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Abstract

The process of baroclinic equilibration in the atmosphere is investigated using a high res-

olution two-layer quasi-geostrophic model in a �-plane channel. One simple channel geometry

is investigated for which only two zonal waves are initially unstable, with the shorter being

linearly more unstable but nonlinearly less e�ective. It is discovered that the mechanism of

nonlinear baroclinic adjustment, formerly proposed by Cehelsky and Tung, including a nonlin-

ear wavenumber selection process, can explain the equilibration at all levels of forcing for this

case. At small forcings the most unstable wave dominates the heat ux, consistent with the

quasi-linear equilibration of Stone's simple baroclinic adjustment. At high forcings the longer,

less unstable wave dominates, and the equilibration involves both quasi-linear dynamics by this

dominant wave and nonlinear transfer from the shorter to the longer wave. For intermediate

forcings there is a transition between the low and high regimes; no single wave dominates. All

regimes show slightly di�erent behavior than that of quasi-geostrophic turbulence.

At every forcing except in the intermediate regime there is critical equilibration by the

dominant wave. For intermediate forcings, the model equilibrates at a value between the critical

shear of the two waves.

The wavenumber selection process involves a threshold of heat transport for each wave.

Above this, the amplitude of the wave would be so large as to cause itself to break and satu-

rate. The shorter wave's threshold occurs at moderate forcings, at which point it relinquishes

dominance to the longer wave. A method for calculating these thresholds is proposed, which

involves only robust features of the equilibrium.

Finally, a key limitation of traditional linear stability analysis is highlighted, with implica-

tions on theory of the neutral state of the atmosphere.

1. Introduction

Meridional heat transport in the atmosphere has not yet been accurately simulated in large
numerical models (Manabe and Stou�er 1988; Washington and Meehl 1989; Stone and Risbey 1990;
Manabe et al. 1991; Cubasch et al. 1993; Maier-Reimer et al. 1993; Manabe and Stou�er 1993).
It is known that atmospheric meridional heat transport must be \exible", i.e. highly sensitive to
forcing, for although the radiatively forced meridional temperature gradient varies substantially with
the seasons, the observed temperature gradient in mid-troposphere remains relatively constant in
the course of a year (Stone 1978). Changes in the forcing are reected as changes in the amount of
heat uxed poleward, while the resultant temperature gradient appears relatively insensitive to the
forcing.
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One explanation of this e�ect was proposed by Stone (1978) and elaborated by Cehelsky and
Tung (1991), the baroclinic adjustment mechanism. Whenever the meridional temperature gradient
exceeds a certain \critical" value, baroclinic eddies are enhanced and their e�ect is to reduce the
temperature gradient. This negative feedback between baroclinic eddy heat ux and the meridional
temperature gradient thus maintains the gradient at this threshold value. Stone found that a simple
approximation for the threshold is the critical temperature gradient from a linear stability analysis
of a two-layer model of the atmosphere.

Several authors presented results which did not accord with Stone's theory, however. In their
investigations of geostrophic turbulence, Salmon (1980) and Vallis (1988) used fully nonlinear models
with many unstable waves and ran them to statistical equilibrium. They found that the ensemble
average vertical shear was appreciably higher at equilibrium than the minimum critical shear from
a linear stability analysis of the original zonal mean ow, a condition which they term \supercritical
equilibration". Furthermore, implicit in Stone's mechanism is the assumption that the linearly most
unstable wave performs the heat transport. Results from weakly nonlinear calculations (Hart 1981;
Pedlosky 1981), fully nonlinear numerical simulations (Gall et al. 1979; Klein and Pedlosky 1986;
Cehelsky and Tung 1991; Whitaker and Barcilon 1995), and observations (Gall 1976; Randel and
Held 1991) have shown, however, that it is a longer, less unstable wave which dominates the heat
transport at equilibrium.

Cehelsky and Tung (1991) proposed the theory of \nonlinear baroclinic adjustment" to address
both of these issues. They suggested that the meridional temperature gradient is maintained at the
critical gradient, not necessarily of the most unstable wave but of the dominant heat transporting
wave, and they showed this to be true at various forcings from model output. Thus \critical" in
the lexicon of nonlinear baroclinic adjustment is de�ned with respect to whatever wave dominates
the heat transport. A ow might seem \supercritical", i.e. relative to the most unstable wave, but
relative to the the dominant heat transporting wave it should be just at critical. In addition, Cehelsky
and Tung demonstrated that as thermal forcing is increased, the dominant heat transporting wave
shifts to a larger and larger scale, so that at the high forcings it is the longest wave allowed by the
model geometry which dominates.

Still at issue is what determines which wavenumber will dominate the heat ux, and in particular,
which wave dominates for low and moderate forcings. Cehelsky and Tung (1991) did not investigate
how the most unstable wave becomes \saturated" and how the shift in dominance occurs. This
wavenumber selection mechanism must be nonlinear, in that linear and quasi-linear theories are
insu�cient in explaining its behavior (Salmon 1980; Mak 1985; Vallis 1988; Cehelsky and Tung
1991). There have been several methods suggested to justify which zonal mode dominates at various
levels of forcing. Cai (1992) proposed using a quasi-linear model, comparing analytic calculations of
equilibrium with di�erent waves perturbed. For each forcing separately he selected that wave which,
when perturbed, yielded the lowest equilibrated vertical shear, and he stated that this wave would be
dominant in a fully nonlinear simulation at equilibrium. Cai showed that his quasi-linear prediction
is correct, but only for low forcings. In fact, at his highest drivings the quasi-linear equilibria are
starting to diverge from their nonlinear counterparts. Equilibration of baroclinic ows becomes more
complicated as the forcing is increased and the dominance shifts to a wave longer than the most

2



unstable (Cehelsky and Tung 1991). Weakly nonlinear calculations (Hart 1981; Pedlosky 1981) can
partially explain this shift, but such studies do not o�er predictions of which wave will dominate.
In addition, they often deal only with low forcings and cases with restricted wave-wave interactions.

Whitaker and Barcilon (1995) showed which wave dominates at equilibrium for a large range of
parameter values. They pointed out two distinct wave bands: long Rossby waves, which gain energy
primarily through an up-scale nonlinear energy cascade, and shorter baroclinic waves, which gain
energy mostly through quasi-linear extraction from the mean ow. It is a wave at the transition
between these two bands which is the most energetic at equilibrium. They demonstrated that for
much of parameter space this wave is longer than the most unstable wave, and that the most unstable
is drained of energy by large nonlinear transfer to longer waves. Their discussion was primarily
diagnostic, however. They did not o�er a mechanistic explanation of wavenumber selection: how
the nonlinear transfer out of the most unstable wave is initiated, and why such nonlinearities a�ect
the most unstable wave but not the longer waves. As of yet, no method has been suggested which
can explain how the wavenumber selection mechanism works in general and hence predict which
wave will dominate at equilibrium for any level of forcing.

In this work we investigate baroclinic equilibration using a high resolution two-layer quasi-
geostrophic model in a �-plane channel. Although a two-layer model cannot simulate properly
the real atmosphere, there is a correspondence between linear stability analysis of a two-layer model
and tropospheric observations: the critical gradient in the former corresponds to the cuto� in the
atmosphere between shallow waves, ine�ective at transporting heat, and long deep waves which can
e�ciently ux heat poleward (Held 1978). Furthermore, the short (hence shallow) waves which are
unresolved in our model do not, by this same argument, contribute signi�cantly to the poleward
heat transport. We use such a simpli�ed model to investigate the qualitative features of meridional
heat transport. One speci�c channel geometry (i.e. aspect ratio) is selected such that only two zonal
modes are initially linearly unstable. This is the simplest case which allows for nonlinear interaction
of unstable modes. With only two modes to consider, we can analyze the mechanisms of wave energy
transfer and wave saturation clearly.

In our model we hold static stability constant in time. However, an important process in equili-
brating baroclinic ows, in addition to the reduction of the horizontal temperature gradient, is the
adjustment of the vertical temperature pro�le via vertical eddy heat ux (Gutowski et al. 1989; Zhou
and Stone 1993). Here we neglect this e�ect in order to focus on the interaction of horizontal heat
transport and the horizontal temperature pro�le, consistent with the quasi-geostrophic formulation
adopted. In the future our results should be tested with a model which allows for variation of the
static stability.

In section 2 the mathematical model and its numerical solution is described. Section 3 presents a
conceptual model of the full nonlinear baroclinic adjustment mechanism for all forcings for one simple
channel geometry. It is then corroborated with output from the numerical model. Wavenumber
selection is discussed in section 4. A mechanism is proposed for the selection of which wave(s) will
dominate at equilibrium, and the process of wave breaking is described. Sections 5 and 6 document
additional features of the model results, and �nally a summary and conclusions are included in
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section 7.

2. The Numerical Model

a. Mathematical Formulation

The two-layer model used here is based on the baroclinic quasi-geostrophic equations on a �-plane,
including Newtonian cooling to a radiative equilibrium temperature pro�le and Ekman damping:
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This formulation was originated by Lorenz (1960); (see also Lorenz 1963; Holton 1979; Cehelsky
and Tung 1991). Here x is the longitudinal position, y the latitudinal position on a �-plane cen-
tered at latitude ��, p the pressure (the vertical coordinate), and t the time. 	 is the geostrophic
streamfunction, de�ned in terms of the geopotential via 	 = �=f�. ! = dp=dt is the vertical ve-
locity, J(g1; g2) = (@g1=@x)(@g2=@y) � (@g1=@y)(@g2=@x) the Jacobian, f = f� + ��y the Coriolis
parameter, � = �(@��=@p)=(���) a measure of static stability (where �� is a base state potential
temperature, assumed not to change), and h0d a coe�cient of Newtonian cooling. A y indicates
radiative equilibrium forcing.

The model is restricted to a mid-latitude channel centered at �� = 50�N, with a width of 45�. The
two layers of uid exist on top of an Ekman layer, which determines the lower boundary condition
of the model (see section 2b). The vorticity equation (2.1) is applied within each layer and the
thermodynamic energy equation (2.2) at their interface. This model is the simplest possible which
allows for the physics of dry baroclinic heat transport.

The equations are non-dimensionalized as follows (hats indicate non-dimensional variables): x̂ =

x=Lx, ŷ = y=Ly, �̂p = �p=�p, t̂ = tf�, 	̂ = 	=(L2
yf�), and !̂ = !=(f��p). Here Lx and Ly are

representative horizontal length scales and �p is the pressure di�erence between model levels 1 and
3. Magnitudes of scaling quantities are given in section 2c. Note that we use only a Coriolis time
scale f� and no advective time scale. This yields small non-dimensional velocities, e.g. of O(.1) in
the upper troposphere, but dimensionally these velocities agree with observed magnitudes and there
is no inconsistency the method.

After dropping the hats, the non-dimensional layered equations are:
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where subscripts 1 and 3 indicate the upper and lower layers, 2 the interface, and 0 and 4 the top
and bottom of the model, respectively. Several non-dimensional parameters have been introduced:
� � Ly��=f�, �� � (�p)2�=

�
2L2

yf
2
�

�
, h00 � h0d= (2f�), and � � Ly=Lx. � is a horizontal aspect ratio.

1

r2
� = �2(@2=@x2)+ (@2=@y2) is the non-dimensionalized Laplacian operator. For more details of the

model, see Welch (1996) and Cehelsky (1987).

b. Boundary Conditions

Boundary conditions in x are periodic, and in y we assume rigid walls, which is equivalent to no
zonal momentum convergence at the walls (Phillips 1954). In p we assume a rigid lid at the top,
!0 = 0, and at the bottom !4 equals the vertical velocity coming out of the underlying Ekman layer.
This velocity has two parts: that due to Ekman pumping, and that due to topographical uplift
(Tung 1983). The Ekman pumping velocity is proportional to the geostrophic vorticity of the bulk
uid: !4 � ��g (Holton 1979). Applying this to the lower layer yields !4 = �2�r2

�	4, which we
approximate by !4 � �2�r2

�	3 where � is a coe�cient of Ekman damping. (The \2" is added in
analogy with the thermal damping term.) This last approximation is tested and discussed in Section
6. In this study we will omit topography to isolate the behavior of the self-excited baroclinic waves.

c. Scaling Magnitudes and Parameter Values

The channel extends from 27:5�N to 72:5�N. In the vertical, the model attempts to capture the
bulk of the troposphere; hence the upper lid is placed at 200 mb (the approximate height of the
mid-latitude tropopause), the bottom at 1000 mb, and the depth of each layer is given by �p = 400
mb (as in Stone 1978). Other parameter values are similar to those of Cehelsky and Tung (1991):
f� = 1 � 10�4 s�1, �� = 0:1, � = 0:2, and � = 0:0086348 (a 6.7-day Ekman damping time). For
the choice of �, see Section 2e. Finally, h00 = 0:001036175, a 56-day Newtonian cooling time. This
rather slow value was chosen to illustrate best the model equilibration; a sensitivity study of the
model to h00 is included in section 6.

1Note that we allow the non-dimensional x̂ to vary over [0; 2�], while ŷ can only vary over [0; �]. This is motivated
by the boundary conditions, which require no ow at the channel walls, and our choice of sin y as the gravest basis
function in the meridional direction. (See Sections 2b and 2e and Welch (1996).) Thus the dimensional length of the
channel is given by 2�Lx and the dimensional width by �Ly; � is twice the ratio of channel width to length.
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d. Radiative Forcing and The Hadley Solution

The model is forced by the radiative equilibrium zonal mean temperature at the interface between
the two layers. A simple calculation of radiative equilibrium appears in Lindzen (1990) (see his Fig.
2.2), which shows that the forced temperature pro�le can be approximated by a simple cosine. We

set T
y

diml(y) = :5�T y cos y and vary the magnitude of the forcing by altering �T y, a dimensional
measure of the temperature di�erence across the channel. In our present climate, �T y � 80K (see
Fig. 2.2 of Lindzen (1990)).

This radiative equilibrium temperature pro�le is translated into a forced streamfunction using
the hydrostatic equation, T � �@	=@p:

	y

1;diml
(y) =

R �p

f� p2

1

2
�T y cos y (2.6)

	y

3;diml
(y) = 0 (2.7)

Ultimately the lower layer should be driven by momentum forcing from the tropics (Tung and
Rosenthal 1985, 1986Tung and Rosenthal 1986), but here for simplicity we omit this feature by using
rigid channel walls. Our model choices have rami�cations on the resultant velocity pro�les, which
will be addressed in section 6.

Corresponding to this forcing there is a wave-free solution of (2.3 - 2.5), the so-called Hadley
solution. This solution is used as an initial state in the nonlinear simulations.

e. Nonlinear Solution Method

To solve (2.3 - 2.5), a spectral tau method is used. The streamfunctions are expanded in eigenfunc-
tions of the horizontal Laplace operator, with M and N modes retained in the zonal and meridional

directions, respectively. (We call this an M � N model.) Using orthogonality, we obtain coupled
ordinary di�erential equations for the coe�cients. These equations are solved numerically using a
Runge-Kutta method, with fast Fourier transforms used to for the nonlinear terms. For details of
the solution method, see Welch (1996).

A r4
�-type sub-grid damping term is added to the vorticity equation in each layer. This simulates

the e�ect of the small scales that have been truncated away, to which a pathway of energy should
exist. The coe�cient of sub-grid damping, �s, is set as a function of the truncation level M �N so
that only the eddy of smallest scale (the highest two wavenumbers retained in either direction) feels
the e�ect of this numerical friction over that of real Ekman damping. To determine the smallest
truncation which yields an accurate solution, the model was run at 10x10, 15x15, 21x21, 31x31
and 42x42 resolutions and the resulting equilibria compared. 21� 21 was found to be the smallest
resolution which had converged to the results of a model twice its size. Subsequently all nonlinear
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simulations were run at at 21� 21, and quasi-linear runs at 1� 21, unless otherwise indicated.

The parameter � can be interpreted in several ways. Assume we �x Ly to the meridional range
in which baroclinic disturbances are observed to appear: approximately 30 degrees of latitude, as
determined by the half-width of the zonal jet. Then choosing a value for � is equivalent to setting
Lx. The latter can be thought of as either �xing the zonal length of the channel, or as setting the
wavelength of the longest mode permitted by the model. We choose this second interpretation, as
it allows for an automatic correspondence with the real atmosphere. Thus we think of Lx as the
wavelength of the gravest mode, i.e. �1. m is the wavenumber of a mode in our channel; hence
m = Lx=�m.

By varying �, not only are the permitted wavelengths altered but also which of those are unstable.
This can be seen in the marginal stability curve of Fig. 1, which has been drawn for perturbations
to the initial Hadley state using N = 21. (For details of the linear stability analysis, see Welch
1996.) The value of � determines how many waves �t inside the unstable portion of the curve. For
� = 1:3 the plot shows that at most two zonal waves can be linearly unstable for any �T y, with
the shorter wave (larger e�ective wavenumber m�) being the more unstable. This is the simplest
possible nonlinear case and thus we will use it to explore the baroclinic adjustment and wavenumber
selection mechanisms. (Unless otherwise indicated, all results are for the case � = 1:3.)

Let us take a brief aside to explain the relevance of our model channel to the real atmosphere.
Note that Lx does not have to equal LxE, the length of a channel which exactly circumscribes the
Earth. Said another way, there is a di�erence between m, the zonal wavenumber of a wave in our
channel, and mE , the zonal wavenumber this same wavelength would have in a \realistic" channel
on the Earth, for which the longest mode �ts exactly once around the globe. However, there is a
correspondence between �m and mE . To see this, note that:

�m =
Ly

Lx

Lx

�m
=

Ly

LxE

LxE

Lx

Lx

�m
=

Ly

LxE

LxE

�m
=

Ly

LxE
mE (2.8)

Now the ratio Ly=LxE is a constant for the Earth, and thus we see that �m is proportional to mE ,
the zonal wavenumber that the wavelength �m would have on the Earth. This is another reason �m

(and not just m) was used as the abscissa for the marginal stability curve: it holds meaning for an
\Earth channel".

From (2.8) we have mE = (LxE=Ly) �m. For our chosen case of � = 1:3 this yields mE � 5 m.
Thus our two unstable waves, m = 1 and m = 2 from Fig. 1, are the same as wavenumbers 5
and 10 on the Earth. Notice that m = 2 being the most unstable wave corresponds nicely to
the real atmosphere; this is wavenumber mE = 10, which is close to the range of most unstable
wavenumbers found in calculations of the observed zonal mean state (12-15 from Gall 1976). Thus
our model seems to be a relevant but simpli�ed version of the real atmosphere. The model design
provides the advantage of e�ectively discluding the other mE wavenumbers 1-4, 6-9, 11-14, etc. We
have isolated only the interactions between the most unstable wave, its subharmonic, and the zonal
mean ow, motivated in part by Kelly (1967).
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Therfore, there is a correspondence between our model and the real atmosphere. In what follows
we will, for ease of presentation, use m and not mE to display and discuss results of the model
(unless otherwise noted), but the relation between �m and mE should not be forgotten.

Note that having only two zonal waves unstable does not mean that shorter scale waves are
unneeded in the simulation. Zonal waves 3-21 must be retained in order to yield a convergedmodel, as
mentioned above. The small zonal scales, even though they are stable and have negligible amplitude
and heat transport at equilibrium, do have a role in the dynamics: they are needed to represent
properly the slight down-scale energy cascade that occurs in the real atmosphere. By retaining
enough modes, and setting the magnitude of the sub-grid damping coe�cient �s appropriately, a
small energy pathway is provided from the large scales, which gain energy from the forcing, to
the small scales, which act as a slight damping force on larger modes. The alternative is severely
truncated models, which can yield false equilibria and weather regimes, as pointed out by Cehelsky
and Tung (1987). Thus we must use a large enough resolution not only to include those modes
which are linearly unstable but also to allow for a pathway of energy to small scales.

3. The Baroclinic Adjustment Mechanism

a. Basic Features

In the nonlinear problem we are most interested in the equilibrium state to which the system evolves.
Starting from the zonal mean state described in section 2d, and perturbing each x and y mode with
random but small amplitude, the system goes through a transient state and then settles into a
dynamic equilibrium by approximately t = 60 days (not shown). To measure this equilibrium,
values are averaged over the last 30 days (259 time steps) of a 231-day run (2000 time steps).

In particular, we are concerned with the zonal mean temperature at equilibrium. The model
starts with the cos y pro�le of the imposed forcing. This shape exists more or less at equilibrium as
well, but at a reduced magnitude (not shown). Thus a concise measure of the temperature pro�le,
equilibrated or forced, is the di�erence or \gradient" across the channel, de�ned by:

�T � T 2

��
y=0

� T 2

��
y=�

; (3.1)

We can approximate �T with twice the magnitude of the temperature when projected onto cos y
(Cehelsky and Tung 1991). This projection is easily available from our expansion of the streamfunc-
tions mentioned in 2e. This cos y approximation to �T eq is plotted with crosses in Fig. 2 for a wide
range of forced gradients, �T y. We see that the equilibrated temperature gradient rises slightly as
the forcing is raised, but that it asymptotes to a value which remains roughly constant even as the
imposed temperature gradient varies by over 100 percent. This agrees with the observational results
of Stone (1978) mentioned in the introduction. It must be that other components of the system are
highly sensitive to the forcing, while the equilibrated temperature gradient is not.
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We are also interested in the heat transport by each zonal mode at equilibrium.Consider the
non-dimensional thermodynamic energy equation (2.5), zonally averaged:

@T 2

@t
= ��

@

@y
(v02T

0

2) + 2��!2 + 2h00
�
T y � T 2

�
: (3.2)

where the hydrostatic equation T � �@	=@p has been used to express quantities in terms of the
temperature at the interface of the two model layers (level 2). At equilibrium we have:

T eq � T 2;eq � T y �
�
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where � indicates the Transformed Eulerian Mean residual circulation (\TEM"; Andrews et al.
1987):

!�

2 � !2 �
�

2h00
@

@y
(v02T

0

2): (3.5)

Evaluating (3.4) at the channel walls and subtracting, to yield \di�erential" values as in (3.1), yields

�T eq = �T y +
��

h00
�!�

2; (3.6)

which shows that it must be �!�

2 which is the exible component of the system if �T eq is robust
as �T y changes. 3 demonstrates this by plotting �T y � �T eq vs. forcing, showing the value
of ���=h

00�!�

2 at exact equilibrium, i.e. if the time derivative in (3.2) were exactly zero. This
di�erential residual mean vertical velocity rises approximately linearly with forcing. The actual
model output is also shown in 3 as stars. These time averages of ���=h

00�!�

2 at equilibrium have
also been projected onto the 2 cos y component. They fall approximately on the exact equilibrium
line, corroborating the fact that the residual mean vertical velocity is the exible component of the
system.

Is this exibility due to the actual vertical motion or to di�erential heat ux convergence, i.e. the
�rst or the second term of (3.5)? To answer this question we have also plotted in 3 the cos y projection
of ���=h

00�!2. As these values are very small, it is seen that the Eulerian mean circulation has little
e�ect on the cross-channel temperature gradient in this model. !2 is important near the channel
boundaries, but overall the TEM vertical velocity is dominated by the eddy heat ux convergence.2

Thus it is wave heat transport which is the single exible component of the model. This also agrees
with observations, which show eddy heat ux as very sensitive to the forced temperature gradient
(Stone and Miller 1980).

2The heat ux convergence and the vertical velocity can have very complicated meridional pro�les at equilibrium.
However, because T2(y) retains roughly a cos y shape, (3.3) shows that only the cos y projection of the heat ux and
the vertical velocity have any substantial e�ect on the temperature; their other projections must cancel each other.
This demonstrates the usefulness of the Transformed Eulerian Mean.
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Now let us investigate the heat transport for individual waves. Fig. 4 shows the di�erential
heat ux convergence vs. forcing for m = 1, 2, and 3 separately, again measured by twice the cos y
component. At low driving m = 2 transports most of the heat, whereas for medium and large
drivings m = 1 dominates. m = 3 (and shorter waves) have a negligible contribution to the heat
ux at all forcings. Here the model agrees with analytic and numerical studies and observations (see
Introduction) in the selection of a wave longer than the least unstable wave as dominant.

The major results above have previously been documented by Cehelsky and Tung (1991). How-
ever, that work did not address how the dominant wave is selected and what will be the equilibrated
temperature gradient, except at high drivings. These points can be explained here via a conceptual
model for this case of � = 1:3.

b. A Conceptual Model

Fig. 5 schematically displays what is expected for our nonlinear system of two unstable waves. For
very low forcings, no waves will be unstable (as predicted by Fig. 1) and there will be no eddy heat
transport. The equilibrated temperature gradient will simply adjust to the imposed gradient. This
is the so-called Hadley regime, which we name Regime A, and it exists for �T y < �T cr;m2.

At slightly higher forcings, the Hadley state will be unstable to perturbations of zonal wavenum-
ber 2, and hence the Hadley solution will not be selected by the model atmosphere. Wavenumber 2
will grow and transport heat poleward, reducing the temperature gradient from its imposed value.
For �T y < �T cr;m1, it is easy to reason what will occur: wavenumber 2 will grow and extract
energy from the mean ow, thereby transporting heat and reducing the zonal mean temperature
gradient, until the mean ow has been adjusted such that m2 is no longer unstable. Thus we expect
�T eq � �T cr;m2 in this Regime B as long as wavenumber 1 is not unstable. This is the simple
baroclinic adjustment process envisioned by Stone (1978).

The same argument can be made even for forcings slightly higher than �T cr;m1. Because m2
will be more unstable than m1, it will still be expected to extract more energy from the mean ow
and hence regulate the temperature gradient more than the longer wave. As �T decreases, m1 will
be stabilized �rst, allowing m2 to again reduce the temperature gradient down to its critical value.
This is also encompassed by Stone's theory of (linear) baroclinic adjustment. Regime B, therefore,
extends from �T y = �T cr;m2 up to and beyond �T cr;m1. This regime is de�ned throughout by
wavenumber 2 dominating the heat transport and by equilibration of the temperature gradient at
the value of �T cr;m2.

Should Regime B be expected to extend up to arbitrarily large forcings? As shown in 3, the
total heat transport (equivalently, the di�erential residual mean vertical velocity) increases linearly
with forcing in order to maintain a robust equilibrated temperature gradient. Thus for Regime B
to extend inde�nitely, the heat transport by m2 (alone) would have to increase linearly with the
forcing. However, as heat ux convergence rises, so do the wave streamfunction amplitude, the
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wave potential vorticity (\PV"), and the meridional gradient of wave PV. Following the reasoning
of Garcia (1991), we expect a mode to break when the wave PV gradient is larger than the zonal
mean PV gradient. Thus arbitrarily high heat transport by wavenumber 2 is unlikely. Furthermore,
since PV increases with wavenumber more quickly than heat transport does, m1 could transport
the same amount of heat as m2 while creating a smaller wave PV gradient. Thus it seems possible
that wavenumber 1 would be able to transport heat in forcing regimes where wavenumber 2 could
not. (See section 4a for further discussion.)

Given the above argument, it must be that wavenumber 2 encounters some threshold value
of heat transport. Should the total heat required by the system (in order to achieve a robust
temperature gradient) exceed this value, the shorter wave will be unable to transport the total heat,
and other zonal modes must come into play. Thus Fig. 5 shows that Regime B will exist only
for �T cr;m2 < �T y < �T sat0d;m2, where \sat'd" signi�es the threshold level where wavenumber
2 reaches \saturation". Note that the upper limit of Regime B is determined not by the critical
temperature gradient for wavenumber 1, but by the heat ux threshold for wavenumber 2. That is,
the boundary between Regime B and Regime T, de�ned below, marks the shift from a (quasi-)linear
to a nonlinear regime.

As the forcing is raised above �T sat0d;m2 and the total heat requirement continues to increase,
other zonal waves must play a more important role. Wavenumber 1 is expected to be the additional
heat transporter, because it has a smaller wavenumber than m2 and thus should be less likely to
break, as argued above. The next regimes are characterized by the fact that it is m1 which provides
the exible component to the system, transporting whatever additional heat is necessary beyond
m2's (constant) saturated contribution.

Fig. 5 shows that �T eq shifts to a new, higher value for �T y > �T sat0d;m2. This is because,
as the new exible heat transporter, wavenumber 1 will determine the equilibrated temperature
gradient. m1 will decrease �T until m1 is no longer unstable, so that �T eq � �T cr;m1 at these
higher forcings. Note that this is critical equilibration, for the �nal state is critical relative to the
mode dominating the heat transport.

The crosses of Fig. 5 show an abrupt jump in the equilibrium temperature gradient at the upper
boundary of Regime B. This is not really to be expected, as �1 (the heat transport by zonal wave
1) will not truly dominate and determine the equilibrated temperature gradient until it grows larger
than �2. We expect some sort of transition region after Regime B, in which �T eq gradually rises
from �T cr;m2 to �T cr;m1 as the forcing is increased and the total heat required to equilibrate the
system increases. This transition regime (Regime T) is indicated in Fig. 5 with circles instead of
crosses, and within it m1 plays the exible role in the heat transport, but �1 < �2. Beyond this is
Regime C, de�ned by �T eq = �T cr;m1, which occurs only for the highest drivings when �1 > �2.

The above conceptual model can be summarized by a series of energy diagrams, one for each
regime, as shown in Fig. 6. In each panel, the movement of energy from the zonal mean ow to
the waves, between the waves, and to damping (Ekman, sub-grid, and thermal) is indicated by
arrows. Solid arrows represent the primary ow and dashed arrows the lesser ow. (The numbers
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can be neglected for now; they will be discussed in section 5.) Regime A is simple: as no modes are
unstable, there is no extraction of energy from the mean ow and hence no energy in any wave. In
Regime B, m2 extracts energy quasi-linearly from the mean ow (i.e. transports heat) and loses its
energy to viscous and thermal damping. The longer wave can also extract energy from the mean
ow, and there can be a small nonlinear transfer between m1 and m2, but the dominant process is
m2's quasi-linear energy extraction and linear dissipative loss.

Regime C (Fig. 6C) is the opposite of Regime B: the dominant process ism1's quasi-linear energy
extraction and linear dissipation; m2 can also extract and lose energy, but to a smaller degree. In
Regime C there is an additional possibility of fairly large nonlinear transfer of energy from m2 to
m1, a manifestation of the saturation of wavenumber 2. This nonlinear transfer will be discussed in
sections 4b and 5.

Regime T has an intermediate energy diagram (Fig. 6T): m2 still extracts more energy quasi-
linearly from the mean ow than does m1, but it has reached its saturation level and hence transfers
a large amount of its energy nonlinearly to m1. This longer wave experiences larger dissipation
than m2, and thus the predominant energy pathway is energy gain by m2 and energy loss by m1,
clearly a nonlinear pathway as it involves both waves. Note that this is the only regime in which a
multi-wave energy pathway is found.

For all forcings in this conceptual model,m2 will always be the most unstable wave at equilibrium,
indicated by the fact that �T cr;m2 < �T cr;m1 at all forcings in Fig. 5. Hence one might expect it
to dominate the energy extraction from the mean ow in all regimes. That is, one might expect the
energy diagram for the Transition Regime to hold true for arbitrarily large forcings as well, in place
of Regime C's scheme. This is not found in model runs, however (see below). Wavenumber 1 \takes
over" from the shorter mode, rendering the equilibrium state at high forcing more quasi-linear as
opposed to the clearly nonlinear equilibrium of Regime T. This is one of the surprises of the nonlinear
baroclinic adjustment mechanism and will be elaborated in section 5.

Note that the baroclinic adjustment mechanism has been de�ned here for all levels of forcing.
We now corroborate this conceptual mechanism with output from the two-layer model.

c. Model Output

Returning to Figs. 2 and 4, we can identify each of the regimes of the conceptual model with the
numerical output. Regime A is easily seen to occur for 0 < �T y . 13K; at these low forcings, there is
no heat ux by any mode and the equilibrated temperature gradient agrees with the Hadley solution.
Note that the upper cuto� of Regime A in the nonlinear simulation (13K) agrees with the critical
gradient for the most unstable wave as determined from linear stability analysis (14K from Fig. 1).

Regime B can be identi�ed from Fig. 4 as the region outside the Hadley regime in which there is
no appreciable heat ux by wave 1. This occurs for 13 . �T y . 40K. Fig. 2 shows that in this forcing
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range the temperature gradient equilibrates approximately at the critical gradient for mode 2. Note
that this range extends well above the forcing at which m1 becomes unstable, i.e. 19K from linear
stability analysis (Fig. 1). Also, m2 is clearly the exible component of the system in Regime B,
for its heat transport grows approximately linearly with forcing in Fig. 4.

Regime C, in which �1 > �2, is discernible from Fig. 4 as �T y & 70K. This is corroborated by
Fig. 2, which shows that in this range �T eq � �T cr;m1.

Regime T is the range between B and C: 40 . �T y . 70K. We notice that in this range the
equilibrated temperature gradient grows from approximately �T cr;m2 to �T cr;m1 as the forcing is
raised, corresponding to the circles of Fig. 5.

From the dividing line between Regimes B and T, we can see that m2's heat transport threshold
is �T sat0d;m2 � 40K. For all higher forcings, m2 is saturated and thus its heat transport remain
roughly constant, as Fig. 4 more or less shows. Correspondingly, as the forcing increases from
�T y = 40K, wavenumber 1's heat transport grows approximately linearly with forcing, as it has
assumed the exible role in the system.

Our conceptual model of Fig. 5 has been shown to work for forcings from �T y = 5� 150K. This
is a wide range, given that our current climate has a solar driving of �T y � 80K. Notice also that,
at this realistic driving, it is m1 which dominates the heat transport. This corresponds to mE = 5
on an \Earthly" channel (see section 2e), which agrees with the range found in observations (4-7
from Randel and Held 1991).

We reiterate that the temperature gradients in Regimes B and C exhibit critical equilibration,
where we de�ne critical relative to the dominant heat transporting mode in the modi�ed ow. Rela-
tive to the most unstable mode, however, Regime C equilibria appear to be supercritical throughout!
(See Fig. 2.) This explains the discrepancy between our results and those of geostrophic turbulence
studies (Salmon 1980; Vallis 1988); it is simply a semantic di�erence. Salmon, in fact, included
a calculation in his work which seems to demonstrate critical equilibration. First he determined
the wave at equilibrium which has the maximum extraction of energy from the mean ow, i.e. the
maximum F (k) (his notation) or northward heat transport. Simultaneously he calculated at what
wavenumber the equilibrated zonal mean ow would be critical (see Table III in Salmon 1980). For
both the cases he investigated, the wavenumber at which the equilibrated ow is critical turned out
to be the same as the wavenumber of maximum heat transport. This is the very essence of the
baroclinic adjustment mechanism.

In another corroboration of critical equilibration, Cai (1992) found that his analytic quasi-linear
model (see Introduction) showed neutralization of the mean ow by two di�erent methods: reduction
of the mean baroclinicity, and meridional modi�cation of the mean ow which \reduces the instability
so that the equilibrated zonal ow is neutral even though the mean value of it is supercritical" (Cai
1992 p. 1600). Here we analyze the stability of the full equilibrated ow, including its detailed
meridional pro�le; we do not simply use the initial cos y shape with the cross-channel gradient
adjusted to �T eq. If Cai's analysis had been performed as ours here, his model's equilibration
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would have been termed critical. In addition, Cai points out the importance of calculating stability
relative to the dominant heat transporting mode: \the adjusted zonal ow is indeed neutral with
respect to the wave ... itself" (Cai 1992 p. 1600).

Heretofore we have termed the equilibrium \robust", but we have substantiated this claim only
by showing that the temperature gradient is robust. In fact, there are several quantities which are
insensitive to the level of forcing: the zonal mean potential vorticity, the zonal mean meridional
gradient of PV, and the zonal mean potential enstrophy, each separately in each layer of the uid.
To demonstrate this, begin with the de�nition of (non-dimensional) PV in each layer:

Qj � 1 + �
�
y �

�

2

�
+r2

�	j +
j � 2

2��
(	1 �	3) ; j = 1; 3 (3.1)

where the \1" is a non-dimensionalized f�. The equilibrated zonal average can be approximated:
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�
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+ jT 2;dim0l(y); j = 1; 3 (3.2)

where the relative vorticity has been neglected because model output shows it to be small at equi-
librium. (Note that y here is non-dimensional even though T 2 is dimensional.) The j are non-
dimensionalizing constants which can be determined from (2.6 - 2.7); note that 1 < 0. As discussed
earlier, the temperature pro�le retains a cos y shape and has a robust magnitude at equilibrium.
Thus (3.2) shows that Q in each level will be similarly insensitive to the forcing. This immediately

implies as well that the zonal mean enstrophy, Q
2

j ; j = 1; 3, will be robust.

The zonal mean meridional PV gradient in each layer is, from (3.2):
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Again because the temperature pro�le at equilibrium is robust, so must be its meridional gradient
and the PV gradient in each layer. In particular, if we assume that the temperature distribution
at equilibrium can be approximated by: T 2;eq;dim0l � :5

�
�T eq

�
dim0l

cos y, we can estimate the
average zonal mean PV gradient over the channel:
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where

0j � �:5
2

�
j = (j � 1)

1

�

1

2��

�pR

p2L2
yf

2
�
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Here < > indicates a meridional average. This approximation for the zonal mean PV gradient can
be used in the next section to determine wave saturation levels.

4. The Wavenumber Selection Process

In our conceptual model we reasoned for the existence of a threshold of heat transport for
wavenumber 2. We now develop a method to quantify the argument. Following this in section 4b,
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we describe the impact of such a threshold on the evolution of the system toward equilibrium.

a. Derivation of a Heat Transport Threshold

The magnitude of the wave PV gradient for a speci�c mode can be determined from the size of its
heat ux convergence. First let us calculate the magnitude of the heat transport as a function of
streamfunction amplitudes. The zonal mean heat ux convergence by zonal mode m, is given by:

�m = ��
@
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3): (4.1)

The average magnitude of this heat ux can be approximated as:
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where < > indicates a meridional average. Here �m = < arg	0

1;m�arg	0

3;m >, the average vertical
phase tilt of the wavenumber m component of the streamfunction.

Similarly, we can approximate the magnitude of the wave PV gradient from the upper stream-
function amplitude. The meridional gradient of the upper layer wave PV is, from (3.1):
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where the approximation has been con�rmed with model output. This gives:
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Combining (4.2) and (4.4) together yields:
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Therefore the magnitude of the wave PV gradient corresponding to a certain heat ux can be
inferred for a given zonal mode. Notice from (4.5) that shorter waves (largerm) correspond to higher
wave PV gradients, all other things being equal (e.g. the phase tilt, which we have found to only
enhance the above e�ect). Speci�cally, m2 transporting a certain amount of heat will yield a larger

wave PV gradient, by at least a factor of
�
23
�1=2

� 3, than the same amount of heat transport by
m1. We will use this fact below.

Garcia (1991) proposed that a large wave PV gradient will lead to breaking if it exceeds the zonal
mean PV gradient. This is simply a generalization of the Charney-Stern Theorem (Charney and
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Stern 1962), where the background ow now is the zonal mean ow plus a long-scale wave (m = 1 or
2 in our case). Perturbations of much smaller scales will see this background ow as zonally constant.
Through a separation of scales, therefore, we can argue that if the total PV gradient Qy = Qy+Q0

y;m

has negative as well as positive regions, then the ow is unstable to secondary perturbations. This
is possible if the wave PV gradient exceeds the zonal mean gradient in magnitude: jQ0

y;mj > Qy for
some y.

As discussed in section 3c, the zonal mean PV gradient in either layer is a robust feature of
equilibrium; it remains roughly constant as the forcing is raised. In contrast, the heat ux required
to achieve baroclinic adjustment rises linearly with the forcing; 3 shows that it is approximately the
di�erence between the imposed temperature gradient and the known (robust) equilibrated temper-
ature gradient. Therefore, for m2 to transport all the heat required at equilibrium, (4.5) shows that
its corresponding PV gradient must rise with the driving. Thus we expect the wave PV gradient
corresponding to wavenumber 2 to exceed the constant zonal mean value Qy at some forcing. At this
threshold, the shorter wave will break and saturate. Furthermore, (4.5) shows that the PV gradient
for m1 will rise more slowly with heat transport than the PV gradient for m2. Thus wavenumber 1
will have a higher saturation level than wavenumber 2's threshold; wavenumber 2 will break before
wavenumber 1 does. We have tested the above methodology on the current case of � = 1:3, and it
yields approximately the same saturation level for m2 as is observed in the nonlinear simulations.

Note that this method is based only on robust features of the equilibrium, primarily the equili-
brated temperature gradient. Once the dominant wave is determined, we can estimate the equili-
brated temperature gradient as the critical gradient of the modi�ed ow relative to this dominant
wave. It turns out, however, that the critical gradients of the equilibrated ow are similar to those of
the initial (Hadley) state. Fig. 1 gives the critical temperature gradient for m1 in the Hadley ow
as approximately 19K; in Fig. 2 at equilibrium the value is 21K on average in Regime C. From the
same �gures, m2's critical gradient in the Hadley state is approximately 14K, with an equilibrated
value of 12K on average in Regime B. Thus, using only the initial (Hadley) ow, and robust measures
of the equilibrium, one should be able to determine which wave will dominate the heat transport at
equilibrium and what will be the approximate temperature gradient for a wide range of forcings.

b. Wave Breaking

In a system at high driving, exactly how does m1 grow to dominate over m2 as a function of
time? The selection of a longer, less unstable wave in a multi-wave system has been documented
at equilibrium by other authors (see Introduction). However, the evolution of such a system to
equilibrium is rarely described.

We consider the case � = 1:3 and �T y = 50K, which falls into Regime T. This forcing has been
selected because it is large enough for wave saturation to occur, yet small enough that the process
evolves slowly so as to be discernible. Because it is in the Transition Regime, this case has the
additional interest of being slightly more complicated than others, a point which we will discuss
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later in this section. Results from other forcings within Regime T are qualitatively similar to that
considered here. Evolution to equilibrium in Regime C shows the same major features as in the case
here and will not be shown.

The evolution depends on the particular initial conditions chosen, but simulations from various
initial conditions of our two-layer model demonstrate that regardless of the initial state, the equi-
librium state is similar for the same forcing. Thus our model is robust in another sense; it does
not display the hysteresis observed by other authors, e.g. Chou (1995), and any initial state can be
chosen. We start from the (perturbed) Hadley state, which is unstable to both wavenumber 1 and
2 disturbances.

Beginning with the zonal mean state , the evolution to equilibrium can be divided into three
phases. In the �rst phase, t = 0 � 7 days, zonal wavenumber 2 grows most quickly because it is
the most unstable wave. This is shown for t = 0 in Fig. 1, but it also holds true at later times
(not shown). The nature of the instability at t = 0 can be derived from (2.6-2.7). Di�erentiating
with respect to y yields U � sin y, and hence � � Uyy � � + sin y, which is positive throughout
the channel. By the Charney-Stern theorem (Charney and Stern 1962), this ow is barotropically
stable. Thus the initial growth is due to baroclinic instability modi�ed by barotropic shear.

Wavenumber 1 also grows during this Phase I, but at a lesser rate than wavenumber 2 because it
is less unstable (Fig. 1). Both waves grow by extracting energy from the mean ow. Nonlinearities
play a minor role at this early stage.

Phase I appears to be the simple baroclinic adjustment mechanism: the most unstable wave
grows in amplitude, transporting heat and decreasing the overall temperature gradient, thereby
reducing its own instability (not shown). Unlike the theory proposed by Stone (1978), however,
wavenumber 2 cannot reduce the temperature gradient to its critical level. Instead, m2 reaches its
threshold of heat transport and nonlinear dynamics take over in Phase II of the evolution.

Fig. 7 shows contour maps over time of potential vorticity at level 1, i.e. Q1 from (3.1), for
the �rst part of Phase II. Q1 here is an approximation to isentropic potential vorticity in the upper
troposphere. At t = 7:5 days, zonal wavenumber 2 is evident in Fig. 7a due to its dominant
quasi-linear growth during Phase I. At this early time, with only moderate wave amplitudes and
curvatures, the meridional gradients of total potential vorticity are still dominated by � (see 3.1)
and hence mostly positive. As time progresses, the wave attempts to grow further because it is
still unstable. However, the opposite potential vorticities in the northern and southern parts of
the channel in Fig. 7a work against each other, twisting up the contours and (by conservation of
potential vorticity3) creating long thin tongues of PV as seen in Fig. 7a and later in Fig. 7h. This
causes regions of negative total meridional potential vorticity gradient, Qy, as expected from our
discussion in the previous section. When a long tongue is stretched out as in Fig. 7a or h, small-scale
instabilities arise on the sides of the tongue (Figs. 7b,i) and begin to pinch o� the tongue (Figs.

3We note that potential vorticity in this case is not materially conserved, in that there is friction and forcing in
the dynamics. However, the twisting up and stretching of PV contours obviously still occurs in Fig. 7 and thus the
argument is relevant here.
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7c,j), breaking it into blobs (Figs. 7d,k). These blobs, in turn, cause new regions of negative PV
gradient and thus are broken up to even smaller sizes (Figs. 7e-f,l). This continues on and on until
the blobs became of small enough scale that viscous e�ects are signi�cant, at which point they are
dissipated completely.

Note that we can now con�rm the separation of scales argument used here and in section 4a.
The scales of the largest blobs, as in Fig. 7l, are of wavenumber m � 7, which is much smaller than
the m = 2 wave on which they act.

The dynamics documented here follow the pattern of planetary \wave breaking" in the strato-
sphere as shown by McIntyre and Palmer (1983, 1984). When wave amplitudes are large enough,
a rapid and irreversible deformation of material contours occurs. By the stretching, secondary
breakup, and dissipation mechanisms discussed above, waves \break" and deposit their PV into the
region surrounding the sharpest contour gradients. This region, known as the \surf zone", expe-
riences signi�cant mixing due to the wave breaking, and thus it becomes somewhat homogenized
with only weak gradients of potential vorticity. In our case zonal wavenumber 2 grows to a certain
amplitude and then breaks, yielding regions of more uniform Q1 on either side of the sharp potential
vorticity gradient. This is evident in contour maps in Phase III, after wave 2 has broken; an example
is shown in Fig. 8 for t = 58 days.

In causing a redistribution of potential vorticity, wave breaking is an e�cient way in which
transient eddies can have an e�ect on the time-mean ow. The process is inherently nonlinear (as
the requirement of contour deformation above implies) and thus in Phase II there is a large nonlinear
transfer of energy out of m2. Quasi-linear growth of m2 continues in this phase, as wavenumber 2 is
still unstable, but the growth cannot overcome the nonlinear drain. In this way, the shorter wave is
said to be \nonlinearly saturated". This agrees with Whitaker and Barcilon's (1995) demonstration
that large nonlinear transfer out of the most unstable wave is what prevents it from dominating at
equilibrium.

While wavenumber 2 is saturating, wavenumber 1 continues to extract energy from the mean
ow, for it is still linearly unstable. Unlike wavenumber 2, it does not break and saturate, but rather
receives most of the energy transferred nonlinearly out of m2. Thus during this phase wavenumber
1 grows through both wave-mean interaction and nonlinear transfer, while wavenumber 2 grows
quasi-linearly but decays nonlinearly.

The end of Phase II is at t � 24 days; by then wavenumber 1 has emerged as the most energetic
wave due to the saturation of wavenumber 2. This can already be seen at t = 13:9 days in Fig. 7l:
compare Fig. 7l, where the overall shape is that of wavenumber 1, with Fig. 7a, where wavenumber
2 is clearly dominant. This becomes more obvious as t! 24 days (not shown), for then the breaking
of wavenumber 2 is almost completely overshadowed by the linear oscillation of wavenumber 1 back
and forth within the channel. It is very clear at t = 58 days in Fig. 8. Note that the breaking of m2
continues to and throughout equilibrium, but it is dominated by the larger quasi-linear dynamics of
m1.
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For t > 24 days, the magnitudes and energetics of the di�erent zonal modes have been established
and an equilibrium must only be maintained. This is Phase III. At forcing levels in Regime B and
C this maintenance is clear: the dominant wave simply equilibrates the temperature gradient at
its critical value. In the Transition Regime, however, the competition between modes is ongoing,
and hence the equilibrium is more complicated. Each wave attempts to reduce the temperature
gradient down to its �T cr, but both have limitations on their ability to \control" the dynamics:
wavenumber 2's heat transport is capped at its threshold value, and wavenumber 1 is transporting
less heat than m2. Thus neither wave clearly dominates and the temperature gradient equilibrates
at a value intermediate to the two critical gradients (Fig. 2). Fig. 6T shows the energetics in Phase
III for this forcing of �T y = 50K, now with actual numbers. (Section 5 explains how these were
calculated.) Wavenumber 1 is sustained in part by quasi-linear energy extraction from the mean
ow and in part by nonlinear transfer from wavenumber 2. m2, on the other hand, is maintained
by a balance between quasi-linear growth and nonlinear saturation.4

There is an interesting paradox in the Transition Regime: while wavenumber 2 dominates the
heat transport at equilibrium (Fig. 4), wavenumber 1 has the most energy (Fig. 8). This is not
inconsistent, for the two measures are qualitatively di�erent: heat transport is a rate of change of
energy and is distinct from energy itself. This \dual dominance" is more evidence of the complicated
nature of Regime T and why it equilibrates at a non-critical temperature gradient.

5. Nonlinearities

In this section we point out exactly how nonlinearities are part of the baroclinic adjustment
mechanism. Cehelsky and Tung (1991) showed that for high forcing, while the selection of the
dominant wavenumber is an inherently nonlinear phenomenon, the maintenance of the equilibrium
is essentially quasi-linear. Here we extend these ideas to all the regimes of Fig. 5.

The schematic energy diagrams of Fig. 6 will be used, now con�rmed with actual data. Fol-
lowing Whitaker and Barcilon (1995), we calculated the non-dimensional perturbation energy E0 at
equilibrium, where \perturbation" signi�es deviation from the time and zonal mean:
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This energy was horizontally averaged and separated by zonal wavenumber. Also calculated were
the rate of each wave's energy growth or decay, derived by forming (2.3 - 2.5) into an energy
equation. The energy gained and lost by each wave was split into parts: that due to extraction from
the mean ow (i.e. wave-mean ow interaction), that due to nonlinear transfer from or to other
wavenumbers (wave-wave interaction) and that due to dissipation, Newtonian forcing, and sub-grid

4The net energy ow into any mode in Fig. 6 may not be exactly zero, because there is a small nonlinear transfer
to shorter waves and to the mean ow, and because the total growth rate may not be precisely zero in our time
average. There is some di�culty in assigning nonlinear transfer between two speci�c modes, but since m1 and m2 are
so much larger than all other modes in our cases of interest, this arbitrariness is small.
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damping (linear processes). Numbers next to the arrows in Fig. 6 represent the time-averaged values
of these (non-dimensional) energy growth rates at equilibrium for three cases: �T y = 25K (panel
B), �T y = 50K (panel T), and �T y = 90K (panel C).

For �T y = 25K (Regime B, Fig. 6B) we con�rm that the dynamics for low forcings (but outside
the Hadley regime) are the simple baroclinic adjustment envisioned by Stone (1978). Nonlinearities
are unimportant.

In the previous section we described the energetics for �T y = 50K in the Transition Regime.
Nonlinearities are necessary in maintaining equilibrium at such intermediate forcings.

We expect nonlinearities to be similarly important for Regime C. This is apparent from Fig.
2, which shows the critical temperature gradients for wavenumbers 1 and 2. Because �T cr;m2 <

�T cr;m1 throughout this regime, m2 is more unstable than m1 even at equilibrium! (We will return
to this point later in this section.) Obviously nonlinear processes must be involved in maintaining
the equilibria, else would m2 as the more unstable wave certainly dominate.

Fig. 6C shows results for �T y = 90K in Regime C. The energetics are as described in the concep-
tual model: wavenumber 1 has the largest extraction from the mean ow (equivalently, the largest
heat transport) and nonlinear transfer from the shorter to the longer mode occurs at equilibrium.
The wave-mean extraction by the shorter wave does not continue to rise with forcing in Regime C.
Runs at higher forcings (not shown) have approximately the same mean ow extraction by m2 as for
�T y = 90K. This con�rms that m2 has reached its (constant) heat transport threshold in Regime
C.

The relative importance of the nonlinear transfer within Regimes T and C is of interest here.
Comparing Figs. 6T and C, we see that as the forcing increases, the quasi-linear extraction by the
dominant mode grows much more than the nonlinear transfer. Equilibria in Regime C at �T y > 90K
(not shown) have about the same amount of nonlinear transfer fromm2 tom1 as that for �T y = 90K,
showing that the nonlinearities are leveling o� as �T y rises. This agrees with Garcia (1991), who
found that the rate of energy dissipation due to nonlinear breaking was insensitive to the level of
forcing. Therefore, nonlinear transfer becomes relatively less important as the driving increases; the
system e�ectively becomes more and more quasi-linear. We note that Cehelsky and Tung (1991)
also found their model to be nearly quasi-linear at high drivings. This is demonstrated in a di�erent
manner in Fig. 4: as the forcing is raised, the heat transport by m2 becomes less and less signi�cant
compared with that by m1.

We are also concerned with the role of nonlinear transfer in evolving to equilibrium. In section
4b we showed that the wave breaking process in Regime T is crucial to the evolution, and that that
process is nonlinear by de�nition. In Regime C, the wavenumber selection process is qualitatively
the same as in Regime T. In fact, this can be seen right from the initial linear stability curve of
Fig. 1. Some nonlinear processes must come into play in the selection of m1; otherwise the most
unstable mode m2 would simply dominate from the start.
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Our �ndings contrast with the work of Cai (1992). We have found that nonlinear interactions
are necessary in maintaining the equilibrium for moderate forcings, which contradicts his use of
a quasi-linear model to determine the equilibrium state. Our results do agree with Cai that at
low forcings equilibrium is maintained e�ectively quasi-linearly. However, at high forcings, another
regime in which our model is approximately quasi-linear, Cai's method would select the wrong
wave as dominant. This was demonstrated by applying his method to the present model, i.e. by
comparing quasi-linear runs with m1 perturbed to those with m2 perturbed. The equilibrated
temperature gradient is lower when m2 is perturbed than m1 at every forcing (not shown); thus
Cai's theory would predict that m2 would dominate always! This is obviously not the result found
here, nor that observed in the real atmosphere. Thus, we only agree with Cai's method and theory
for weak forcings, i.e. Regime B.

The nonlinear behavior observed here is slightly di�erent from that described in the theory of
geostrophic turbulence. Several alternative mechanisms of equilibration have been proposed in the
context of that theory, and in all of these a nonlinear energy cascade dominates the equilibrium.
Rhines (1975) proposed that an up-scale energy cascade, caused by nonlinear triad interactions
amongst small-scale waves, would terminate at a wavenumber somewhere between the long, planetary
waves (driven by linear Rossby wave dynamics) and the smaller waves. The wavelength at which the
cascade terminated would receive the most energy and hence be the most energetic at equilibrium.
This selection mechanism does not seem to operate here, as was also found and pointed out by
Whitaker and Barcilon (1995). Energy is indeed transferred nonlinearly from a shorter to a longer
wave, but it is not the single or dominant feature of Fig. 6. Most importantly, Rhines' theory was
developed for cases in which many modes are unstable; the present study addresses a di�erent part
of parameter space.

Salmon (1980) proposed and Vallis (1988) further discussed the process of \wave-wave equilibra-
tion", in which energy could cascade from linearly unstable wavenumbers to less unstable waves, on
which viscosity could act. The linear instability of some waves could be sustained if their energy
gain from the mean ow could be balanced by energy transfer to other wavenumbers; this could
allow for supercritical equilibration. In our model at moderate and high forcings, wavenumber 2
is in fact maintained in a supercritical state by passing o� its energy nonlinearly to wavenumber 1
(and other waves), but the energetics of this receiving wave are not simply nonlinear gain balanced
by viscous decay. Rather, the long wave also extracts large amounts of energy from the mean ow.
Thus the dynamics observed here seem a bit more complicated than in the wave-wave equilibration
theory. Again, however, that theory was developed for a uid system in which many waves unstable,
which is di�erent from the present case.

It is important to understand the paradox mentioned earlier in this section: even at equilibrium
in Regime C, wavenumber 2 is linearly unstable. This is seen in Fig. 2, for �T eq > �T cr;m2 at every
level of forcing in Regime C. However, we know that at equilibrium this shorter mode is saturated
and does not grow further. This raises a critical distinction between the stability of a zonal mean
ow to in�nitesimal perturbations and the stability of a zonal mean ow plus a �nite amplitude wave
(a \wavy" state). The simple presence of a wave at �nite amplitude may remove the instability of
the mean ow alone to that wave. If it has reached saturation, the wave cannot grow further, and
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the wavy state is (nonlinearly) stable.

The key here is that wavenumber 2 is not stabilized at equilibrium by the same mechanism as
wavenumber 1. m1 is stabilized quasi-linearly: it interacts strongly with and modi�es the mean ow
until the mean ow is neutral with respect to it. This yields m1's zero linear growth rate in Fig. 2.
Wavenumber 2 also interacts with the mean ow, but it is stabilized via nonlinear saturation. Thus
wavenumber 2 can have a positive linear growth rate even at equilibrium.

This issue is typically overlooked in practice. To determine the stability of the atmosphere, the
usual technique is to calculate the zonal average of the ow and perform a linear stability analysis
on only that mean portion. As in this model, such a calculation may be deceiving.

Note that the equilibration mechanism found here is not one of neutralization, as has been
proposed by Lindzen (1993, 1994), which in our opinion is too severe a condition. It is not necessary
to neutralize the zonal mean atmosphere to all waves for it to equilibrate; it only needs to be neutral
to the dominant wave. The linearly most unstable wave is usually stabilized via nonlinear transfer.
Thus a linear theory of neutralization is insu�cient to explain the equilibration.

6. Details of the Equilibrium

A few details of the equilibrium deserve some comment. There is little barotropic shear intro-
duced into the zonal velocities in the process of equilibration (not shown). The stabilization of the
ow, therefore, does not appear to be due to the barotropic governor e�ect (James 1987), in which
a large meridional shear develops and reduces the growth rate of baroclinic waves. (Note that the
linear stability analysis performed previously includes any barotropic instability that might exist and
hence any barotropic governor e�ect.) Also, the zonal velocities in the lower layer are very small
and hence unlike the real atmosphere. These small values are due to two e�ects: �rst, the fact that
the side walls are assumed to be rigid, which prevents zonal momentum uxes from propagating
into or out of the channel, thereby ensuring a horizontally-averaged zonal velocity near zero at the
surface (Tung and Rosenthal 1985); and second, the formulation of the lower boundary condition.
For the latter we used 	4 � 	3 in assigning !4 (see Section 2b). We tested this approximation
by using 	4 � (3=2)	3 � (1=2)	1 instead (derived from the hydrostatic equation), but the model
simulations remain qualitatively the same. While the equilibrated lower layer ows are indeed larger
with this new approximation, a shift to the longer wave still occurs as the forcing is raised, there is
little barotropic shear introduced into the ow, and the equilibration is still critical relative to the
dominant heat transporting wave. Thus the unrealistically small lower layer velocities in the original
formulation do not seem to be important.

We should point out that the mechanism described here occurs at other values of � as well, for
which more than two waves are initially unstable. There is always a shift from the short, most
unstable wave to a longer wave, which dominates the heat transport at equilibrium, for all but the
lowest forcings. In particular, this mechanism is demonstrated in a realistic simulation in Welch and
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Tung (1997).

The model results do have some sensitivity to the value chosen for the Newtonian cooling param-
eter h00. In general, a model with a longer thermal damping time is more unstable, as con�rmed in
Fig. 9 with marginal stability curves for several values of h00. This allows the ow to evolve further
from the radiatively forced state of (2.6 - 2.7), and for more heat transport by each wave and hence a
lower equilibrated temperature gradient (all not shown). However, these features by themselves are
not particularly interesting. Note also that a longer thermal damping time does not allow the ow
to evolve further from criticality. Regardless of the value of h00, the ow at each forcing equilibrates
near the critical gradient for the dominant heat transporting wave in the modi�ed ow.

There is, in fact, a signi�cant e�ect of varying h00: a di�erential impact on waves of di�erent
scale. Speci�cally, as h00 is lowered, m1 is increasingly unstable while m2's instability is less a�ected;
thus the two waves have closer and closer critical gradients as h00 is decreased (see Fig. 9). One
might expect that m1 would be more involved in the heat transport for a lower value of h00, i.e. that
m1 would begin to be the dominant wave at lower forcings. However, recall from section 3b that
the dividing line between Regimes B and T is not determined by �T cr;m1 but rather by the heat
transport threshold of m2. This threshold in fact increases as h00 decreases, and hence m1 becomes
involved in the heat transport at higher forcings for lower values of h00.

The above is the main e�ect of varying h00. It is a quantitative di�erence only, a�ecting the size of
the various forcing regimes but not their existence. Our conceptual model of baroclinic adjustment
is independent of this thermal damping parameter. To demonstrate the mechanism, therefore, we
have chosen a value for h00 which is smaller than is realistic, but for which each regime of Fig. 5 is
discernible in output such as Figs. 2 and 4.

We note that our model includes both normal modes and non-modal waves. The results, however,
can be interpreted using modal instability only. The transient growth mechanisms presented by
Farrell and Ioannou (1995) and DelSole and Farrell (1996) do not appear to be important in this
problem, in which we examine the long-term evolution to equilibrium.

7. Summary

In this work we have performed a detailed study of the mechanism of nonlinear baroclinic ad-
justment. We have seen that baroclinically equilibrated ows are robust in several measures; the
cross-channel temperature gradient, the zonal mean PV and its meridional gradient, and the po-
tential enstrophy in each layer are all roughly constant for a wide range of forcings. Moreover, the
mechanism of nonlinear baroclinic adjustment, including a nonlinear wavenumber selection process,
can explain equilibration at all forcings.

In the wavenumber selection part of the mechanism, the shorter, linearly most unstable wave
has a threshold of heat transport above which it renders the uid state unstable to secondary
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perturbations. When the forcing is low, the shorter wave never reaches this threshold and thus it,
as the most unstable wave, dominates the heat transport at equilibrium. For higher forcings, the
shorter wave will reach its threshold and will not be able to transport further heat. It will cease
its growth by \breaking", passing its energy to the still unstable longer wave through nonlinear
transfer. This process is called saturation. The longer wave will transport the extra heat required
to achieve the robust equilibrium. (There is also a threshold of heat transport for the longer wave,
but it is much higher than that for the shorter wave.) If the forcing is high enough, the excess heat
transported by the longer wave will exceed that of the shorter wave, which is capped at its threshold,
and the longer wave will dominate. A procedure is outlined which will allow a predictive formula to
be developed to calculate when each wave will break.

The maintenance of the equilibrium is fairly simple once the dominant heat transporting wave
has been selected, and in most cases it is surprisingly quasi-linear considering the large supercriti-
cality. The dominant wave transports heat poleward, reducing the overall temperature gradient and
adjusting the mean ow meridionally, until the ow reaches a state which is linearly critical relative
to the dominant wave. This is a process of critical equilibration; the dominant wave stabilizes itself,
i.e. quasi-linearly. For high forcings, this quasi-linear equilibration is done by the longer wave. The
shorter wave then is stabilized by a di�erent process: nonlinear transfer of energy to other modes.

Finally, a key limitation of linear stability analysis has been illustrated, i.e. that it considers
only the mean ow. The very presence of �nite amplitude waves of a certain scale may remove the
instability of the mean ow to perturbations of that scale; those wavelengths, having been saturated,
will not grow further even if perturbed.
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