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Problem statement

We are interested in computing the price of a barrier-style claim

V = (Vt)0≤t≤T (option)

written on an asset

S = (St)0≤t≤T (asset)

whose payoff at the maturity date T is given by

1{τ>T}ϕ̂(ST ), τ = inf{t ≥ 0 : St /∈ Î}. (payoff)

where Î is an interval in R.

• The option becomes worthless if S leaves Î at any time t ≤ T .

• These types of options are known as knock-out options.



Problem statement

Examples:

• Î = (L,U) - double-barrier knock-out

• Î = (L,∞) - single-barrier option with lower barrier

• Î = (−∞, U) - single-barrier option with upper barrier

• Î = (−∞,∞) - European option

We can price knock-in options by pricing European and knock-out
options using knock-in knock-out parity

V
(knock-in)

Î
+ V

(knock-out)

Î
= V (European),

where the payoff of a knock-in option is given by

1{τ≤T}ϕ̂(ST ).
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Asset model

For an asset S, we consider models of in a general local-stochastic
volatility setting

St = eXt ,

dXt = µ(Xt, Yt)dt+ σ(Xt, Yt)dWt,

dYt = c(Xt, Yt)dt+ g(Xt, Yt)dBt,

d〈W,B〉t = ρ dt,

where W and B are correlated Brownian motions under the pricing
probability measure P.



Risk-neutral price
Let

• r = 0,

• I = log Î,

• ϕ(x) = ϕ̂ (ex) = ϕ̂(s).

To avoid arbitrage, all traded assets must be martingales under the
pricing measure P. The value Vt of the claim with the payoff

1{τ>T}ϕ(XT ), τ = inf{t ≥ 0 : Xt /∈ I} (payoff)

at time t ≤ T is given by

Vt = 1{τ>t}u(t,Xt, Yt),

where

u(t, x, y) := E
(
1{τ>T}ϕ(XT )|Xt = x, Yt = y, τ > t

)
.



Possible Approaches

How might one solve the pricing problem?

• Simulation
• Ex: Monte Carlo
• Limitation: Simulation gives you the price for one (X0, Y0) and

parameter choice.
• Limitation: Low degree of precision

• Numerical PDE solver
• Ex: Solve PDE using finite difference or finite element
• Limitation: Numerical solvers suffer from the “curse of

dimensionality.”
• Limitation: Discretized solution

• Analytical techniques on the PDE
• Ex: perturbation theory
• Advantage: Fast evaluation at higher dimension
• Advantage: Ease of implementation
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Pricing PDE
The function u

u(t, x, y) = E
(
1{τ>T}ϕ(XT )|Xt = x, Yt = y, τ > t

)
,

is the unique classical solution of the Kolmogorov Backward
equation

0 = (∂t + A)u, u(T, ·) = ϕ,

where A, the generator of (X,Y ), is given explicitly by

A =
1

2
σ2(x, y)∂2

x + ρσ(x, y)g(x, y)∂x∂y +
1

2
g2(x, y)∂2

y

+ µ(x, y)∂x + c(x, y)∂y,

and the domain of A is given by

dom(A) := {g ∈ C2 : lim
x→∂I

g(x, y) = 0}.



Our approach

The full pricing PDE

0 = ∂tu+
1

2
σ2(x, y)∂2

xu+ ρσ(x, y)g(x, y)∂x∂yu

+
1

2
g2(x, y)∂2

yu+ µ(x, y)∂xu+ c(x, y)∂yu,

u(T, ·, ·) = ϕ,

is not generally solvable in closed form.

If σ, g, µ, c were constant and ρ = 0, the pricing PDE would be

∂tu+
1

2
σ2∂2

xu+
1

2
g2∂2

yu+ µ∂xu+ c∂yu = 0,

which is solvable. This suggests a perturbation expansion...
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Perturbation framework

Let f ∈ {1
2σ

2, σg, 1
2g

2, µ, c} and (x̄, ȳ) ∈ I ×R. We introduce
ε ∈ [0, 1] and define

f ε(x, y) := f(x̄+ ε(x− x̄), ȳ + ε(y − ȳ)).

Note that f ε(x, y)|ε=1 = f(x, y) and f ε(x, y)|ε=0 = f(x̄, ȳ).

Taylor expanding f ε about the point ε = 0 yields

f ε = f0 + εf1 + ε2f2 + · · · ,

where

fn(x, y) =
n∑
i=0

∂n−ix ∂iyf(x̄, ȳ)

i!(n− i)!
(x− x̄)n−i(y − ȳ)i.
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Note that f ε(x, y)|ε=1 = f(x, y) and f ε(x, y)|ε=0 = f(x̄, ȳ).
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Perturbation framework

Recall

A =
1

2
σ2(x, y)∂2

x + ρσ(x, y)g(x, y)∂x∂y +
1

2
g2(x, y)∂2

y

+ µ(x, y)∂x + c(x, y)∂y,

Replacing f ∈ {1
2σ

2, σg, 1
2g

2, µ, c} with f ε in A and expanding
yields

Aε,ρ =

∞∑
n=0

εn (An,0 + ρAn,1) ,

where

An,0 := (1
2σ

2)n∂
2
x + (1

2g
2)n∂

2
y + µn∂x + cn∂y

An,1 := (σg)n∂x∂y.



Perturbation framework

We try to solve

(∂t + Aε,ρ)uε,ρ = 0, uε,ρ(T, ·, ·) = ϕ

by expanding uε,ρ in powers of ε and ρ as follows

uε,ρ =

∞∑
n=0

n∑
i=0

εn−iρiun−i,i.

An approximation to the solution of the original pricing PDE

(∂t + A)u = 0, u(T, ·, ·) = ϕ

will be obtained by setting ε = 1 in uε,ρ.



Perturbation framework
We now have the parameterized set of PDEs

(∂t + Aε,ρ)uε,ρ = 0, uε,ρ(T, ·, ·) = ϕ.

Inserting Aε,ρ and uε,ρ and collecting powers of ε and ρ gives

O(ε0ρ0) : (∂t + A0,0)u0,0 = 0, u0,0(T, ·, ·) = ϕ,

O(εnρk) : (∂t + A0,0)un,k + Fn,k = 0, un,k(T, ·, ·) = 0,

where

Fn,k =

n∑
i=0

k∑
j=0

(1− δi+j,0)Ai,jun−i,k−j .

• O(ε0ρ0) is a constant coefficient heat equation.

• O(εnρk) is a constant coefficient heat equation with a forcing
term.



Nth order approximation

Definition
Let u be the unique classical solution of PDE problem (1).

(∂t + A)u = 0, u(T, ·, ·) = ϕ, (1)

We define ūρN , the N th order approximation of u, as

ūρN (t, x, y) :=

N∑
i=0

i∑
j=0

εjρi−juj,i−j(t, x, y)
∣∣∣
(x̄,ȳ,ε)=(x,y,1)

,

where u0,0 satisfies (2) and un,k satisfies (3) for (n, k) 6= (0, 0).

(∂t + A0,0)u0,0 = 0, u0,0(T, ·, ·) = ϕ, (2)

(∂t + A0,0)un,k + Fn,k = 0, un,k(T, ·, ·) = 0. (3)



Duhamel’s principal

Duhamel’s principle states that the the unique classical solution to

(∂t + A0,0)u+ F = 0, u(T, ·, ·) = h,

is given by

u(t, x, y) = P0,0(t, T )h(x, y) +

∫ T

t
dsP0,0(t, s)F (s, x, y),

where we have introduced P0,0 the semigroup generated by A0,0,
which is defined as follows

P0,0(t, s)h(x, y) =

∫
I

dξ

∫
R

dη Γ0,0(t, x, y; s, ξ, η)h(ξ, η),

where 0 ≤ t ≤ s ≤ T , and Γ0,0 is the solution of

0 = (∂t + A0,0)Γ0,0(·, ·, ·;T, ξ, η), Γ0,0(T, ·, ·;T, ξ, η) = δξ,η.



Formula for un,k
Proposition

The function u0,0 is given by

u0,0(t) = P0,0(t, T )ϕ,

and for (n, k) 6= (0, 0), we have

un,k(t) =

n+k∑
j=1

∑
In,k,j

∫ T

t
ds1

∫ T

s1

ds2 · · ·
∫ T

sj−1

dsj

P0,0(t, s1)An1,k1 · · ·P0,0(sj−1, sj)Anj ,kjP0,0(sj , T )ϕ,

with In,k,j given by

In,k,j =


(
n1, · · · , nj
k1, · · · , kj

)
∈ Z2×j

+

∣∣∣∣∣∣∣
n1 + · · ·+ nj = n,

k1 + · · ·+ kj = k,

1 ≤ ni + ki, for all 1 ≤ i ≤ j

 .



Asymptotic accuracy for European claims

Let I = R (European option), and let h− 1 be the number of
Lipschitz continuous derivatives of ϕ. Then under certain
regularity assumptions on the coefficients (µ, σ, g, c), the
approximate solution satisfies the following:

|(u− ūρ0)(t, x, y)| ≤ C (T − t)
h+1
2 , 0 ≤ t < T, x ∈ I, y ∈ R.

For N ≥ 1, we have

|(u− ūρN )(t, x, y)| ≤ C ((T − t)
1
2 + |ρ|)

N∑
i=0

|ρ|i(T − t)
N−i+h

2

0 ≤ t < T, x ∈ I, y ∈ R.

The positive constants C in depend only on N , ϕ (and σ, g, µ, c).
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Numerical example: CEV model

Suppose that S = eX has Constant Elasticity of Variance (Cox
(1975)) dynamics i.e.

dSt = σSγt dWt,

dXt = −1

2
σ2e2Xt(γ−1) dt+ σeXt(γ−1) dWt.

We consider double-barrier knock-out calls and puts with the
following parameters fixed

X0 K T σ γ

0.62 0.62 0.083 0.32 0.019
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CEV double-barrier call

0.65 0.70 0.75 0.80
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Figure 1: For the CEV with
L = 0, we plot u− ū0 (blue
dotted) and u− ū2 (orange
dashed) as a function of the upper
barrier U for a call option.

Figure 2: For the CEV model with
L = 0, we plot u as a function of
the upper barrier U for a call
option.



CEV double-barrier put

Figure 3: For the CEV model with
U = 1, we plot u− ū0 (blue
dotted) and u− ū2 (orange
dashed) as a function of the lower
barrier L for a put option.

Figure 4: For the CEV model with
U = 1, we plot u as a function of
the lower barrier L for a put
option.



Numerical example: Heston model

Suppose that S = eX has Heston (Heston (1993)) dynamics i.e.

dSt =
√
YtStdWt,

dXt = −1

2
Yt dt+

√
Yt dWt,

dYt = κ(θ − Yt) dt+ δ
√
Yt dBt,

d〈W,B〉t = ρdt

We specify a model

X0 Y0 K T ρ κ θ δ

0.62 0.04 .62 0.083 -0.4 1.15 0.04 0.2
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Heston double-barrier call
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Figure 5: For the Heston model,
we plot u− ūρ0 (blue dotted) and
u− ūρ2 (orange dotted-dashed) as
a function of the upper barrier U
for a call option.
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Figure 6: For the Heston model,
we plot u as a function of the
upper barrier U for a call option.



Heston double-barrier put
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Figure 7: For the Heston model,
we plot u− ūρ0 (blue dotted) and
u− ūρ2 (orange dotted-dashed) as
a function of the lower barrier L
for a put option.
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Figure 8: For the Heston model,
we plot u as a function of the
lower barrier L for a put option.



Conclusion

• Limitations of numerical methods and simulations

• Pricing options exactly under general dynamics is impossible,
so we turn to asymptotics

• Constant coefficient PDE theory is used to solve the
asymptotic problem

• Rigorous accuracy results for European options

• Numerical accuracy demonstrations for barrier options
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