Approximate pricing of European and Barrier claims in a local-stochastic volatility setting

Weston Barger

Based on work with Matthew Lorig

Department of Applied Mathematics, University of Washington

Problem statement

We are interested in computing the price of a barrier-style claim

$$V = (V_t)_{0 \le t \le T}$$
 (option)

written on an asset

$$S = (S_t)_{0 \le t \le T}$$
 (asset)

whose payoff at the maturity date T is given by

$$\mathbb{1}_{\{\tau > T\}}\widehat{\varphi}(S_T), \qquad \tau = \inf\{t \ge 0 : S_t \notin \widehat{I}\}.$$
 (payoff)

where \widehat{I} is an interval in \mathbb{R} .

- The option becomes worthless if S leaves \widehat{I} at any time $t \leq T$.
- These types of options are known as knock-out options.

Problem statement

Examples:

- $\widehat{I} = (L, U)$ double-barrier knock-out
- $\widehat{I}=(L,\infty)$ single-barrier option with lower barrier
- $\widehat{I} = (-\infty, U)$ single-barrier option with upper barrier
- $\widehat{I}=(-\infty,\infty)$ European option

Problem statement

Examples:

- $\widehat{I} = (L, U)$ double-barrier knock-out
- $\widehat{I}=(L,\infty)$ single-barrier option with lower barrier
- $\widehat{I} = (-\infty, U)$ single-barrier option with upper barrier
- $\widehat{I}=(-\infty,\infty)$ European option

We can price knock-in options by pricing European and knock-out options using knock-in knock-out parity

$$V_{\widehat{I}}^{(\mathsf{knock-in})} + V_{\widehat{I}}^{(\mathsf{knock-out})} = V^{(\mathsf{European})},$$

where the payoff of a knock-in option is given by

$$\mathbb{1}_{\{\boldsymbol{\tau} \leq T\}}\widehat{\varphi}(S_T).$$

Asset model

For an asset S, we consider models of in a general local-stochastic volatility setting

$$S_t = e^{X_t},$$

$$dX_t = \mu(X_t, Y_t)dt + \sigma(X_t, Y_t)dW_t,$$

$$dY_t = c(X_t, Y_t)dt + g(X_t, Y_t)dB_t,$$

$$d\langle W, B \rangle_t = \rho dt,$$

where W and B are correlated Brownian motions under the pricing probability measure $\mathbb{P}.$

Risk-neutral price

Let

- r = 0,
- $I = \log \widehat{I}$,
- $\varphi(x) = \widehat{\varphi}(e^x) = \widehat{\varphi}(s)$.

To avoid arbitrage, all traded assets must be martingales under the pricing measure \mathbb{P} . The value V_t of the claim with the payoff

$$\mathbb{1}_{\{\tau > T\}}\varphi(X_T), \qquad \underline{\tau} = \inf\{t \ge 0 : X_t \notin I\} \qquad \text{(payoff)}$$

at time $t \leq T$ is given by

$$V_t = \mathbb{1}_{\{\tau > t\}} u(t, X_t, Y_t),$$

where

$$u(t, x, y) := \mathbb{E} \left(\mathbb{1}_{\{\tau > T\}} \varphi(X_T) | X_t = x, Y_t = y, \tau > t \right).$$

Possible Approaches

How might one solve the pricing problem?

- Simulation
 - Ex: Monte Carlo
 - Limitation: Simulation gives you the price for one (X_0,Y_0) and parameter choice.
 - Limitation: Low degree of precision

Possible Approaches

How might one solve the pricing problem?

- Simulation
 - Ex: Monte Carlo
 - Limitation: Simulation gives you the price for one (X_0,Y_0) and parameter choice.
 - Limitation: Low degree of precision
- Numerical PDE solver
 - Ex: Solve PDE using finite difference or finite element
 - Limitation: Numerical solvers suffer from the "curse of dimensionality."
 - Limitation: Discretized solution

Possible Approaches

How might one solve the pricing problem?

- Simulation
 - Ex: Monte Carlo
 - Limitation: Simulation gives you the price for one (X_0,Y_0) and parameter choice.
 - Limitation: Low degree of precision
- Numerical PDE solver
 - Ex: Solve PDE using finite difference or finite element
 - Limitation: Numerical solvers suffer from the "curse of dimensionality."
 - Limitation: Discretized solution
- Analytical techniques on the PDE
 - Ex: perturbation theory
 - Advantage: Fast evaluation at higher dimension
 - Advantage: Ease of implementation

Pricing PDE

The function u

$$u(t, x, y) = \mathbb{E}\left(\mathbb{1}_{\{\tau > T\}}\varphi(X_T)|X_t = x, Y_t = y, \tau > t\right),$$

is the unique classical solution of the Kolmogorov Backward equation

$$0 = (\partial_t + \mathcal{A})u, \qquad u(T, \cdot) = \varphi,$$

where A, the generator of (X,Y), is given explicitly by

$$\mathcal{A} = \frac{1}{2}\sigma^2(x,y)\partial_x^2 + \rho\sigma(x,y)g(x,y)\partial_x\partial_y + \frac{1}{2}g^2(x,y)\partial_y^2 + \mu(x,y)\partial_x + c(x,y)\partial_y,$$

and the domain of A is given by

$$\operatorname{dom}(\mathcal{A}) := \{ g \in C^2 : \lim_{x \to \partial I} g(x, y) = 0 \}.$$

Our approach

The full pricing PDE

$$\begin{split} 0 &= \partial_t u + \frac{1}{2}\sigma^2(x,y)\partial_x^2 u + \rho\sigma(x,y)g(x,y)\partial_x\partial_y u \\ &+ \frac{1}{2}g^2(x,y)\partial_y^2 u + \mu(x,y)\partial_x u + c(x,y)\partial_y u, \\ u(T,\cdot,\cdot) &= \varphi, \end{split}$$

is not generally solvable in closed form.

Our approach

The full pricing PDE

$$\begin{split} 0 &= \partial_t u + \frac{1}{2}\sigma^2(x,y)\partial_x^2 u + \rho\sigma(x,y)g(x,y)\partial_x\partial_y u \\ &+ \frac{1}{2}g^2(x,y)\partial_y^2 u + \mu(x,y)\partial_x u + c(x,y)\partial_y u, \\ u(T,\cdot,\cdot) &= \varphi, \end{split}$$

is not generally solvable in closed form.

If σ,g,μ,c were constant and ${\color{red}\rho}=0,$ the pricing PDE would be

$$\partial_t u + \frac{1}{2}\sigma^2 \partial_x^2 u + \frac{1}{2}g^2 \partial_y^2 u + \mu \partial_x u + c \partial_y u = 0,$$

which is solvable. This suggests a perturbation expansion...

Let $f\in\{\frac{1}{2}\sigma^2,\sigma g,\frac{1}{2}g^2,\mu,c\}$ and $(\bar x,\bar y)\in I\times\mathbb R.$ We introduce $\varepsilon\in[0,1]$ and define

$$f^{\varepsilon}(x,y) := f(\bar{x} + \varepsilon(x - \bar{x}), \bar{y} + \varepsilon(y - \bar{y})).$$

Note that $f^{\varepsilon}(x,y)|_{\varepsilon=1}=f(x,y)$ and $f^{\varepsilon}(x,y)|_{\varepsilon=0}=f(\bar{x},\bar{y})$.

Let $f\in\{\frac{1}{2}\sigma^2,\sigma g,\frac{1}{2}g^2,\mu,c\}$ and $(\bar x,\bar y)\in I\times\mathbb R.$ We introduce $\varepsilon\in[0,1]$ and define

$$f^{\varepsilon}(x,y) := f(\bar{x} + \varepsilon(x - \bar{x}), \bar{y} + \varepsilon(y - \bar{y})).$$

Note that $f^{\varepsilon}(x,y)|_{\varepsilon=1}=f(x,y)$ and $f^{\varepsilon}(x,y)|_{\varepsilon=0}=f(\bar{x},\bar{y})$.

Taylor expanding f^{ε} about the point $\varepsilon=0$ yields

$$f^{\varepsilon} = f_0 + \varepsilon f_1 + \varepsilon^2 f_2 + \cdots,$$

where

$$f_n(x,y) = \sum_{i=0}^n \frac{\partial_x^{n-i} \partial_y^i f(\bar{x}, \bar{y})}{i!(n-i)!} (x - \bar{x})^{n-i} (y - \bar{y})^i.$$

Recall

$$\mathcal{A} = \frac{1}{2}\sigma^2(x,y)\partial_x^2 + \rho\sigma(x,y)g(x,y)\partial_x\partial_y + \frac{1}{2}g^2(x,y)\partial_y^2 + \mu(x,y)\partial_x + c(x,y)\partial_y,$$

Replacing $f\in\{\frac12\sigma^2,\sigma g,\frac12g^2,\mu,c\}$ with f^ε in $\mathcal A$ and expanding yields

$$\mathcal{A}^{\varepsilon,\rho} = \sum_{n=0}^{\infty} \varepsilon^n \left(\mathcal{A}_{n,0} + \rho \mathcal{A}_{n,1} \right),\,$$

where

$$\mathcal{A}_{n,0} := (\frac{1}{2}\sigma^2)_n \partial_x^2 + (\frac{1}{2}g^2)_n \partial_y^2 + \mu_n \partial_x + c_n \partial_y$$

$$\mathcal{A}_{n,1} := (\sigma g)_n \partial_x \partial_y.$$

We try to solve

$$(\partial_t + \mathcal{A}^{\varepsilon, \rho})u^{\varepsilon, \rho} = 0,$$
 $u^{\varepsilon, \rho}(T, \cdot, \cdot) = \varphi$

by expanding $u^{\varepsilon,\rho}$ in powers of ε and ρ as follows

$$u^{\varepsilon, \rho} = \sum_{n=0}^{\infty} \sum_{i=0}^{n} \varepsilon^{n-i} \rho^{i} u_{n-i,i}.$$

An approximation to the solution of the original pricing PDE

$$(\partial_t + \mathcal{A}) u = 0,$$
 $u(T, \cdot, \cdot) = \varphi$

will be obtained by setting $\varepsilon = 1$ in $u^{\varepsilon, \rho}$.

We now have the parameterized set of PDEs

$$(\partial_t + \mathcal{A}^{\varepsilon, \rho}) u^{\varepsilon, \rho} = 0,$$
 $u^{\varepsilon, \rho}(T, \cdot, \cdot) = \varphi.$

Inserting $\mathcal{A}^{\varepsilon,\rho}$ and $u^{\varepsilon,\rho}$ and collecting powers of ε and ρ gives

$$\begin{split} O(\varepsilon^0 \rho^0) : & (\partial_t + \mathcal{A}_{0,0}) \, u_{0,0} = 0, \quad u_{0,0}(T, \cdot, \cdot) = \varphi, \\ O(\varepsilon^n \rho^k) : & (\partial_t + \mathcal{A}_{0,0}) \, u_{n,k} + F_{n,k} = 0, \quad u_{n,k}(T, \cdot, \cdot) = 0, \end{split}$$

where

$$F_{n,k} = \sum_{i=0}^{n} \sum_{j=0}^{k} (1 - \delta_{i+j,0}) \mathcal{A}_{i,j} u_{n-i,k-j}.$$

- $O(\varepsilon^0 \rho^0)$ is a constant coefficient heat equation.
- $O(\varepsilon^n \rho^k)$ is a constant coefficient heat equation with a forcing term.

Nth order approximation

Definition

Let u be the unique classical solution of PDE problem (1).

$$(\partial_t + \mathcal{A}) u = 0, u(T, \cdot, \cdot) = \varphi, (1)$$

We define \bar{u}_N^{ρ} , the Nth order approximation of u, as

$$\bar{u}_N^{\boldsymbol{\rho}}(t,x,y) := \sum_{i=0}^N \sum_{j=0}^i \varepsilon^j \rho^{i-j} u_{j,i-j}(t,x,y) \Big|_{(\bar{x},\bar{y},\varepsilon)=(x,y,1)},$$

where $u_{0,0}$ satisfies (2) and $u_{n,k}$ satisfies (3) for $(n,k) \neq (0,0)$.

$$(\partial_t + \mathcal{A}_{0,0}) u_{0,0} = 0, \qquad u_{0,0}(T, \cdot, \cdot) = \varphi,$$
 (2)

$$(\partial_t + \mathcal{A}_{0,0}) u_{n,k} + F_{n,k} = 0, \qquad u_{n,k}(T,\cdot,\cdot) = 0.$$
 (3)

Duhamel's principal

Duhamel's principle states that the the unique classical solution to

$$(\partial_t + \mathcal{A}_{0,0})u + F = 0, \qquad u(T, \cdot, \cdot) = h,$$

is given by

$$u(t, x, y) = \mathcal{P}_{0,0}(t, T)h(x, y) + \int_{t}^{T} ds \, \mathcal{P}_{0,0}(t, s)F(s, x, y),$$

where we have introduced $\mathcal{P}_{0,0}$ the *semigroup* generated by $\mathcal{A}_{0,0}$, which is defined as follows

$$\mathcal{P}_{0,0}(t,s)h(x,y) = \int_I d\xi \int_{\mathbb{R}} d\eta \, \Gamma_{0,0}(t,x,y;s,\xi,\eta)h(\xi,\eta),$$

where $0 \le t \le s \le T$, and $\Gamma_{0,0}$ is the solution of

$$0 = (\partial_t + \mathcal{A}_{0,0}) \Gamma_{0,0}(\cdot, \cdot, \cdot; T, \xi, \eta), \quad \Gamma_{0,0}(T, \cdot, \cdot; T, \xi, \eta) = \delta_{\xi,\eta}.$$

Formula for $u_{n,k}$

Proposition

The function $u_{0,0}$ is given by

$$u_{0,0}(t) = \mathcal{P}_{0,0}(t,T)\varphi,$$

and for $(n,k) \neq (0,0)$, we have

$$u_{n,k}(t) = \sum_{j=1}^{n+k} \sum_{I_{n,k,j}} \int_{t}^{T} ds_{1} \int_{s_{1}}^{T} ds_{2} \cdots \int_{s_{j-1}}^{T} ds_{j}$$

$$\mathcal{P}_{0,0}(t, s_{1}) \mathcal{A}_{n_{1},k_{1}} \cdots \mathcal{P}_{0,0}(s_{j-1}, s_{j}) \mathcal{A}_{n_{j},k_{j}} \mathcal{P}_{0,0}(s_{j}, T) \varphi,$$

with $I_{n,k,j}$ given by

$$I_{n,k,j} = \left\{ \begin{pmatrix} n_1, \cdots, n_j \\ k_1, \cdots, k_j \end{pmatrix} \in \mathbb{Z}_+^{2 \times j} \left| \begin{array}{l} n_1 + \cdots + n_j = n, \\ k_1 + \cdots + k_j = k, \\ 1 \leq n_i + k_i, \text{ for all } 1 \leq i \leq j \end{array} \right\}.$$

Asymptotic accuracy for European claims

Let $I=\mathbb{R}$ (European option), and let h-1 be the number of Lipschitz continuous derivatives of φ . Then under certain regularity assumptions on the coefficients (μ,σ,g,c) , the approximate solution satisfies the following:

Asymptotic accuracy for European claims

Let $I=\mathbb{R}$ (European option), and let h-1 be the number of Lipschitz continuous derivatives of φ . Then under certain regularity assumptions on the coefficients (μ,σ,g,c) , the approximate solution satisfies the following:

$$|(u - \bar{u}_0^{\rho})(t, x, y)| \le C (T - t)^{\frac{h+1}{2}}, \quad 0 \le t < T, \quad x \in I, y \in \mathbb{R}.$$

For $N \geq 1$, we have

$$\begin{split} |(u - \bar{u}_N^{\textcolor{red}{\rho}})(t, x, y)| & \leq C \, ((T - t)^{\frac{1}{2}} + |\textcolor{red}{\rho}|) \sum_{i=0}^N |\textcolor{red}{\rho}|^i (T - t)^{\frac{N - i + h}{2}} \\ 0 & \leq t < T, x \in I, y \in \mathbb{R}. \end{split}$$

The positive constants C in depend only on N, φ (and σ, g, μ, c).

Numerical example: CEV model

Suppose that $S=\mathrm{e}^X$ has Constant Elasticity of Variance (Cox (1975)) dynamics i.e.

$$dS_t = \sigma S_t^{\gamma} dW_t,$$

$$dX_t = -\frac{1}{2} \sigma^2 e^{2X_t(\gamma - 1)} dt + \sigma e^{X_t(\gamma - 1)} dW_t.$$

Numerical example: CEV model

Suppose that $S=\mathrm{e}^X$ has Constant Elasticity of Variance (Cox (1975)) dynamics i.e.

$$dS_t = \sigma S_t^{\gamma} dW_t,$$

$$dX_t = -\frac{1}{2} \sigma^2 e^{2X_t(\gamma - 1)} dt + \sigma e^{X_t(\gamma - 1)} dW_t.$$

We consider double-barrier knock-out calls and puts with the following parameters fixed

X_0	K	T	σ	γ
0.62	0.62	0.083	0.32	0.019

CEV double-barrier call

Figure 1: For the CEV with L=0, we plot $u-\bar{u}_0$ (blue dotted) and $u-\bar{u}_2$ (orange dashed) as a function of the upper barrier U for a call option.

Figure 2: For the CEV model with L=0, we plot u as a function of the upper barrier U for a call option.

CEV double-barrier put

Figure 3: For the CEV model with U=1, we plot $u-\bar{u}_0$ (blue dotted) and $u-\bar{u}_2$ (orange dashed) as a function of the lower barrier L for a put option.

Figure 4: For the CEV model with U=1, we plot u as a function of the lower barrier L for a put option.

Numerical example: Heston model

Suppose that $S = e^X$ has Heston (Heston (1993)) dynamics i.e.

$$\begin{split} \mathrm{d}S_t &= \sqrt{Y_t} S_t \mathrm{d}W_t, \\ \mathrm{d}X_t &= -\frac{1}{2} Y_t \, \mathrm{d}t + \sqrt{Y_t} \, \mathrm{d}W_t, \\ \mathrm{d}Y_t &= \kappa (\theta - Y_t) \, \mathrm{d}t + \delta \sqrt{Y_t} \, \mathrm{d}B_t, \\ \mathrm{d}\langle W, B \rangle_t &= \rho \, \mathrm{d}t \end{split}$$

Numerical example: Heston model

Suppose that $S = e^X$ has Heston (Heston (1993)) dynamics i.e.

$$dS_t = \sqrt{Y_t} S_t dW_t,$$

$$dX_t = -\frac{1}{2} Y_t dt + \sqrt{Y_t} dW_t,$$

$$dY_t = \kappa(\theta - Y_t) dt + \delta \sqrt{Y_t} dB_t,$$

$$d\langle W, B \rangle_t = \rho dt$$

We specify a model

λ	$\overline{\zeta_0}$	Y_0	K	T	ρ	κ	θ	δ
0	.62	0.04	.62	0.083	-0.4	1.15	0.04	0.2

Heston double-barrier call

Figure 5: For the Heston model, we plot $u-\bar{u}_0^\rho$ (blue dotted) and $u-\bar{u}_2^\rho$ (orange dotted-dashed) as a function of the upper barrier U for a call option.

Figure 6: For the Heston model, we plot u as a function of the upper barrier U for a call option.

Heston double-barrier put

Figure 7: For the Heston model, we plot $u-\bar{u}_0^{\rho}$ (blue dotted) and $u-\bar{u}_2^{\rho}$ (orange dotted-dashed) as a function of the lower barrier L for a put option.

Figure 8: For the Heston model, we plot u as a function of the lower barrier L for a put option.

Conclusion

- · Limitations of numerical methods and simulations
- Pricing options exactly under general dynamics is impossible, so we turn to asymptotics
- Constant coefficient PDE theory is used to solve the asymptotic problem
- Rigorous accuracy results for European options
- Numerical accuracy demonstrations for barrier options

Bibliography I

- Barger, W. and M. Lorig (2016). Approximate pricing of European and Barrier claims in a local-stochastic volatility setting. *To appear: Journal of Financial Engineering*.
- Cox, J. (1975). Notes on option pricing I: Constant elasticity of diffusions. *Unpublished draft, Stanford University*. A revised version of the paper was published by the Journal of Portfolio Management in 1996.
- Heston, S. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. *Rev. Financ. Stud.* 6(2), 327–343.
- Lorig, M., S. Pagliarani, and A. Pascucci (2015). Analytical expansions for parabolic equations. *SIAM Journal on Applied Mathematics* 75(2), 468–491.