly truncated spectral model of a
barotropic atmosphere, Charney and DeVore (1979,
hereafter referred to as CD) suggested that there may
exist a multiplicity of distinct equilibrium states for
large-scale flow patterns in the atmosphere for a given
external driving. In particular, a low zonal index, high
wave amplitude state may coexist with a high zonal
index, low wave amplitude state, suggestive of blocked
and unblocked flow patterns sometimes observed in
the atmosphere. Similar results were also obtained by
Wiin-Nielsen (1979) using a low-order model on the
sphere.

The existence of multiple equilibria appears to have
been substantiated by, for example, Hart (1979), Trev-
isan and Buzzi (1980), Charney et al. (1981), Pedlosky
(1981a,b), Kiillén (1981, 1982), Legras and Ghil (1984,
1985), and Yoden (1985) for the barotropic case, and
Charney and Straus (1980), Roads (1980a,b; 1982),
Pedlosky (1981b), Yoden (1983a), and Killén (1983)
using two-layer models.' There is probably little doubt
that multiple equilibria exist in some parameter re-
gimes (namely, for high enough mountains, low
enough viscosity and strong enough “thermal forcing™)
at least in barotropic models, and perhaps also in baro-
clinic models if the concept of equilibrium state is
modified slightly. The issue we wish to address here is:
Given realistic magnitudes of topographic elevation,
physically based zonal driving and Ekman damping,

! However, for the latter case the meaning of “equilibrium” needs
to be modified (see Tung and Rosenthal, 1985). We will return to
this point in Part I1.

* Present affiliation: Mathematics Department, Salem State Col-
lege, Salem, MA 01970.

do multiple equilibria still exist? We wish to address
this issue with a fully nonlinear model and compare
our result with the ones previously obtained from low-
order models.

There has been an attempt by Charney er al. (1981,
hereafter referred to as CSM) to show that at least three
equilibria exist in a severely truncated barotropic model
even when a realistic distribution of topography is used.
We will first show, using the same topographic forcing,
that the state of multiple equilibria disappears when
nonlinearity is incorporated by including more wave
modes until convergence is achieved.

A comprehensive study of the nonlinear barotropic
vorticity equation with one-mode topography was un-
dertaken by Legras and Ghil (1984, 1985), using a less
severely truncated model than CD (with 25 modes re-
tained in the solution). Their result suggests that the
parameter domain in which muitiple equilibria are
present is greatly reduced when nonlinearity is properly
taken into account. This property of the barotropic
solution was previously pointed out by Davey (1980,
1981), whose “improved quasi-linear” solution, which
takes into account the interaction between waves and
mean shear, has a narrower domain for which multiple
equilibria exist than his “quasi-linear solution, which
incorporates only the interaction between waves and
the overall net zonal flow. (CSM’s truncated solution
can be called *“‘quasi-linear” according to this termi-
nology.) The recent result of Rambaldi and Mo (1984)
reconfirmed Davey’s finding concerning the impor-

" tance of wave-mean shear interaction.

According to Legras and Ghil (1985), the nonlinear
(i.e. less severely truncated) counterpart of CD’s result
of 3 equilibria now occurs when their nondimensional
parameter p exceeds ~0.5 (at a damping time of 5.25
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days). The parameter p used by Legras and Ghil mea-
sures the strength of the zonal driving ¥* (in the no-
tation of CD), and p = 0.5 corresponds to a barotropic
zonal jet with a 150 m s™! speed.

The more recent results mentioned above suggest
that nonlinear solutions of the barotropic vorticity
equation can possess multiple equilibria, but these now
occur in a different, perhaps less realistic, part of the
parameter regime. The determination of what consti-
tutes a “realistic” regime in a barotropic model of the
atmosphere is, however, rather problematic. By starting
with a general three-dimensional baroclinic atmo-
sphere, we will attempt to give a physical interpretation
of the so-called “thermal forcing” terms used in baro-
tropic models. This allows us to estimate their order
of magnitude from observational data.

It is more difficult to decide what magnitude of vis-
cous damping time-scale should be used in barotropic
models. A commonly used value for damping time
based on Ekman boundary layer parameterization is
about 6 days (Charney and Eliassen, 1949). This value
is also consistent with the 5 days value obtained by
interpreting the damping time as a characteristic resi-
dence time of the vertically averaged kinetic energy in
the atmosphere (Kanamitsu, 1981). Longer damping
times have also been adopted by some authors from
time to time. For example, CSM used 14.3 days, and
Rambaldi and Mo (1984) 15 days. Realizing the con-
troversial nature of choosing a “correct” value of
damping to use in barotropic models, we will instead
perform calculations using a range of damping time
scales, from 5 days to 30 days, and discuss the depen-
dence of the solution on this and other parameters.
Our results do not appear to support the conclusion
of multiple distinct equilibria of the large-scale flow
even for small dampings.

2. A reexamination of the model of CSM

The paper by CSM is important because it appears
to be the only attempt to show that the theoretical result
of multiple equilibria is relevant to an atmosphere with
realistic distribution of topography and with a damping
time based on a parameterization of the Ekman
boundary layer having a value independently deter-
mined by Charney and Eliassen (1949, hereafter re-
ferred to as CE).

For the barotropic model in a B-plane channel the
governing potential vorticity equation is, in dimen-
sionless form:

g—tvw + J[V, V¥ + By]

= —J(¥, h) — kV(¥ — &%), (2.1)

where, following CSM we have nondimensionalized x
and y by L (where =L is the channel width), z by 5!,
¥ by fo/L and h by H,. [¥ is the quasi-geostrophic
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stream function; kV>¥* the externally imposed vor-
ticity source; A the topographic elevation and H, the
scale height.] The dimensionless Ekman damping pa-
rameter k is defined by

k 1 (E)l/z,
Hy \2fp
with vz being the bulk eddy viscosity. CE found that
vg = K sin?26 ~ 5 m?s™!, 2.3)
(where K is the “eddy-diffusivity” and § is the angle
between the isobars and the surface wind) correspond-
ing to an Ekman damping time scale
2H,
TE=SE——7"775
B fo2velfo)”?

of about 6 days, and a dimensionless damping param-
eter of

2.2)

2.4)

k =~ 0.02. (2.5)

To obtain the equation for the mean flow, we take
the zonal average of the second y-integral of Eq. (2.1)
to get

%U= k(U*-U)+T, (2.6)
where
" ddy = ——[¥],~¥,] @7
U=s——— | idy= - )
Gr—) o yz—y1[ noom

is the zonal index for the flow between y; and y,, and
measures the net geostrophic flow in the east-west di-
rection inside the channel,

vz
T= ¥, hdy (2.8)
Y2 = V1 Jn
is called the mountain torque, and
U* = (¥, —¥%,,] (2.9)

Y2 =N

represents the zonal momentum driving for the flow
inside the channel.

In the absence of mountains (i.e. 2 = 0), (2.6) implies
that the flow would relax into

U= U*

Thus U* can also be interpreted as the net zonal flow
for the Hadley circulation in the channel.
CSM assumed that ¥* is a linear function of y, i.e.

WE = —Uy, (2.10)

so that the so-called “thermal” driving ¥* shows up
not as a vorticity source in (2.1) but as a momentum
driving for the mean zonal flow in (2.6). The same
assumption is used by Rambaldi and Mo (1984), but
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not by Legras and Ghil (1984, 1985). We will come
back to this point later.

Equilibrium solutions are found by solving (2.1) and
(2.6) subject to the boundary condition that the me-
ridional component of the geostrophic velocity vanishes
at the channel boundaries, i.e.

9

-a;\Il=0 at y, and ys. (2.11)
Equation (2.11) implies that ¥ is a constant at y; and
another constant at y,. The difference between the two
constants measures the total mass flow inside the
channel, according to (2.7). Without loss of generality,
we can set ¥ at y, to be zero, and replace (2.11) by

{0 " at =0
—Ur at y,=m.

V= (2.12)

Since the stationary wave solution to (2.1), subject
to the lateral boundary condition (2.12) depends on
U, it then follows that the mountain torque is also a
function of U, i.e.,

T = T(U). (2.13)

Once T(U) is found from the solution of (2.1) (without
the time derivative) for different values of U, the equi-
librium solution to the system is obtained by solving
for the U that satisfies: .

k(U* - U) =-T(). (2.14)

Since according to (2.12), ¥ + Uy vanishes at y
= 0 and =, that quantity can be represented in general
by a sine series as (with N — oo, M — o0)

N
V+U:y= > dux, O)sinny, O<y<ax (2.15)

n=1

with

M
¢u(x, ) = Re 2 ¢pne™™*, 0<oax<2mw

m=0

if the solution is assumed to be periodic along a zonal
circle (a = L/(a cosfy, where a is the earth’s radius and
we take 6, = 45.). The topographic distribution of the
earth’s surface is expanded in a similar manner

N
h= 3 h,,_(x) sinny, O<y<m (2.16)

n=1

with

M
h(x) =Re > hpe™, 0<ax<2r.

m=0

Substituting (2.15) and (2.16) into the barotropic vor-
ticity equation (2.1) and setting the time derivative in
that equation to zero yields the following nonlinear
equation in dimensional form for the wave amplitude

¢mn
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M N
> 2 (mA— mn)midm-rmn—-i(Bmo + 1)
fim—M F=-N

= 4ULmgq,,, + 4LBmd,,

1 2
+4i— (am2 + ”—)(a,,,,0 + Dy (2.17)
TE o

where

Imhg, =0, hopmn = C.C. Of hypy Bonon = —hmp,

and similarly for ¢,;

Hy ho (am? + nZ/a)]

= (o + 1
Gn = Omo )[ fo aL cosfy

and d,,, = 1 if m = m, 0 otherwise. This nonlinear
algebraic equation is solved numerically using New-
ton’s method with arc-length continuation (Keller,
1977; Rheinboldt and Burkardt, 1983a,b). The num-
bers of modes used are M = 15 (in the zonal direction)
and N = 4 (in the meridional direction), although
higher resolution (with M = 30; N = 8) has in some
cases been used to check for convergence.

In CSM, N is truncated to 1, resulting in a linear
equation for ¢, (the same as that used by CE):

i
-(;—t(qsm — 1) + Ui — b1x) + Bebix

= —k(p1xx — ¢1) — Uhix. (2.18)
The mountain torque is found to be given by
T(U) = _l‘f ¢1xh1 sinzydy
7 Jo
= % (Mo1x — d1h1). (2.19)

{Due to minor algebraic error, CSM has a factor of §
instead of 1 in front of (h,¢,x — ¢1h1y) in (2.19) [cf.
their Eq. (3)]. The error arises because their counterpart
to our (2.6) was obtained by multiplying (2.1) by cosy
and then integrating across the channel width. This
procedure should have yielded “zero = zero”.

In addition to truncating N to be 1, CSM made a
further equivalent barotropic assumption, which in-
volves multiplying the topographic (h—) term in wave
equation (2.18) and the damping (k—) term in the mean
flow equation (2.14) by the factor x = 0.4. Nevertheless,
the two « cancel each other in the final equation for
the determination of the equilibrium U [their Eq. (7)],
which does not contain any « factors. Therefore the
use of (2.18) and (2.14) without the « should produce
the same (truncated) equilibrium U-solution as in CSM
for the same value of k. (There is, however, a slight
difference in the nonlinear solution.)

The result by CSM for —T(U) versus U is reproduced
in Fig. 1 using the topographic components listed in
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FI1G. 1. Mountain torque (—T) in m s™'/day, as a function of U
(m s™), calculated using the topographic modes tabulated by Charney
et al. (1981) for a dimensionless damping parameter of k = 0.008,
corresponding to an Ekman damping time-scale of 7z = 14.3 days.
Top dashed curve: Linear solution of CSM with the (incorrect) factor
of 4. Second solid curve: Linear solution with the (correct) factor of
i. Bottom solid curve: Nonlinear solution. Straight line sloping
downward to the right: 7z"'(U* — U), shown with U* = 63 m 5!
and U* =22 ms™\.

g. lo. 20. 30. u40.

CSM’s Fig. 1, and for £k = 0.008, corresponding to a
14.3-day damping time-scale. They used this smaller
value of damping although it was claimed in CSM that
the same bulk eddy viscosity as in (2.3) was used. The
top dashed curve is calculated in the same way as in
CSM with the (incorrect) 4 factor in the expression for
the mountain torque (2.19). The middle solid curve is
the correct quasi-linear solution, calculated with the 4
factor in (2.19). The lowest solid curve represents the
mountain torque calculated without severe truncation
in the solution but using the same topography. [Note
that the topography modes listed in CSM have only
one y-mode, but the nonlinear solution calculated here
is allowed to have many y-modes.] The truncated so-
lution using CSM topography and the incorrect } factor
shows 5 equilibria, 3 of which are stable as discussed
by CSM. The high zonal index stable equilibrium, with
U ~ 63 ms™, is not realizable in the real atmosphere,
where the net zonal wind seldom exceeds 30 m s™! (at
the “equivalent barotropic level””). The other two stable
equilibria, corresponding to a subresonant wavenum-
ber 2 solution and a subresonant wavenumber 3 so-
lution, occur at more reasonable U. When the algebraic
error involving the § factor is corrected, only one of
the “attainable” equilibria, the subresonant wavenum-
ber 2 solution, remains when U* = 63 m s™'. Nev-
ertheless, if U* is changed to 47 m s™!, multiple equi-
librium states similar to those discussed by CSM reap-
pear.
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The solution calculated without severe truncation
has a peak mountain torque which is more than 6 times
smaller than the truncated solution of CSM. The dra-
matic change from linear to nonlinear solutions is due
mainly to the fact that a significant fraction of the wave
energy is transferred to the wavenumber zero com-
ponent in the nonlinear case, producing shears in the
mean zonal wind (Davey, 1980; 1981) but contributing
to no mountain torque. Also, nonlinear resonant so-
lutions in the presence of damping that is as small as
used for this case tend to have wave amplitudes that
are a few times smaller than those of the linear solu-
tions. (see Fig. 7 to be discussed later.)

The important conclusion from Fig. 1 is that when
the CSM solution is repeated without severe truncation,
there is only one equilibrium for any value of the ex-
ternal parameter U* in the nonlinear solution. Thus
it is seen that the multiple equilibria seen in the trun-
cated solution are merely artifacts of the severe trun-
cation used.

In Fig. 2, we present results calculated using the
Scripps topography as tabulated by Gates and Nelson
(1975). The 1° X 1° grid-point data are Fourier ana-
lyzed according to (2.16) with M = 15 and N = § for
a channel extending from 30°N to 63° (to facilitate
comparison of our results with those of CSM). Since
the Fourier components derived from the Scripps to-
pography tend to have slightly larger magnitudes than
the CSM topography, the calculated solutions also tend
to have slightly larger amplitudes. A more significant
difference is that there are many y-modes in the to-
pographic forcing when the Scripps topography is used,
and there is only 1 y-mode in the topography taken
from the table in CSM. The presence of more y-mode
forcing tends to produce more small-scale fine struc-
tures in the solution, as will be discussed in a moment.

10. ————r . . .
x )
2 ,’\
s ]]
= \
. | l
5.} J/ | .
r \
P p
i\ \\
[ \\
0.4 To. 20, 30, uo. Usu.( suS.] 70.
M/

FIG. 2. As in Fig. 1 except that the Scripps topography is used.
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Visual inspection of Fig. 2 suggests that again there
are no distinct multiple equilibrium states in the non-
linear solution. The word ““distinct” should be empha-
sized here, for in the presence of small-scale topographic
modes, the calculated mountain torque curve has
complicated fine structures at low values of U. This is
not apparent in the scale used in Fig. 2 but becomes
" clearer when the portion of Fig. 2 between U = 4 and
U = 8 ms™! is enlarged many times. This is shown in

Fig. 3 for the nonlinear solution only. The complicated

fine structure makes it possible in principle for ten or
more equilibria to exist for some fixed values of U*.
However, these equilibria are not the kind of distinct
large-scale (e.g. high/low index, blocked/unblocked)
states envisaged by CD, because they differ from each
other only in some small-scale structures. These fine
structures are caused by the small-scale modes present
in the topography, and disappear when we eliminate
the higher meridional modes in the Fourier decom-
position of topography (but no such truncation is
adopted when solving for the ¢,,, in the nonlinear
solution). This is shown in Fig. 4 for the nonlinear
solution calculated with a (15, 1) form of Scripps to-
pography. '

The fine-structure behavior mentioned above also
disappears when the damping time-scale used in the
model is decreased. The calculation is repeated using
the same (untruncated) Scripps topography but with a
damping time of 5.7 days (k = 0.02), corresponding to
(2.4) and (2.5) suggested by CE. While the linear so-

lution possess 3 (and not more than 3) equilibria for

some particular U* (U* ~ 33 m s™"), there is only one
equilibrium in the nonlinear solution, as seen in Fig. 5.

For this larger value of damping (i.e., 5.7 days instead
of 14.3 days damping time), the difference between

0-8 L] L L)

(M/S) /DAY
o
<

0.3 5. 5. 7 3.

Uu (M/S)
F1G. 3. Enlarged portion of F’ig. 2. The curve shows the nonlinear
solution and the straight line shows 7z~ (U* — U). .
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FIG. 4. As in Fig. 2 except that only the first y-mode in the Fourier
decomposition of the Scripps topography is used to obtain the non-
linear solution shown.

3o0.

linear and nonlinear solutions is less dramatic, The
multiple peaks and valleys in the linear mountain
torque curve that we have seen at k = 0.008 mostly
disappear now at the larger damping parameter of k
= 0.02. (This does not imply, however, that there is
no resonance. Different wavenumber solutions still re-
spond preferentially for certain resonant values of U.)

Figure 6 shows the equilibrium geopotential height
of the nonlinear wave solution to (2.1) as a solid curve

10. L) L
>- -
(= o
= )
~
[
> 1
=
5.1 )
5. 10, 20, 30, 40. SO. 60, 70.
: u M/9)

FIG. 5. As in Fig. 2 except for a larger damping parameter of k&
= (.02, corresponding to an Ekman damping time-scale of 7
= 5.7 days. Here the dashed curve represents the (correct) linear
solution for (—T), while the solid curve is the (converged) nonlinear
solution.
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FI1G. 6. Wave geopotential height (in meters) at 45°N vs longitude
for 7z = 5.7 daysand U = 15 m s™}, which is the equilibrium solution
for U* = 22 m s™'. The solid curve shows the nonlinear solution,
the curve with long dashes shows the linear solution and the curve
with short dashes shows the observed climatological 500 mb eddy
geopotential height at 45°N in January, from Qort (1983).

(for 5.7 days damping time). The observed climatology
at 500 mb and 45°N in January from Oort (1983) is
shown as a curve with short dashes. The curve with
long dashes is the linear solution. The discrepancy be-
tween the linear and nonlinear solutions is not as great
as what we have found for the 14.3 day damping time
case (see Fig. 7). The overall good agreement in the

s500. T T

(M)

_ |
— |
a \ ‘
S o/
T \
\
\ 7
]
[ (I \\ g
L \
VL . R
~S0Q p5Tizo. -60. ©. 60, 120, 1sU.
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FI1G. 7. As in Fig. 6 except for 7z = 14.3 days.
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location of the troughs and ridges between observations
and the calculated solution is similar to that found by
CE and Held (1984) using similar channel models.
Nevertheless, this favorable comparison does not nec-
essarily imply that barotropic models with only topo-
graphic forcing are adequate in explaining the 500 mb
wave geopotential, nor should it be taken to mean that
CE’s 6 day damping time scale is appropriate for the
atmosphere (see Held, 1984).

With the existence of only one stable equilibrium,
the low-frequency variability of the large-scale flow can
no longer be explained in terms of transitions from
one equilibrium state to another, at least in the present
model. In this model, the variability of the stationary
wave solution can arise from the variability of the ex-
ternal forcing, namely U*, (There are other mecha-
nisms for inducing low frequency variability also.) By
varying U*, different equilibrium solutions are cal-
culated. These are plotted in Fig. 8. There is a hint of
the existence of “bimodality” in the distribution of the
ridges and troughs. The existence of “bimodality” has
previously been sought as evidence for the existence of
multiple equilibria (see Dole, 1983; Wallace and
Blackmon, 1984).

3. Nonlinear bending of resonance curves

The phenomenon of “‘bent resonance”, which arises
in some nonlinear models (see Nayfeh and Mook,
1979; Wakata and Uryu, 1984) has sometimes been
suggested as an alternative mechanism for multiple
equilibria and “bimodality” (e.g., see Speranza, 1985;

SUU. T T T T ¥

=
'—
=
o
LR =
[@a] [
(i
R
.
=500 pg.T1z0. 0. ©. 60. 120, 1b0.
LONG

FIG. 8. Wave geopotential height (in meters) at 45°N vs longitude
for rg = 5.7 daysand U = 5, 10, 15, 20 and 30 m s™!, as labeled on
the curves. The short dashed curve is the observed climatology (Oort,
1983). :
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Sutera, 1985; Hansen, 1985). In the context of baro-
tropic inviscid models, it suggests that multivalued so-
lutions can exist simultaneously for each zonal index
in the region where the resonance curve, such as Fig.
1 or 2, is bent sufficiently by nonlinearity to low values
of U as to “tip over”. The relevance of such a mech-
anism to the existence of multiple equilibria is exam-
ined here in dissipative cases.

There is some indication in the result of Rambaldi
and Mo (1984) that bent resonances do occur even in
dissipative barotropic models. By comparing our Fig.
2 with Fig. 5, one sees a tendency for the nonlinear
mountain torque curve (which, incidentally, also mea-
sures the wave amplitude that is out of phase with to-
pography) to be steeper for smaller viscosity on the
low-U side of its resonance peak, although it does not
yet “tip over” for the two values of damping time used.
The question becomes: For damping time scales longer
than 14.3 days, can the resonance curve be bent suf-
" ficiently that there exist more than one wave solution
for each value of U? We will show that the answer is
yes (albeit for very weak damping cases), but the ad-
ditional solutions that result are not equilibrium so-
lutions in the presence of damping.

The phenomenon of bent resonance can best be seen
when there is only one Fourier mode of topographic
forcing. It is also in this context that bent resonances
are usually discussed. For this purpose the nonlinear
calculation discussed in section 2 is repeated with a
topography containing only the dominant mode (m,
n) = (2, 1). All h,,, are set to zero except /,;, which
retains its value from the Scripps topography (~600
m). The nonlinear solution for ¢,,, is again calculated
until it converges. The mountain torque now measures
the out of phase component of the wave response ¢, .
This is plotted in Fig. 9 for various damping times.

In order to be able to put mountain torque curves
calculated with different damping times on the same
figure, we have multiplied the ordinate axis by 7. Thus
the curves are for —7g+ T, and the straight line is for
(U* — U). The intersection of the curve with the
straight line for each value of 7 still yields the equi-
librium solutions. Keeping this scaling in mind, we see
that as 7z increases the mountain torque first tends to
increase in magnitude and then for 7z > 13 days starts
to decrease approximately as 1/7g. There is no moun-
tain torque in the inviscid limit (i.e., 7z — o0) as the
solution of the barotropic equations becomes in phase
with the topography.

 More importantly, we see in Fig. 9 a clear tendency
for the (nonlinear) resonance curve to bend toward
low values of U for increasing 7z. For 7z = 15 days,
the phenomenon of nonlinear bending tips the reso-
nance curves over so that 3 values of mountain torque
exist on the subresonant side for each value of U. These
presumably, are the multiple equilibrium states (also
“bimodality”’, assuming one equilibrium is unstable)
referred to by Speranza (1985).
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FIG.9. —7x+ T in ms™", as a function of U in m s™!. The nonlinear
solution is using a one-mode topography: (m, n) = (2, 1), with |4y
=z 603 m. The curves are for, starting from the lowest curve: 7z
=5,7,10, 13, 15, 20 and 30 days. The straight line represents (U*
- U)forU*=12ms™\.

However, in the presence of damping, equilibrium
solutions only exist at the intersections of the mountain
torque curve with the straight line (U* — U). While it
is still possible to have 3 equilibria, these occur for
different subresonant values of the zonal index U, and
their stability property is such that only one of the
equilibria is stable to form-drag instability.

There is a simple way to decide if a particular equi-
librium point is stable or not to form-drag instability
without having to perform a linear stability (eigenvalue)
study as is normally done. It is shown in Tung and
Rosenthal (1985) that form-drag instabilities can be
decided using the zonal index equation (2.6) alone,
which is, in dimensional form

i} 1 .

— U=—(U*-U)+ T(U).

8[ " TE .
For westerly U, T(U) is always negative since mountain
torques tend to oppose the zonal flow. Hence T(U)
introduces a deceleration of the zonal index, according
to (3.1). This deceleration is balanced by the acceler-
ation introduced by the viscous relaxation term
75 {(U* — U) for Uless than U*. Away from the equi-
librium point, if to its right (i.e. larger values of U) the
curve [—-T(U)] has a larger value than the straight line
75 (U* — U), the flow decelerates according to (3.1).
If in addition, the flow accelerates at the left side of the
equilibrium point [i.e., (—T(U) is lower than 7z {(U*
— U)], that particular equilibrium point is stable to
form-drag instability. Otherwise the equilibrium is un-
stable.

As an exercise, let us use CSM’s solution displayed
as the dashed curve in Fig. 1. For U* = 63 m 5™, the

3.1
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straight line 7z '(U* — U) cuts the [-T(U)] curve at
5 different points. Hence there are 5 equilibria. The
left-most is a subresonant wavenumber 3 equilibrium.
It is stable to form-drag instability because the line
7 {(U* — U) is higher than the curve [—T(U)] to the
left of the equilibrium point and lower to the right.
The next intersection is the so-called superresonant
wavenumber 3 equilibrium. This is unstable because
the line 7z~ (U* — U) is lower than the curve [-T(U)]
to the left of the point and higher to the right. The
third equilibrium from the left in Fig. 1 is the so-called
wavenumber 2 subresonant equilibrium. It is stable by
the same arguments as above. The fourth equilibrium
from the left is the superresonant wavenumber 2 equi-
librium. It is unstable. (Wavenumber | resonance is
not pronounced, and is hidden on the right shoulder
of the wavenumber 2 resonance curve.) The right-most
equilibrium is the so-called high zonal-index equilib-
rium located at U ~ 63 m s™'. It is stable because the
straight line is higher than the mountain torque curve
to the left of the point and lower to the right of the
point. These conclusions of stability of equilibria turn
out to be the same as those found by CSM (or CD)
after lengthy eigenvalue calculations.

Now let us return to Fig. 9. The stability property
of the equilibria on the “tipped over” side of the res-
onance curve turns out to be quite interesting. This
can be shown more clearly using a schematic diagram
(Fig. 10) which exaggerates the relevant features for the
(say, 7 = 20 day) curve displayed in Fig. 9. For the
values of external zonal driving U* that yield an equi-

0.70 .
>—
a
(]
~
)
~
=
0.35
0.0gy; 7. 1u.

u M/s)

FIG. 10. Mountain torque (—T) in m s~'/day vs U (m s™") for 7¢
= 20 days. L: limit point. B: stable equilibrium below the limit point
for U* = 9 ms™!, A: unstable equilibrium above the limit point for
U* = 13 ms™\. S: stable equilibrium for U* = 13 m s™". The arrows
indicate the direction of acceleration. Arrows pointing to the right
imply acceleration towards larger U, while arrows pointing to the left
imply deceleration towards smaller U.
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librium point B below the limit point L, the equilibrium
is stable to form-drag instability as indicated by the
arrows. The sense of the arrows is deduced from ar-
guments given above. As U* increases, the equilibrium
value of U also increases slowly, until the limit point
L is passed. Then for further increases of U*, U actually
decreases. What is more interesting however is that the
stability of the equilibrium point is also altered when
the limit point L is passed. An equilibrium point A
above the limit point is unstable to form-drag instability
because when perturbed to the small U side, the flow
decelerates, and accelerates when perturbed to the
larger U side of A. For a fixed value of U*, a pertur-
bation to the low-U side of A will decelerate the system
to the next stable equilibrium point S. No equilibrium
points can be found on high-U side of B, so a pertur-
bation to that side can only produce unstable solutions.
Thus it is seen that even though it at first appears that
for small enough damping the system can possess three
equilibria for some values of U*, it turns out that only
one of the equilibria is stable to form-drag instability.

The feature of the mountain-torque curve men-
tioned above is what make the mechanism of hysteresis
possible. Killén (1985) has found from numerical in-
tegration of the time-dependent nonlinear barotropic
vorticity equation on a sphere that as the external driv-
ing U* is varied the response (e.g., U in our case; the
zonal averaged zonal flow at 55°N in his case) does
not necessarily follow as it would in the linear case.
For the case with a 20-day damping, he finds behavior
very similar to what we have just described using Figs.
9 and 10 as far as slow and rapid transitions are con-
cerned. For the low damping case, an increase in ex-
ternal driving U* first brings on an increase in the re-
sponse (U corresponding to point B in our Fig. 10). As
U* is increased further the response actually decreases
(U passing through the limit point L) first slowly and
then more abruptly as the form-drag instability brings
on the transition from the unstable equilibrium A to
the stable equilibrium S. (In Killén’s case, the response
in terms of local # at 55°N actually increases during
the last rapid transition mentioned above.)

The wave amplitudes for our case are plotted in Fig.
11. It is seen that as U is first increased from the sub-
resonant side of the resonance curve, the amplitude of
the stationary wave solution first increases, as the flow
is brought nearer to the resonance peak. The increase
in wave amplitude becomes more abrupt as U is
brought closer to the limit point L. Then a further in-

* crease in driving U* causes a sudden drop in wave

amplitude. It turns out that even though the point S
has a larger value of mountain torque than the point
B, the point S actually has a wave geopotential height
that is only half as large, so that an increase in driving
U* not only causes a reduction in zonal index U, but
also a drastic drop in wave amplitude. This is the so-
called “jump phenomenon” or “catastrophe” (see
Nayfeh and Mook, 1979, p. 168, in association with
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FI1G. 11. Amplitude of the nonlinear (2, ) mode (|¢2:} < 7£/10" in
m?) as a function of U in m s~ for 7z = 5, 7, 10 and 20 days (from
bottom to top). :

the frequency response of a Duffing oscillator with a
“soft” spring).

The case with a larger-value of damping behaves as
one would expect from linear theory. Both Killén’s 5-
day damping case and our 5-day damping case show
the same unremarkable behavior of the response U
following the driving U*.

In summary, although we find the presence of hys-
teresis when damping is small enough, only one stable
equilibrium is found in our barotropic model. How-
ever, the presence of hysteresis can lead to periods of
persistence even as external driving is varied, and can
also lead to rapid transitions similar to those proposed
by CSM from one equilibrium state to another. Killén
actually proposes the hysteresis mechanism as a more
relevant alternative to theories of multiple equilibria.
It should be noted, however, that hysteresis does not
become prominent until the damping time is around
20 days or longer. Whether or not the damping time-
scale for the atmosphere is that long is still a matter of
controversy.

Concerning the subject of multiple equilibria, a re-
mark concerning the recent work of Rambaldi and Mo
(1984) can be made at this point. They find that for a
15-day Ekman damping time and a one-mode topog-
raphy there exist in their nonlinear barotropic model
3 equilibria of the same kinds as originally proposed

by Charney and DeVore (1979): one low-index sub- .

resonant equilibrium, one superresonant unstable
equilibrium and one high-index stable equilibrium. No
such arrangement of multiple equilibria can be found
in our Fig. 9. A major difference between their work
and ours is that they implicitly let their zonal index U
be damped at a different rate than their stationary

waves. Their zonal index is actually damped at 7g/«
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=~ 36 days. This in effect makes the straight line «(U*
- U)/7gin Fig. 9 slope at a smaller angle than we have
shown in that figure, making it possible to have two
additional equilibria on the large-U side of the reso-
nance peak for a U* between 30 and 40 m s™'. (The
value of U* for multiple equilibria to appear in the
model of Rambaldi and Mo is about 10 m s™! smaller
than ours. The difference can be attributed to our using
600 m for the topographic mode versus their 400 m.)
However, we do not at the present time have an ade-
quate justification for why a different damping time
should be applied to the zonal index than to other flow
quantities (which include #&). Their selective application
of the equivalent barotropic scaling using x = 0.4 to
the zonal index equation only is seen to be the cause
for the existence of multiple equilibria in the model of
Rambaldi and Mo. '

4. Multiple equilibria in the presence of imposed vor-
ticity source

There is a subtle difference in the way the zonal driv-
ing term W* [appearing in (2.1) and (2.9)] is treated in
the present calculation, which is the same as in CSM
and Rambaldi and Mo (1984), vis-a-vis the models of
CD and Legras and Ghil (1984, 1985). In the former
group, ¥* is taken as a linear function of y, i.e.

U* = —U*y, @.1

so that the driving term shows up only in the zonal
index equation (2.6), and not as a vorticity source in
the barotropic vorticity equation (2.1). In the latter
group, ¥* is taken to be a basis eigenfunction of the
Laplace equation. In CD for example, ¥* is written as

T* = U4 V2 cosy. 4.2)

Consequently, the driving term not only shows up as
a zonal momentum driving in the zonal index equa-

.tion, since from (2.9)

1
Y2— 0N

2V2
-,
v(.Vz - )
but it also appears as a vorticity source in the barotropic

vorticity equation, since

U* =

(¥, — ¥¥,0]

. -1
V> = 57 ¥*%V2 cosy

is not zero for (4.2) but vanishes for (4.1). For a ¥*
that is independent of x, the difference between the
two types of treatment is inconsequential in truncated
(quasi-linear) models, but can become significant in
nonlinear models. This difference is, in our opinion,
why Legras and Ghil (1984, 1985) found multiple
equilibria in their nonlinear model for some values of
zonal driving, while we find only a single equilibrium
for all values of U* under otherwise similar conditions.
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In this section, we will first demonstrate using our
channel model that a strong enough vorticity source
can cause the state of multiple equilibria to occur and
we will discuss the mechanism through which the vor-
ticity source acts to produce the multiple equilibria
found. It then naturally leads to the questions; “What
is the physical basis for the zonal driving term and the
vorticity source?” “What is the realistic range of values
for these quantities for the atmosphere?”” These issues
will be addressed in section 5.

We will adopt here a zonal driving profile of the
form

%
¥ = —U*y + “’7 (2 — w) sin2aly/(32 — )] (4.3)

so that when 2w* = U*, the zonal flow associated with
4.3)

u* o= — (_%} U* = U* — 20* cos2a[y/(y: — )]

resembles an internal jet of the form

u* = U*[l - c0521r( 4 ):I ,
V2= N

very similar to that given by (4.2). There are two ad-
vantages in using (4.3) instead of (4.2). First, as we will
show in section 5, the zonal driving term U* in the
zonal index equation and the vorticity source V2¥* in
the barotropic vorticity equation have different physical
origins, and it is not appropriate to have them related
by a single parameter ¥% . The two parameters U* and
w* can be separately varied in (4.3). Second, the form
(4.3) is of the form given by (2.15a) that we use to
expand our solutions in and so technically it is more
advantageous to use (4.3) instead of (4.2) in our present
formulation. In any case, the results using (4.2) can be
reproduced approximately if we specialize to the case
of

4.4)

U* = 2w*. 4.5)

The internal jet represented by (4.4) has a jet maximum
given by
Ukax = 2U* = 4™,

In Figs. 12 to 15, we present results calculated using
the same one-mode topography as used in section 3,
for various values of vorticity source w*, and for
damping times ranging from 7z = 5 to 15 days. In
general, the mountain torque curves shown increase
in amplitude as w* is increased, and the phenomenon
of resonance bending also becomes more pronounced
for larger values of w*. For 7z = 5 days, we find only
one equilibrium in Fig. 12 even for an internal jet with
u¥ . as large as 80 m s~'. The same situation holds for
7 = 7 and 10 days as shown in Figs. 13 and 14, re-
spectively. For 7z = 15 days, small protrusions from
the mountain torque curve become more evident for
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F1G. 12. Mountain torque (—T) in m s™'/day vs U (m s~') for
w* =0,5,10, 15 and 20 m s~* for 7z = 5 days and |hy| = 603 m.
The straight lines are 7~ {(U* — U) with U* = 2u0*.

large values of 1%, , as shown in Fig. 15. [These features
will be explained in a moment.] There is however still
no multiple equilibria for u¥,, as large as 80 m s~! if
the relationship (4.5) is required to hold. If U* and w*
are treated as independent parameters, then it is
possible to find multiple equilibria in Fig. 15 for
4w* = 80 m s™! and U* tuned to be between 40 and
50 m s,

For even larger values of u¥.,, it becomes possible
to have multiple equilibria even if relationship (4.5) is
required to hold. In Fig. 16 we show that for 7g = 10
days and U* = 20* = 80 m s~', three equilibria are
found. In Fig. 17, we find 5 equilibria for U* = 20*
= 80 m s~ in the presence of a 15 day damping. It
should be pointed out that these values of external
driving correspond to an internal jet with a 160 m s
wind speed. We will show in section 5 that such large
values of vorticity source and zonal driving cannot be
justified for our atmosphere.

Comparing results in section 4 with those in section
3, we see that the additional equilibria are due to the
presence of vorticity source in the interior of the chan-
nel adopted in the present section. With the vorticity
source taken to be in the form of a meridional jet, a
mean shear is induced even in the absence of topo-
graphic waves. In the presence of a mean shear in the
basic state, even the linear solution cannot be written
in terms of a simple sinusoidal mode. The mountain
torque, obtained as the projection of the forced solution
onto the sinusoidal mode of the topography, will in-
clude contributions from higher harmonics. These
projections from higher (nonsinusoidal) modes onto
the sinusoidal mode of the topography are responsible
for the appearance of the small protrusions on the
mountain torque curve.
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FIG. 13. As in Fig. 12 except for 7z = 7 days.

5. Physical basis for U* and V>¥*

It is generally accepted that in the presence of damp-
ing, a vorticity source is needed in the barotropic vor-
ticity equation (2.1) in order to maintain a nontrivial
steady state flow in a channel with rigid walls. Similarly
an external zonal driving term U* is needed in the
zonal index equation (2.6). (Otherwise U = 0 will be
the only steady state solution to that equation.) It is
often suggested that these “external” forcing terms are
thermal in origin and so cannot be determined within
barotropic models. It is further assumed by some au-
thors that these terms are arbitrary as far as barotropic
models are concerned, with the consequence that values
for U* greater than 60 m .s™'

(M/S) /DAY

40.

30.
u M/3)

FIG. 14. As in Fig. 12 except for vz = 10 days.
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FIG. 15. As in Fig. 12 except for 7z = 15 days.

winds exceeding 150 m s™! have been used with no
physical justification given.

We have seen from the preceding sections that the
existence of multiple equilibria in some barotropic
models depends on these external forcing parameters
taking on-some rather large values, which we will show
to be unrealistic.

a. The physical interpretation for U*

Rambaldi (1982) and Kiillén (1983) suggested that
the parameter U* appearing in barotropic models can
probably be interpreted as arising from the flux of mo-
mentum from the tropics. A systematic derivation of

(M/S) /DAY

50.
u (M/S)

FI1G. 16. As in Fig. 12 except for-rE = 10 days and w* = 40 mAs".

40, B0.
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FIG. 17. As in Fig. 12 except for 7z = 15 days and w* = 40 m s,

U* starting with a three-dimensional model was given
by Tung and Rosenthal (1985). An explicit expression
for U* was found in terms of the density-weighted ver-
tical integral of the zonal mean lateral flux of angular
momentum into the channel. This physical interpre-
tation allows us to infer a value of the order of U*
~ 2 to 4 m s”, using the observed climatology for
transient eddy momentum fluxes from Lau (1979).

We will give below an alternate derivation which
turns out to be simpler and more general. (The quasi-
geostrophic approximation used in Tung and Rosen-
thal (1985) is not needed for the present derivation.)
Our purpose in giving this derivation here is to more
clearly show that the physical origin of U* is not “ther-
mal”, as we will not have to use the energy equation
in our derivation.

It turns out that an equation for the zonal index can
be derived for a three-dimensional atmosphere using
only the zonal momentum equation, and that the re-
sulting equation is almost identical to Eq. (2.6) derived
earlier for a barotropic atmosphere.

Let M be the absolute angular momentum in the
east-west direction, i.e.

= (Qa cosb + u)a cosb,

where q is the radius of the earth, Q the angular speed
of the earth’s rotation, # the latitude and u the relative
velocity of the atmosphere in the east-west direction.
The statement of angular momentum balance can be
expressed in pressure coordinates, as

d 0

EM=-—géxz+acos0Fx (5.1)
[see Lorenz (1967) for a derivation of (5.1) in height
coordinates; the conversion to pressure coordinates is
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straightforward]. In (5.1) A is the longitude, z the geo-
potential height at constant pressure and F, is the fric-
tional force in the east-west direction. When integrated
in an atmospheric volume defined by 0 < A < 27,
6 <0<06,and 0 < p < p,, (5.1) becomes

([ e o
- [ fV—de+ [ fVa cosbFdV, (5.2)

" where S is the boundary surface of ¥ and n is the out-

ward unit normal of S. The first term in (5.2) can be
written as

3 a 62 2% 'Ds
——fff MdV=—f dﬂf d\ dpua2 cosf
ot v 0

3 1000 mb
~% ) d0 f dp2wa*ii cosd. (5.3)

In obtaining (5.3), we have assumed that the total mass
in ¥ does not change appreciably, so that the rate of
change of the absolute angular momentum is due es-
sentially to the change in relative angular momentum.
We have also approximated the surface pressure p; by
Poo = 1000 mb in taking the zonal average of the an-
gular momentum (i = 7)™ f o ud\). Since there is
no normal velocity through the top and bottom of ¥,
the momentum flux [the second term in (5.2)] is due
mainly to the meridional flux of zonal momentum
across the vertical “walls”, 8, and #6,. i.e.

2% (*Ds
ff Mv-ndS=f Mvl3dp
S 0 0 .

1000 mb
~ 2wa f w cosf|dp.  (5.4)
0

(We have again assumed the net shift in mass across a
latitude belt is small).

The third term in (5.2) is the so-called mountain
torque term. It would have been zero had it not been
for the fact that the lower surface, z = A(), 6), is not a
constant pressure surface and that in general there may
be net pressure differences between the east and west
sides of mountain ranges. Since (see Wahr and Oort,
1984):

L@l )-

the mountain torque term can be reexpressed as

27
—gfff—de——gf d\ d0a
V

Ps

aps
n’

oz , fz dp,
—dp= h—d8. (5.5
X cosf Y dp = 2wa‘g NP 6. (5.5)

(i}
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The last term in (5.2) is the so-called frictional torque
term. Since F, is a surface force, it can be expressed in
the form of a divergence of a stress 7,. Converting the
volume integral into a surface integral and neglecting
the surface stress term except at the lower surface, where
the normal component of r, is 7,° we find

62
fffy a cosdF\dV = f dor\0 - 2wa’® cos®.  (5.6)
o

Substituting (5.3)—(5.6) into (5.2), we now have upon
division by 27a?,

9 1000 mb 62 1000 mb 1
- dp f # cosfdl = f dp—ww
dt Jo 6 0 a

I hdp,
X cosfl} + f dﬁl:ano cos?0 + g————] . 5.7

(7] 6)\
Equation (5.7) states that the rate of change of the zonal
mean angular momentum inside the “channel”, 6,
< 0§ < 6, is given by the meridional eddy flux of zonal
momentum into the region from south of 8, and north
of 6,, plus the total torque exerted on the atmosphere
by the underlying surface of the earth. The surface
torque consists of friction torque and mountain torque,
given by the first and second term in the brackets,
respectively. Now if we restrict our attention to a mid-
latitude 8-plane channel and replace the trigonometric
function cosf by cosfy, then (5.7) becomes, upon di-
vision by cosfy « (62 — 0,)peo:

a (P P
3 Udp/poe = y— (U* = U) + T(U)¢| , (5.8)
t Jo TE z;
where
[
U=
8, — 0, Jo, "
1 o dp 1 —
—Ur=| X — w2 59
TE o Poo a(fz — 61) C (5)
. g %2 hop;
U)ys—2—
o Doo(62 — 6;) Ja, N
Jo C—
=—2L | TFu.d. 5.10
HotB2 — 07) dn ™0 (5.10)

To obtain (5.8), we have used the Ekman boundary
layer solution to obtain a relation between the surface
frictional stress 7,° and the geostrophic component of
the zonal wind at the top of the Ekman boundary layer
(see Charney and Eliassen, 1949). The Ekman damping
time 7z is defined by (2.4). In the definition for the
mountain torque, v, is used to denote the geostrophic
component of the meridional velocity, defined through

fv —___I__i
0% ™ poa cosby I Ps.
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The right-hand side of Eq. (5.8) is to be evaluated at
the top of the Ekman layer, z,.

Equation (5.8) implies that at an equilibrium the
zonal momentum driving 75~ 'U* should balance the
friction torque 7z ' U and the mountain torque T(U).
ie.

1 1
. —=U*=—U-T().
TE TE
The solution to (5.11) then yields the equilibrium mean
flow U at z = z;. Eq. (5.11) is of the same form as the
mean flow in some barotropic models [see especially
CSM’s Eq. (3) and our Eq. (2.14)]. It is clear from our
derivation that Eq. (5.11) is of more general applica-
bility and not limited to barotropic models.

Of particular interest for our present purpose is the
physical definition of U* given by (5.9). Using the ob-
served zonal momentum flux at 6, = 30°N (The mo-
mentum flux at 6, = 63°N is negligible) from Lau
(1979), we find

(5.11)

o
f wo costl £ ~ 16 m?s2,
(] Doo :

yielding a zonal momentum driving of

1
—U* ~4X10°ms™2
TE )
If a typical Ekman damping time scale of 6 days is
used for 7 (see Charney and Eliassen, 1949), the zonal
driving velocity is found to be

U* =~2ms,

which should be compared to U* =~ 63 m s™! used by
CSM. (It should be pointed out however that in the
barotropic model formulation used by CSM, their U*
should be interpreted as the zonal driving for the mean
wind at some “‘equivalent barotropic” level, not nec-
essarily near the surface. Therefore, one can conceiv-
ably add about 20 m s™! to our estimate for U* to
account for the difference between the surface flow and
the flow at the “equivalent barotropic” level.)

An alternative estimate of U* can also be obtained
using the estimate by Wahr and Oort (1984) of the
total torque [the last integral in Eq. (5.7)]. They find
that for 8; = 30°N and 6, = 63°N the total torque is
roughly 4 X 1076 to 5 X 107% m s~2 for climatological
winters. This is very close to (5.12) based on the ob-
served zonal momentum flux at 30°N (Lau, 1979).

Given the observational evidence from Wahr and
Oort (1984) and Newton (1971) that the friction torque
is about 4 times larger than the mountain torque in
these latitudes, it appears that at equilibrium the dom-
inant balance is between friction torque and zonal
driving. Such a balance is not likely to yield more than
one solution in equilibrium U. Furthermore, the ap-
proximate solution inferred from such a balance, i.e.

(5.12)

1 1
—U~—U*
TE TE
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yields
U~2ms’,

which is close to the observed climatological net zonal
wind at the top of the Ekman layer between latitudes
30 and 63°N.

b. A physical basis for the vorticity source used in
barotropic models

Because barotropic models cannot be derived rig-
orously from governing physical equations, which are
baroclinic, the derivation of the vorticity source used
in barotropic models is necessarily less systematic. We
will adopt in the following the approach first used by
Charney and Eliassen (1949) in their derivation of the
“equivalent barotropic model” starting from the three-
dimensional quasi-geostrophic potential vorticity
equation:’

D 3
(V2 + Byl = fo 3z pom): (.13)

Po 3:
where
D 4
—=—+J[¥, ]
Dt ot JL.
Equation (5.13) is then vertically integrated from the
top of the Ekman layer z, to oo, to yield

1 f ® D
_ dzpo — [V2¥ +
Hopo(y) Jo 2o VY A

_Th
H,

The right-hand side of (5.14) is to be evaluated at z;.

The “equivalent barotropic” assumption put forth
first by Charney and Eliassen (1949) is to assume the
existence of a level (~500 mb) where the left-hand
side of (5.14) becomes

JY, K] — TLE Vi, (5.14)

Do
= [V¥ + )]

when evaluated at this “equivalent barotropic level”.
Thus the equivalent barotropic equation is

- -fo—J[\Ir, h] — 1 V. (5.15)
Ho TE

D 2

D VY8
Strictly speaking, the two-sides of this equation are each
evaluated at a different level: the left-hand side at the
equivalent barotropic level and the right-hand side at
the top of the Ekman layer. Such a difference is some-
times ignored to arrive at the barotropic vorticity
equation similar to the one we are considering [cf. Eq.
(2.1)]. Alternatively, a scaling factor x =~ 0.4 is some-
times introduced in the right-hand side to account for
the difference in the flow speeds at the two-levels, re-
sulting in an “equivalent barotropic” model. In either
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case, however, it is seen that a vorticity source V>¥*
is absent from Eq. (5.15).

It appears then that there is no obvious origin for
the vorticity source often introduced into the barotropic
vorticity equation. The notion that the vorticity source
used in barotropic models is to be attributed to baro-
clinic (or thermal) origin is probably without firm
physical basis.

The need to introduce such a source in barotropic
models with damping is also not clearly demonstrated.
While it is true that without a source term, flow inside
a channel will spin down under the action of (Ekman)
damping and so no (nontrivial) steady state can be
maintained, it should be pointed out (see also Tung
and Rosenthal, 1985) that this is only a result of the
artificial rigid channel boundary condition adopted by
most authors. We see from section 5a that the angular
momentum budget for the real atmosphere is such that
there is a net lateral zonal momentum flux into a mid-
latitude channel from the tropics. It has been shown
in Tung and Rosenthal that such a flux (U*) is capable
of maintaining the kind of westerly flow that is observed
north of 30°N. Therefore it appears that in order to
mimic the angular momentum budget of the real at-
mosphere in a model one should modify the lateral
channel boundary condition to allow the flux of tran-
sient eddy momentum to pass through. This will lead
to the zonal driving term U* in the zonal index equa-
tion (2.6). This term alone will be sufficient to maintain
the momentum budget of the midlatitude channel
without an ad hoc vorticity source term in the baro-
tropic vorticity equation (2.1).

Perhaps if Eq. (5.15) is further averaged with respect
to time a vorticity source due to the transient eddy flux
of vorticity can arise in the interior of the channel as
a forcing term for the time-averaged flow. However, it
is inconceivable that such an eddy forcing in the lower
atmosphere can achieve a jet speed of the magnitude
needed for multiple equilibria to exist.

6. Conclusion

The concept of wavy equilibrium first put forth by
Charney and DeVore (1979) is an interesting one. It
suggests that certain arrangements of the large-scale
wave-mean flow system can result in a state that has
some persistence in the absence of changes in external
forcing. This mechanism can perhaps explain some
features of the blocking phenomenon in the atmo-
sphere, as suggested by Charney and DeVore (1979),
Charney et al. (1981) and many others.

Based on results from highly-truncated models,
Charney and DeVore further suggested that more than
one such equilibrium for a given forcing can exist, and
that the transitions between one or the other equilib-
rium should probably correspond to certain blocked
and unblocked situations in the atmosphere. We wish
to remark here that firstly, as far as accounting for the
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variability of the large-scale flow pattern is concerned,
there is no need to invoke the mechanism of multiple
equilibria. Since the so-called external forcing param-
eters are variable, their variability can induce variability
in the wavy “equilibrium” even if there is only one
such “‘equilibrium”. Second, by relaxing the severe
truncations used in early models, we have found that
the state of multiple equilibria of large-scale flow dis-
appears in our nonlinear model.

We have by no means ruled out the possibility of
multiple equilibria and indeed we can show that they
exist in some parameter regime. We have attempted
in the present article to show that the parameter regime
where multiple equilibria have been found in barotro-
pic models is probably far from realistic. Nevertheless,
physical ambiguities inherent in barotropic models,
which cannot be rigorously derived from first princi-
ples, probably can allow some versions of the models
to produce multiple equilibria. For example, we have
shown that if one makes some ad hoc modification to
the barotropic vorticity equation using the scaling fac-
tor « selectively applied to some terms and not others,
multiple equilibria appear even in nonlinear models
without severe truncation (cf. Rambaldi and Mo,
1984). Since this « factor specifically concerns the effect
of vertical shear of the flow in the atmosphere, we feel
that this issue should not be addressed using a baro-
tropic model. A more consistent resolution should be
obtained with an appropriate baroclinic model. Our
results to be presented in Part II dealing with baroclinic
models suggest that it is also unlikely for multiple equi-
libria to exist.
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