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Problem statement

We are interested in computing the price of a barrier-style claim
V = (Vi)o<t<r (option)
written on an asset
S = (St)o<t<T (asset)
whose payoff at the maturity date 7" is given by
loory@(Sr),  T=if{t>0:S¢1}).  (payoff)

where T is an interval in R.
e The option becomes worthless if S leaves T at any timet < T.

e These types of options are known as knock-out options.



Problem statement

ExampIeS'

,U) - double-barrier knock-out

= (L

o [ = (L, 00) - single-barrier option with lower barrier
(—o0,U) - single-barrier option with upper barrier
(—

,00) - European option



Problem statement

Examples:
e I =(L,U) - double-barrier knock-out
e I = (L,00) - single-barrier option with lower barrier
e I = (—00,U) - single-barrier option with upper barrier

o [ = (—oo,oo) - European option

We can price knock-in options by pricing European and knock-out
options using knock-in knock-out parity

f(knock-in) + Vf(knock-out) _ Vv(European)7

where the payoff of a knock-in option is given by

1< @(ST).



Asset model

For an asset .S, we consider models of in a general local-stochastic
volatility setting

Sy = eXt,
dX; = p(Xy, Yy)dt + o(Xy, YVi)dWa,
dY; = ¢(Xy, Yy)dt + g(X¢, Y2)d By,
(W, B), = Pdt,

where W and B are correlated Brownian motions under the pricing
probability measure P.



Risk-neutral price

Let
[ ] ’]":0'
° Izlogf,

o p(x) = (e") = &(s).

To avoid arbitrage, all traded assets must be martingales under the
pricing measure IP. The value V; of the claim with the payoff

Li~me(XT), T=inf{t >0: X, ¢ I} (payoff)
at time t < T is given by
‘/t - ]]-{T>t}u(t7 Xtv }/t)u

where

u(t,z,y) :=E (]l{T>T}(10(XT)|Xt =z, =y 71> t) .
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e Ex: Monte Carlo
e Limitation: Simulation gives you the price for one (X, Ys) and
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Possible Approaches

How might one solve the pricing problem?
e Simulation
e Ex: Monte Carlo
e Limitation: Simulation gives you the price for one (X, Ys) and
parameter choice.
e Limitation: Low degree of precision
e Numerical PDE solver
e Ex: Solve PDE using finite difference or finite element
e Limitation: Numerical solvers suffer from the “curse of
dimensionality.”
e Limitation: Discretized solution
e Analytical techniques on the PDE
e Ex: perturbation theory

e Advantage: Fast evaluation at higher dimension
e Advantage: Ease of implementation



Pricing PDE

The function u
u(t,z,y) = (]1{T>T}<p(XT)|Xt =x,Yy=y, 7> t) ,

is the unique classical solution of the Kolmogorov Backward
equation

0= (815 +‘A)u7 U(T7 ) =@,

where A, the generator of (X,Y), is given explicitly by

1 1
A = 50 (@,9)0; + po(2,y)9(w,9)0:0y + 59° (@, 4)0y
+ M(l‘7 y)aac + C(CC, y)ay7
and the domain of A is given by

dom(A) := {g € C?: lim g(z,y) = 0}.
z—0I



Our approach

The full pricing PDE
1
0= Opu+ 50>, 9)0%u + por(,y)g . 9)0sDyu

1
+ 592(1:? l/)agu =+ ,U(ill’, y)axu + C(.’L’, y)ayuv

U(Tv "y ) =,

is not generally solvable in closed form.



Our approach

The full pricing PDE
1
0= 0w+ 502(:3, Y)92u + po(x,y)g(z, y)0:0yu

1
+ 59 (2, 9)0u + p(,y) Do + o, y) Dy,

u(T,-,-) =,
is not generally solvable in closed form.
If o, g, u, c were constant and p = 0, the pricing PDE would be
L 50 L 50
Oru + 3¢ Ozu + 39 Oyu + pdyu + cOyu = 0,

which is solvable. This suggests a perturbation expansion...



Perturbation framework

Let f € {20 og, 2g i, ¢} and (z,7) € I x R. We introduce
e € [0,1] and define

fs(xvy) = f(a?+€(a; - i‘),g—i—s(y - g))

Note that f¢(x,y)|e=1 = f(z,y) and f°(z,y)|-=0 = f(Z, 7).



Perturbation framework

Let f € {20 og, 2g i, ¢} and (z,7) € I x R. We introduce
e € [0,1] and define

[ @y) = f(@+e(x—2),5+(y - 7))
Note that f¢(x,y)|e=1 = f(z,y) and f°(z,y)|-=0 = f(Z, 7).
Taylor expanding f¢ about the point € = 0 yields
fF=foteh+elfat -,

where

n 8n—iai z,7 ) )
ot =32 L ED o gyiy gy

=0



Perturbation framework

Recall

1 1
A= S0 (@,9)0; + po(2,y)9(w,y)0:0, + 59° (@, 4);

+ (@, y) 0z + c(x,y)0y,
Replacing f € {20 g, 29 i, c} with f¢in A and expanding
yields

ASP = Z e" (-An,O + /)‘An,l) y

where

‘An,O = (%02)718% + (%92)7185 + ,U/nax + Cnay
An = (09)n0:0y.

)



Perturbation framework

We try to solve
(O + A= )u" =0, u(Ty) =
by expanding u* in powers of € and p as follows

oo n
usf = g E VTN Ui 4.

n=0 i=0

An approximation to the solution of the original pricing PDE
(3,5—|—A)u20, U(Ta7):(10

will be obtained by setting ¢ =1 in u®”.



Perturbation framework

We now have the parameterized set of PDEs
(8 + AF) u" =0, (T, ) = .
Inserting A% and u** and collecting powers of ¢ and p gives

020" : (0y + Aop) uo0 =0, uoo(T,-,-) = ¢,
O(fnpk) : (8t + AO,O) Unp, k + Fn,k‘ = 07 un,k(Ta ) ) = 07

where

n k

Fop =Y > (1= 8isj0)Aijtin—ij-

i=0 j=0

e O(%0Y) is a constant coefficient heat equation.

e O(c"p¥) is a constant coefficient heat equation with a forcing
term.



Nth order approximation

Definition
Let u be the unique classical solution of PDE problem (1).

(O +A)u =0, u(T,-,-) = ¢, (1)
We define @Y, the Nth order approximation of u, as

N

uh(t,x,y) == el itz ,

witoy) ;Z PGB
=0 j=0
where ug o satisfies (2) and w,, j, satisfies (3) for (n, k) # (0,0).

(O + Ao,0) uo,0 =0, uo,o(T, -, ") = ¢, (2)
(O +Aop) un + Frnp =0, Unk(T,-,-) = 0. (3)



Duhamel’s principal

Duhamel’s principle states that the the unique classical solution to
(8,5 + A070)u + F =0, U(T, . ) =h,
is given by

T
U(t,!l),y) = ?O,O(taT)h(:E?y) +/ ds :P070(t,$)F(S,I',y),
t

where we have introduced P o the semigroup generated by Ao,
which is defined as follows

CP0,0(t,S)h(ZE,y) :/df/Rd??FOO(t,ffay,s»g,n)h(fyﬁ),
I
where 0 <t < s <T, and I'y is the solution of

0= (8t +‘A0,0)F0,0(') ‘y ';Tvgvn)v FU,O(Ta y 7T)§777) = 65,7]'



Formula for w,,

Proposition
The function ug o is given by

uo,0(t) = Po,o(t, T)e,
and for (n, k) # (0,0), we have

n+k

tn i (¢ ZZ/ dsl/ dsg - / ds,

=11,
Po,0(ts 51)Ans ey - Po,0(85-1, 85)An; k5 Po.0(s5, T)ps

with I, ;. ; given by

ny+---+n; =n,
Ing = <TI:;? ,ZJ> GZiXJ i+ +kj =k,
1y Ry 1<n;+ki forall1<i<yjy



Asymptotic accuracy for European claims

Let I = R (European option), and let h — 1 be the number of
Lipschitz continuous derivatives of . Then under certain
regularity assumptions on the coefficients (i, 0, g, c), the
approximate solution satisfies the following:



Asymptotic accuracy for European claims

Let I = R (European option), and let h — 1 be the number of
Lipschitz continuous derivatives of . Then under certain
regularity assumptions on the coefficients (i, 0, g, c), the
approximate solution satisfies the following:

(u—af)(tz,y)| SC(T-1)F, 0<t<T, velyeR

For N > 1, we have

— 1 N—it+h
[(u —ahy) (2, y)| < C (T —1)2 +|p|) Z|P| 2
O§t<T,x€I,y€R.

The positive constants C' in depend only on N, ¢ (and o, g, i, c).



Numerical example: CEV model

Suppose that S = e* has Constant Elasticity of Variance (Cox
(1975)) dynamics i.e.

dS, = ¢S] AW,

dX; = —%a%”t(v—l) dt + oeX 0= qw,.



Numerical example: CEV model

Suppose that S = e* has Constant Elasticity of Variance (Cox
(1975)) dynamics i.e.

dS, = ¢S] AW,

dX; = —%aze”@(v—l) dt + oeX 0= qw,.

We consider double-barrier knock-out calls and puts with the
following parameters fixed

Xo | K T o v
0.62 | 0.62 | 0.083 | 0.32 | 0.019




CEV double-barrier call
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Figure 1: For the CEV with

L =0, we plot u — g (blue
dotted) and u — @y (orange
dashed) as a function of the upper
barrier U for a call option.

. L L L
065 0.70 075 080

Figure 2: For the CEV model with
L =0, we plot u as a function of
the upper barrier U for a call
option.



CEV double-barrier put
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Figure 3: For the CEV model with
U =1, we plot u — @y (blue
dotted) and u — @y (orange
dashed) as a function of the lower
barrier L for a put option.
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Figure 4: For the CEV model with
U =1, we plot u as a function of
the lower barrier L for a put
option.



Numerical example: Heston model

Suppose that S = e has Heston (Heston (1993)) dynamics i.e.
dS; = VY. S dWr,
1
dX; = —iY;g dt + /Y dW4,

dY; = k(0 — Y;) dt + 61/Y, dB;,
(W, B); = pdt



Numerical example: Heston model

Suppose that S = e has Heston (Heston (1993)) dynamics i.e.
dS; = /Y. S dWr,
1
dX; = —§Y} dt + /Y dW4,

dY; = k(0 — Y;) dt + 61/Y, dB;,
(W, B); = pdt

We specify a model

Xo |V K | T P K 0 )
0.62 | 0.04 | .62 | 0.083 | -0.4 | 1.15 | 0.04 | 0.2




Heston double-barrier call
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Figure 5: For the Heston model,

we plot u — uf (blue dotted) and
u — uh (orange dotted-dashed) as
a function of the upper barrier U

for a call option.

Figure 6: For the Heston model,
we plot u as a function of the
upper barrier U for a call option.



Heston double-barrier put
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Figure 7: For the Heston model,
we plot u — @}, (blue dotted) and
u — uh (orange dotted-dashed) as
a function of the lower barrier L
for a put option.

Figure 8: For the Heston model,
we plot u as a function of the
lower barrier L for a put option.



Conclusion

e Limitations of numerical methods and simulations

e Pricing options exactly under general dynamics is impossible,
so we turn to asymptotics

e Constant coefficient PDE theory is used to solve the
asymptotic problem

e Rigorous accuracy results for European options

e Numerical accuracy demonstrations for barrier options
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