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ABSTRACT

It is shown that the necessary conditions for the instability of unstratified plane-parallel shear flow,
rotating barotropic flows and rotating baroclinic flows are also sufficient conditions for the existence of
propagating waves (essentially Rossby waves) and their overreflection (reflection coefficient exceeds 1 in
magnitude) from critical levels (where flow speed and phase speed are equal). The identification of the
unstable modes with overreflected waves is strongly suggested and allows greater insight into the meaning
of various theorems such as Rayleigh'’s inflection point theorem.

The present results also suggest an important distinction between instabilities associated with mass
redistribution such as Bénard convective instability and instabilities, such as those we are concerned with,

associated with the gelf-excitation of waves.

1. Introduction

In recent years a close, though ill-defined, relation
has been noted between the instability of stably strati-
fied shear flows and the existence of overreflection for
internal gravity waves incident on a critical level [i.e.,
the existence of a reflection coefficient exceeding unity
for an internal gravity wave incident on a level where
the wave’s horizontal phase velocity and the mean
flow velocity are equal (e.g., Jones, 1968, Lindzen,
1974)]. Both phenomena require that the Richardson
number be less than 4, and both involve an extraction
of energy from the mean flow. Lindzen (1974) suggested
that overreflected waves, if contained, would become
unstable modes. This has been confirmed in a number
of calculations (e.g., Lindzen and Rosenthal, 1976;
Dayvis and Peltier, 1976) and, indeed, a close reading
of Jones (1968) reveals the presence of such modes in
his results. These calculations reveal that the de-
stabilized gravity waves must not only be contained
(by a physical boundary), but must also satisfy a
quantization (wherein roughly an odd number of
quarter-wavelengths must fit between the critical level
and the “ground”). .

The above calculations all led to conventional
Kelvin-Helmholtz instabilities (instabilities closely con-
fined to the unstable shear zones and, to a large extent,
independent of the existence of boundaries) in addition
to the unstable gravity waves. In general, the two
types of instability were considered to be physically
distinct, though Lindzen and Rosenthal (1976) did find
a tendency for them to become indistinguishable at long
horizontal wavelengths. Lindzen and Rosenthal have
now discovered that Kelvin-Helmholtz instabilities are
destabilized vorticity waves—contained by internal
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turning points rather than physical boundaries. Such
waves are, as we shall show in this paper, natural
extensions of Rossby waves. This work is currently
being prepared for publication. The important point,
for our present purposes, is that we now have a total
identification of the instability of stratified shear flows
with wave overreflection.

The question we wish to address in this paper is
whether a similar identification of wave overreflection
and hydrodynamic instability may exist for other situa-
tions. We will show that for barotropic instability (of
which the stability of unstratified shear flow is a special
case) the relevant waves are essentially horizontally
propagating Rossby waves and that the conditions for
the existence and overreflection of such waves are
intimately related to the well-known necessary condi-
tions for barotropic instability given by Rayleigh’s in-
flection point theorem and Fjgrtoft’s theorem (viz, Yih,
1969). Our results make clear the reason why existing
theorems give only necessary conditions insofar as they
usually guarantee only overreflection, but not the
quantization of waves. Finally, we shall show that it is
also possible to view the normal baroclinic instability
problem in terms of overreflection where, however, the
relevant waves are vertically propagating internal
Rossby waves.

2. Barotropic Rossby waves and overrefiection

In this paper we will confine ourselves to the conven-
tional B-plane geometry [our equations are derived in
Charney (1973)]. The equation for the streamfunction
¥ of linearized barotropic perturbations of the form

e\'k (2—ct) (1)
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on a basic zonal flow U (y) is

d? -U.
—¢+(ﬂ "y, @
ay? U—c
where

x eastward coordinate

y northward coordinate

B df/dy, f being the Coriolis parameter

P perturbation pressure [=p,fy] where po is the

basic-state density
% perturbation zonal velocity [=— (3/dy)¢]
v perturbation meridional velocity [ = (8/9x)¢].

When the quantity in parentheses in Eq. (2) is positive,
Eq. (2) describes Rossby waves which propagate in the
y direction.

It is easy to show from Eq. (2) and the equations of
motion from which it is derived that for ¢ real and for
¢#U, that

w= (—%/2) Im{y*¢,} = constant, 3)
where

(o) = (1/2m) / (Ref)- (Reg)d(kz),

the asterisk represents the complex conjugate, and
pv=—(U=c)pur. @

In general, pv is negative (positive) for a southward
(northward) propagating wave. If U ¢ everywhere and
there is a rigid boundary at one end of the domain, then
pv=0. This simply indicates that a rigid boundary
leads to perfect reflection and hence there is as much
northward as southward energy flux leading to zero net
flux,

We now consider a situation where for y>v91, U,
and the bracketed quantity in Eq. (2) is greater than
zero. The latter requires f—U,,>0 (if U—c<0,
B—U4y<0 is called for); even so, meridional propaga-
tion will only exist for sufficiently small &’s. For the
moment, we do not specify conditions for y< y1, except
to state that there is no direct wave forcing in this region.
In general, U (y) for y< y1 and any boundary condition
at some y;<y, will serve to determine pv in the region
¥>y1. For y>y, there will be two linearly independent
solution to Eq. (2): one (Y1) may be chosen to be a
_ southward propagating mode for which $,2,<0, while
the other () may be chosen to be northward propagat-
ing mode for which 9> 0. If ¢, and ¢, are identically
normalized then we may write

¥=v¥1+Rys, ®)

where R is a complex reflection coefficient.
It can be shown that

(1= |R|?)=+A4%=— A2[po/po(U~0)], (6)
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where A? is a positive constant. Now, the calculation of
A? may require detailed consideration of conditions in
the region y< 1, but if we can determine the sign of pv
we will know whether |R| is less or greater than 1,
i.e., whether or not we have over-reflection. If Us¢ for
y<y1, then pv<0 (since there is no wave source in
y< ) and |R| < 1;if, moreover, there is a rigid bound-
ary in y< 1y, then we have already shown that pv=0
and |R|=1.

The only possibility for |R| to be greater than 1 is
that there be some y< y;, where U(y)=c; we shall refer
to this point as y=1y.. Let us assume, for the moment,
that there is only one such point. We know that uv
must be independent of y away from y,; thus, we let

(7

uy=

— {E;r for y>yc}
wo_ for y<yc.

It is readily shown along lines developed for the in-
viscid Orr-Sommerfeld problem (Wasow, 19_5_0; Lin,
1955) that in the limit of vanishing damping, #v under-
goes a jump at y, such that

woy —uv_=x[kB./2U,(y.)]| B|, (8)

where )
B.= (3— Uw) | Ye

and |B|? is a positive definite quantity dependi.ng on
the flow. [The derivation of Eq. (8) is given in the
Appendix.] In the case where there is a rigid boundary

at some y<y,, wo_=0, and Eq. (8) becomes

wvy = kB./2U, (5] B|2. ©)

The values of %v, will be negative and from (4) and (6),
[R| will exceed one, if (8.)/[U,(y.)]<0. For definite-
ness we shall assume Uy(y.), the shear at the critical
level, to be positive. Then overreflection requires 8—~ Uy
<0 at the critical level for the case under consideration.!
Thus, in order for a wave incident on y; from y>y; to
be overreflected, the quantity g—U,, must change
sign at some y between y; and y,. We shall refer to this
point as yo. The situation called for by the above con-
ditions is shown schematically in Fig. 1. It should be

noted that ww_=0 is ol essential for overreflection;
all that is required is that

|uv_| <[—wkB/2U,(y)]| B|2

Such a condition can be met if there is signiﬁc:fmt
partial reflection at some y<y.; explicit determination

1 Clearly, if U —¢ <0 for y>y1, then waviness for y <y, requires
B—Uyy<0 for y>v: and overreflection requires that g~ U,, <0
at y—y.. Also, conditions may exist when |{B{?=0, but such
conditions are likely to be special.
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B—Uyy
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choice of k?, _kz] may become

negative.

Fic. 1. The flow divided into regions according
to wave characteristics,

of such a condition, however, requires a detailed calcu-
lation. For purposes of this paper we will continue to
assume a wall at y=y,<y,.

Before proceeding we briefly summarize the condi-
tions under which meridionally propagating Rossby
waves will exist for y>y;, and those conditions under
which such waves will be overreflected from the south.
For 31mp11c1ty we will assume U (y) is monotonic in y

- and increasing northward.

(i) Propagation for y>1y, requires that
ﬁ_
U—c

“>0 for y>y1

Note that such wave propagation can exist even if
B8=0; all that is needed is a vorticity gradient. We shall
refer to all waves whose restoring' force arises from
vorticity gradients as Rossby waves.

(i) Overreflection requires a critical surface at some
y=y. where U(y,)=c.

(iii) Overreflection requires that 8—U,, (y.) have
the opposite sign of 8— U w for y> ..

(iv) Overreflection requlres a sufficient degree of
wave reflection in the region y<y, so that

[uv_| <[ —wkB/2U,(y)]| B|2

This is trivially satisfied when a rigid surface exists at
some y=1y;, but clearly less restrictive conditions will
also suffice.

The extension of the above analysis to non-monotonic
U(y)’s is readily achieved, but the simple purposes
of the present paper do not warrant the added
complications.
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3. Necessary conditions for bardtropic instability
and their relation to wave overreflection

There exist a number of well-known necessary con-
ditions for barotropic instability (which, of course, also .
apply to the special case of the instability of nonrotat-
ing, unstratified shear flows). The three most important
of these are the Rayleigh inflection point theorem,
Fjgrtoft’s theorem and the semicircle theorem. Deriva-
tions of all of these may be found in a number of texts
(Yih, 1969; Charney, 1973). We shall briefly review
each of these conditions in order to show how they are
related to the conditions for wave overreflection dis-
cussed in Section 2.

The oldest of the above conditions is Rayleigh’s
theorem [originally derived for unstratified shear flows
and extended to barotroplc instability by Kuo (1949)7].
This theorem requires for instability that for a flow
contained between boundaries at v, and y. the quantity

2 1// 2
B—Uyy) dy=
‘/l'lb ( U—c ¢

which, in turn, requires that the quantity 8— Uy, must
change sign someplace between y; and y. (i.e., we must
have an inflection point in the case 8=0; when 0,
we will refer to the point where 8—U,,=0 as an “in-
flection” point). As we see from condition (iii) the
change of sign of 83— U,, is also a necessary condition
for the overreflection of meridionally propagating
Rossby waves. Rayleigh’s theorem does not, however,
guarantee the existence of appropriate meridionally
propagating Rossby waves; i.e., Rossby waves which
propagate in the region north (south) of the “inflection”
points if the critical level is south (north) of the ¢

flection” point. The existence of such waves, however, -
is assured (at least for simple #(y)’s with a single

(10)

“inflection” point) by Fjgrtoft’s theorem.

Fjgrtoft’s theorem shows that the following inequality

is necessary for instability :

2
dy>0, (11)

Yy ¢
/ B=U N{U=U(y:)}
o U

—C

where v, is a zero of 83— U,,. For flows with only one
such point, (11) simplifies to the requirement that

B—=U)U~-U(y.)]1>0, (12)

but this is precisely what is needed for the existence of
appropriately propagating Rossby waves. as described
in condition (i). For more complicated flows Eq. (11)
does require the existence of waves some place, but
interpretation is more complicated.

Both of the above theorems also assume a wall at
y=1ys, thus automatically satisfying condition (iv). For
the simple situation, therefore, Fjgrtoft’s and Rayleigh's
theorems are not only necessary conditions for barotropic
instability but also sufficient conditions for the existence
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of overreflected Rossby waves. The discussion of Section
2 shows that the existence of a wall at y=1y, is a more
restrictive condition that is actually needed for over-
reflection, and explicit calculations of barotropic in-
stability by Dickinson and Clare (1973) shows that the
existence of such a wall is also unnecessary for the exist-
ence of instabilities.

Condition (ii) requires that waves which are over-
reflected must have a critical surface. This requirement
is similar to the requirements imposed by various semi-
circle theorems. In the absence of 8, Howard’s (1961)
semicircle theorem (see also Yih, 1969), in fact requires

Umin<cr’< Umax, (13)

which does demand a critical surface. However, when
B is included, Pedlosky’s semicircle theorem (Pedlosky,
1964) requires

B
Um'm—’_—<cr< Umax, (14’)
2k2

which still allows the possibility of an instability without
a critical surface. We have, however, no assurance that
(14) represents the tightest necessary constraint on
¢r. All instabilities explicitly calculated (e.g., Dickinson
and Clare, 1973) do have critical surfaces. Still, we have
here considered a critical surface for the waves in the
limit of vanishing c;. When the effect of a finite c; is
included, the singularity associated with the critical
surface is moved off the real axis, and the effect of the
singularity is spread over a layer rather than a single
surface. Under such circumstances, it is conceivable that
an unstable mode associated with overreflection might
still have a ¢, slightly outside the range given by (13).

Emerging from the above discussion is the suggestion
that barotropic instability can be understood in terms
of the overreflection of meridionally propagating Rossby
waves. What is meant by this is readily described. Con-
sider a wavetrain in a region of wave propagation head-
ing toward an overreflecting critical surface. The wave
train will be amplified on overreflection. The amplified
wavetrain will now move away from the critical surface.
If it encounters a reflecting surface (which may consist
of a physical wall or a turning point; even a rapid
change in index of refraction producing partial reflec-
tion—provided that the partial reflection is greater
than the inverse of the overreflection—will do), it will
be returned toward the overreflecting surface where it
will be further amplified. Clearly, overreflection com-
bined with an energy-containing reflecting surface
should lead to instability. However, for the instability
to take the form of a normal mode, successive over-
reflections must occur in phase—a condition we will
refer to as quantization. In practice, we find that
quantization, when it exists, determines c,. When
quantization is obtained, growth rates can be estimated
by means of a so-called laser formula:

etoir=|R| 7|, (15)
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where |R| is the magnitude of the overreflection, |r|
the magnitude of the partial reflection from the energy
containing surface (in the cases where the energy-
containing surface is either a physical wall or a turning
point followed by a semi-infinite evanescent region,
|r|=1), and 7 is the time for a wave to tra‘{el the
length of the region where propagation is possible at
the wave group velocity. When the ¢, which leads to
quantization is close to the ¢, of a calculated unstable
mode, and when the ¢; as determined by Eq. (15) is the
same or greater than the ¢; of the same unstable mode,
then it appears reasonable to associate the instability
with wave overreflection.? We believe that this type of
instability corresponds to what is sometimes called
critical level instability (Bretherton, 1966), though the
identification of the latter with wave propagation has
not been previously noted. In explicit calculations,
which we shall report separately, we find that all known

‘barotropic instabilities appear to be associated with

wave overreflection.® If this is indeed the case, then
we can readily understand why the above-described
theorems provide necessary but not sufficient conditions
for instability. As has already been noted in the case of
stratified shear flows (Lindzen and Rosenthal, 1976),
wave overreflection (even infinite overreflection) does
not, by itself, lead to unstable modes. In addition, the
overreflected wave energy must be contained and the
overreflected wave must satisfy the required quantiza-
tion. Confinement conditions are, in fact, generally
assumed in deriving necessary conditions for instability.

The above applies to normal mode instabilities. It
appears likely that the existence of overreflected waves
which are contained but do not satisfy quantization
conditions could lead to algebraic growth, but we have
not yet demonstrated this.

4. Baroclinic instability

The purpose of this section is simply to show that
the most common problem in baroclinic instability
(wherein quasigeostrophy is -assumed, and where the

% The reason why Eq. (15) may lead to an overestimate of ¢; is
implicitly found in McIntyre and Weissman (1978). They find
that overreflection takes time to develop. If the requisite time
exceeds 27 then the full calculated overreflection will not be avail-
able to the instability.

3 In response to a question from an anonymous referee, it is
interesting to note that in the study of barotropic instability by
Dickinson and Clare (1973), there were two modes of instability :
one was characterized by the existence of a turning point bounding
the region of wave propagation, the other by the absence of such
a turning point, although the index of refraction [the quantity in
parentheses in Eq. (2)] changed markedly. For the former case,
|r{=1, and from Eq. (15), neutrality requires |R|=1. The cor-
responding neutral modes in Dickinson and Clare (1973) have
critical levels at “inflection” points, where, according to Eq. (9),
%1,=0 and hence |R| does equal 1. For the latter modes |#| <1,
so that neutrality requires |R|>1 and hence, the critical surface
must occur away from the “inflection” point. This explains the
differences between singular and nonsingular neutral modes.
Both are consistent with wave overreflection concepts.
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basic flow is purely zonal and dependent only on height)
can be made homomorphic to the barotropic problem
discussed in the preceding two sections. This will, in
turn, permit us to identify the role of wave overreflec-
tion in this problem as well.

The problem .of baroclinic instability is described in
detail by Charney (1973); we shall, therefore, restrict
ourselves to a minimum of detail here. For our purposes
it will be adequate to restrict ourselves to a semi-
infinite Boussinesq fluid. The governing instability is

@y ye'8—U.. k
— (-, (16)

dz? U—c . e

where, again, solutions of the form
. f(2)esk@—et) (17)

have been assumed. Here

perturbation streamfunction
height

FP/N?

df/dy

Coriolis parameter
Brunt-Viisild frequency
distance to the north

U(z) basic zonal velocity.

e 2\"@'0\ n €

The following boundary conditions are usually
adopted:

y—0 as z— o, (18)
& U,
———y=0 at z=0 19
dz U—c

Eq. (16) is cléarly mathematically identical to Eq.
(2) for the barotropic problem. Moreover, in the

Z
»

Unmodified profile =

/ <— Modified profile
. > U

Fic. 2. U(z) for the baroclinic instability problem. The modified
profile differs from the unmodified profile only for z<d.
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absence of vertical shear (U,) at z=0, the complete
problem is equivalent to a conventional barotropic
problem and may be approached precisely in terms of
the preceding two sections. In particular, a necessary
condition for instability would be that

e1B—U,.= gy (20)

(the y derivative of the pseudo-potential vorticity)
change sign at some height. Normally, however, ¢, does
not.change sign and, in any case, the most important
baroclinic instabilities do not appear to be associated
with such sign changes.

A more applicable, stereotypical profile is shown in
Fig. 2; here we take U, to be a positive constant. The
unboundedness of U, while clearly unrealistic, leads to
no special difficulties. The resulting problem has been
considered at length in many studies (Charney, 1949;
Burger, 1962; Geisler and Garcia, 1977). For such a
choice of U, g, is always positive. It turns out that all
known unstable modes for this problem have critical
levels where Uf(z.)=c¢,. For z<z, U—¢,<0. If we
ignore, for the moment, the imaginary part of ¢ (¢:),

 we see that vertical Rossby wave propagation is per-

mitted only between z, and z,>z., where the quantity
in parentheses in (16) changes sign [as it must for
finite k2 and constantly increasing U(z)]. If we con-
sider the region z>3, detached from the region 2< z,
it is easily shown that a wave propagating upward from
below z, will be totally reflected at z—but not over-
reflected. Similarly, if we consider the region z<z, de-
tached from the region 223, we can show (using
methods similar to those shown in the Appendix) that
a wave propagating downward in the region 2>z, will
only be partially reflected (unless z.=0 in which case
one gets total reflection)—even with the boundary
condition given by Eq. (19). Thus, the concept of over-
reflection does not, on the face of it, seem relevant to
baroclinic instability. This turns out, however, not to
be strictly so.

Charney and Stern (1962; see also Charney, 1973)
have shown that the role of ¢, in the barotropic prob-
lem [viz, Eq. (10)] is played in the present baroclinic

3y=gs—€U-(0)3(2). (21)

This “effective” pseudo-potential vorticity gradient
contains a delta function contribution due to shear at
the ground (or equivalently, due to meridional tem-
perature gradients at the ground). Clearly, if U.>0,
gy can be said to change sign in an infinitesimal neighbor-
hood of the ground, thus satisfying Charney and Stern’s
extension of Rayleigh’s inflection point theorem. More
illuminatingly, we see that the present baroclinic prob-
lem is equivalent to a problem where the basic flow is
identical to that shown in Fig. 2, but where U.=0 at
2=0. In this case
0y=qy

but g, now includes the delta function contribution due
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to the infinite curvature (U..) required at the ground
[viz, Eq. (20)].* This feature has previously been noted
by Bretherton (1966). The equivalent version of the
problem is now (albeit in extreme form) again identical
to the barotropic problem. The role of overreflection in
this problem is most readily seen if we first consider a
modified problem wherein the infinite curvature is
spread over a finite neighborhood of the ground as in
the modified profile shown in Fig. 2. We choose the
neighborhood to be sufficiently small so that for posi-
tive U, the quantity U, is sufficiently positive so that

e8—U,. k
(——————— >0 near z=0

(22)
U—c, €

[#iz, Eq. (16)]. This neighborhood will now allow
vertically propagating Rossby waves which, by the
criteria developed in Section 2, will be overreflected
from above.®

In the explicit calculations, which will be presented
in a separate paper, we show [in a manner analogous
to that presented in Lindzen and Rosenthal (1976)]
that this overreflection does, in fact, lead to instabilities
corresponding to all previously found baroclinically un-
stable modes—both Charney (1947) modes and Green
(1960) modes.

In Lindzen and Rosenthal it was noted that for
finite overreflection, growth rates increase as the
distance between the boundary and the overrefiecting
surface decreases. One might therefore question
whether, in the limit of the curvature going to infinity
at the ground (i.e,, d in Fig. 2, approaching zero), the
above description remains appropriate. It is readily
shown that in this limit, overreflection approaches 1
from above so that one obtains finite growth rates
which correspond to the growth rates conventionally
calculated for baroclinic instability. For purposes of
this paper, however, we wish merely to note that the
problems of barotropic and baroclinic instability are
mathematically homomorphic, and that the necessary
condition for baroclinic instability derived by Charney
and Stern (1962) leads to wave overreflection as well.

¢ This interpretation suggests that quasigeostrophic theory does
not, in fact, allow horizontal temperature gradients at rigid hori-
zontal boundaries. In nature, of course, the atmosphere near the
ground is turbulent and ageostrophic effects are important.

¢ Clearly, if U, were negative, g, would never change sign and
there would be no overrefiection.

¢If one broadens this neighborhood sufficiently so that the
transition from zero shear at ground to the interior shear is made
by a profile for which

p—U,.=0,

then the resulting profile will be baroclinically neutral. For realistic
values of parameters, such a layer proves to be appreciably less
than a scale height in depth—thus leaving much of the available
potential energy unavailable. The profile described above is similar
to one which develops in a numerical study of the finite-amplitude
evolution of baroclinic instability by Simmons and Hoskins (1978).
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5. Concluding remarks

In the preceding sections we have shown that for a
number of shear instability problems the necessary con-
ditions for instability are also the conditions for the
propagation and overreflection of waves. To the extent
that we can identify instabilities with overreflected
waves this adds a measure of comprehensibility to the
hitherto abstract conditions on such features as in-
flection points. Most significantly, we see that the
inflection point per se is not the locus of wave-mean
flow interaction ; the critical surface is.

In addition, and more speculatively, the preceding
results suggest that among hydrodynamic instabilities
there may exist two distinct classes. For such problems
as Bénard convective instability and Taylor inertial
instability (e.g., Chandrasekhar, 1961) the instabilities
are not associated with waves and the unstable modes
clearly lead to mass redistribution. On the other hand,
one can see, from this paper and others, in such prob-
lems as stably stratified shear instability, unstratified .
shear instability, barotropic instability and baroclinic
instability, that instability appears to be associated
with the self-excitation of waves rather than with the
direct redistribution of mass. Such distinctions appear
likely to be important for questions like the relationship -
between hydrodynamic instability and the onset of
turbulence since turbulence is basically associated with
the redistribution of mass. There exists some observa-
tional evidence (Klein ef al., 1967) which suggests that
for instabilities of the second kind, the onset of turbu-
lence occurs when these instabilities themselves become
unstable to other disturbances. We would tentatively
suggest that the other disturbances ought to be of the
mass-redistributing type, and that wave-type instabil-
ities, themselves, do not lead directly to turbulence.
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APPENDIX
Jump in Momentum Flux Across a Critical Level

Near the critical level y=1v,, where U(y)—c=0, one
can expand

U(y)—c=Uy(y.) =y F3Un(Yo) (y—y)*+. ..,
B— Uvu()'):Bc'H:— Uiy (3 Jy—0)+ . ...

Since there is a logarithmic singularity for Eq. (2) at
y=1y,, the Frobenius solution takes the form

v =A4f(y~y)+Bg(y—y.), (A1)
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where

fx)=2+ f @™, .

n=2
had Bc
gx)=14+Y b,an— ‘Inx- f(x).
""? Uu(yc)

The recursion relations for @, and &, can be found by
substituting (A1) into Eq. (2). The results of classical
hydrodynamics (see Lin, 1945) show that when the
correct branch is taken at the singularity Y—9c=0;
there should be a —= phase shift for the linear waves
under consideration. Thus we have

V) =Af(ly~y.])+Bg(|y—y.!),
' ¥—y.>0,

¥(y)=

Be

Uy(ye)

+Bg(ly=v.l), y—3.<0. (A2)

Using Eq. (3), the momentum fluxes are calculated to
e .

#-0)=| 4=it=m—=5 | (ly~5.)

wop=—4k Im[Yy.,]
d d
=—3k Im[AB*—fg+A*Bf—g:I
dy dy

=—1k Im[4B*),

(A3)
where the identity '

has been used. Similarly,

;;_= —3k Im[‘/"—‘p—yj

B. '
=—1k Irn“iA-Hw B] (B*)}
Uy(ye)
1 5.
= —3k Im[A B¥]—Lkr |Ble.  (A4)
viJe
Therefore the jump is found to be
o, —ur_=kr——| B|2. (A5)

Uy(ye)
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