#### Asset pricing under optimal contracts

Jakša Cvitanić (Caltech)

joint work with

Hao Xing (LSE)

#### Motivation and overview

- Existing literature: either
  - Prices are fixed, optimal contract is found or
  - Contract is fixed, prices are found in equilibrium
- ► An exception: Buffa-Vayanos-Woolley 2014 [BVW 14]
- However, [BVW 14] still severely restrict the set of admissible contracts
- ▶ We allow more general contracts and explore equilibrium implications

#### Literature

#### Fixed contracts:

```
Brennan (1993)
Cuoco-Kaniel (2011)
He-Krishnamurthy (2011)
Lioui and Poncet (2013)
Basak-Pavlova (2013)
```

#### Fixed prices:

```
Sung (1995)
Ou-Yang (2003)
Cadenillas, Cvitanić and Zapatero (2007)
Leung (2014)
Cvitanić, Possamai and Touzi, CPT (2016, 2017)
```

# Buffa-Vayanos-Woolley 2014 [BVW 14]

▶ Optimal contract is obtained within the class

```
compensation rate = \phi \times \text{ portfolio return} - \chi \times \text{ index return}.
```

#### Our questions:

- What is the optimal contract when investors are allowed to optimize in a larger class of contracts? (Linear contract is optimal in [Holmstrom-Milgrom 1987])
- 2. What are the equilibrium properties?

# As shown in CPT (2016, 2017) ...

The optimal contract depends on the output, its quadratic variation, the contractible sources of risk (if any), and the cross-variations between the output and the risk sources.

#### Our results

- ▶ Computing the optimal contract and equilibrium prices
- ▶ Equilibrium asset prices distorted to a lesser extent:

Second order sensitivity to agency frictions compared to the first order sensitivity in [BVW 14].

## Outline

Introduction

Model [BVW 14]

Main results

**Technicalities** 

#### **Assets**

Riskless asset has an exogenous constant risk-free rate r.

Prices of N risky assets will be determined in equilibrium.

Dividend of asset i is given by

$$D_{it} = a_i p_t + e_{it},$$

where p and  $e_i$  follow Ornstein-Uhlenbeck processes

$$dp_{t} = \kappa^{p}(\bar{p} - p_{t})dt + \sigma_{p}dB_{t}^{p},$$
  

$$de_{it} = \kappa_{i}^{e}(\bar{e}_{i} - e_{it})dt + \sigma_{ei}dB_{it}^{e}.$$

Vector of asset excess returns per share

$$dR_t = D_t dt + dS_t - rS_t dt.$$

The excess return of index

$$I_t = \eta' R_t$$

where  $\eta = (\eta_1, \dots, \eta_N)'$  are the numbers of shares of assets in the market.



#### Available shares

Number of shares available to trade:  $\theta=(\theta_1,\ldots,\theta_N)'$  (Some assets may be held by buy-and-hold investors.)

We assume that  $\eta$  and  $\theta$  are not linearly dependent. (Manager provides value to Investor.)

# Portfolio manager

Portfolio manager's wealth process follows

$$d\bar{W}_t = r\bar{W}_t dt + (b m_t - \bar{c}_t) dt + dF_t,$$

- $ightharpoonup \bar{c}_t$  is Manager's consumption rate
- $ightharpoonup F_t$  is the cumulative compensation paid by Investor
- ▶  $b m_t$  is the private benefit from his shirking action  $m_t$ ,  $b \in [0, 1]$ , [DeMarzo-Sannikov 2006]
- No private investment
- Chooses portfolio Y for Investor

#### Investor

The reported portfolio value process:

$$G=\int_0^{\cdot}(Y_s'dR_s-m_sds).$$

Investor observes only G and I

Her wealth process follows

$$dW_t = rW_t dt + dG_t + y_t dI_t - c_t dt - dF_t,$$

- $\triangleright$   $Y_t$  is the vector of the numbers of shares chosen by Manager
- $\triangleright$   $y_t$  is the number of shares of index chosen by Investor
- c<sub>t</sub> is Investor's consumption rate
- $ightharpoonup m_t$  is Manager's shirking action, assumed to be nonnegative

# Manager's optimization problem

Manager maximizes utility over intertemporal consumption:

$$ar{V} = \max_{ar{c},m,Y} \mathbb{E} \Big[ \int_0^\infty \mathrm{e}^{-ar{\delta}t} u_{A}(ar{c}_t) dt \Big],$$

- $lackbox{}\bar{\delta}$  is Manager's discounting rate
- $\qquad \qquad u_A(\bar{c}) = -\frac{1}{\bar{\rho}}e^{-\bar{\rho}\bar{c}}$

# Manager's optimization problem

Manager maximizes utility over intertemporal consumption:

$$ar{V} = \max_{ar{c},m,Y} \mathbb{E} \Big[ \int_0^\infty \mathrm{e}^{-ar{\delta}t} u_{\mathcal{A}}(ar{c}_t) dt \Big],$$

- $lackbox{ar{\delta}}$  is Manager's discounting rate

If Manager is not employed by Investor, he maximizes

$$ar{V}^u = \max_{ar{c}^u, Y^u} \mathbb{E} \Big[ \int_0^\infty e^{-ar{\delta}t} u_A(ar{c}^u_t) dt \Big]$$

subject to budget constraint

$$d\bar{W}_t = r\bar{W}_t + Y_t^u dR_t - \bar{c}_t^u dt.$$

Manager takes the contact if  $\bar{V} \geq \bar{V}^u$ .



## Investor's maximization problem

Investor maximizes utility over intertemporal consumption:

$$V = \max_{c,F,y} \mathbb{E} \Big[ \int_0^\infty e^{-\delta t} u_P(c_t) dt \Big],$$

- $ightharpoonup \delta$  is Investor's discounting rate
- $u_P(c) = -\frac{1}{\rho}e^{-\rho c}$

## Investor's maximization problem

Investor maximizes utility over intertemporal consumption:

$$V = \max_{c,F,y} \mathbb{E} \Big[ \int_0^\infty e^{-\delta t} u_P(c_t) dt \Big],$$

- $ightharpoonup \delta$  is Investor's discounting rate
- $u_P(c) = -\frac{1}{\rho}e^{-\rho c}$

If Investor does not hire Manager, she maximizes

$$V^u = \max_{c^u, y^u} \mathbb{E} \Big[ \int_0^\infty e^{-\delta t} u_P(c_t^u) dt \Big]$$

subject to budget constraint

$$dW_t = rW_t + y_t^u dI_t - c_t^u dt.$$

Investor hires Manager if  $V \geq V^u$ .



## Equilibrium

A price process S, a contract F in a class of contracts  $\mathbb{F}$ , and an index investment y, form an equilibrium if

- 1. Given S,  $(F, \mathbb{F})$ , and y, Manager takes the contract, and  $Y = \theta y \eta$  solves Manager's optimization problem.
- 2. Given S, Investor hires Manager, and (F, y) solves Investor's optimization problem, and F is the optimal contract in  $\mathbb{F}$ .

## Outline

Introduction

Model [BVW 14]

Main results

**Technicalities** 

## Asset prices

There exists an equilibrium with asset prices  $S_{it} = a_{0i} + a_{pi}p_t + a_{ei}e_{it}$  (assuming  $\theta$  and  $\eta$  are not linearly dependent.)

Setting 
$$a_p=(a_{p1},\ldots,a_{pN})'$$
 and  $a_e=diag\{a_{e1},\ldots,a_{eN}\}$ , we have 
$$a_{pi}=\frac{a_i}{r+\kappa^p}\quad a_{ei}=\frac{1}{r+\kappa^e_i},\quad i=1,\ldots,N,$$

(assuming the matrix  $\Sigma_R = a_p \sigma_p^2 a_p' + a_e' \sigma_E^2 a_e$  is invertible.)

## Asset prices

There exists an equilibrium with asset prices  $S_{it} = a_{0i} + a_{pi}p_t + a_{ei}e_{it}$  (assuming  $\theta$  and  $\eta$  are not linearly dependent.)

Setting  $a_p = (a_{p1}, \dots, a_{pN})'$  and  $a_e = diag\{a_{e1}, \dots, a_{eN}\}$ , we have

$$a_{pi} = \frac{a_i}{r + \kappa^p}$$
  $a_{ei} = \frac{1}{r + \kappa_i^e}$ ,  $i = 1, \dots, N$ ,

(assuming the matrix  $\Sigma_R = a_p \sigma_p^2 a_p' + a_e' \sigma_E^2 a_e$  is invertible.)

Notation:

$$\label{eq:Var} \textit{Var}^{\eta} = \eta' \Sigma_R \eta, \quad \textit{Covar}^{\theta,\eta} = \eta' \Sigma_R \theta,$$
 CAPM beta of the fund portfolio:  $\beta^{\theta} = \frac{\textit{Covar}^{\theta,\eta}}{\textit{Var}^{\eta}}.$ 

#### Asset Returns

Asset excess returns are

$$\mu - r = r \frac{\rho \bar{\rho}}{\rho + \bar{\rho}} \Sigma_R \theta + r \mathcal{D}_b \Sigma_R (\theta - \beta^\theta \eta),$$

where

$$\mathcal{D}_{b} = (\rho + \bar{\rho}) \left( b - \frac{\rho}{\rho + \bar{\rho}} \right)_{+}^{2}.$$

- ▶ When  $b \in [0, \frac{\rho}{\rho + \overline{\rho}}]$ , the first best is obtained.
- When  $\frac{\theta_i}{\eta_i} > \beta^{\theta}$ , risk premium of asset *i* increases with *b*.
  - When  $\frac{\theta_i}{\eta_i} < \beta^{\theta}$ , risk premium of asset *i* decreases with *b*.

## Asset prices/returns

In [BVW 14],  $\mathcal{D}_b$  is replaced by

$$\mathscr{D}_b^{BVW} = \bar{\rho} \Big( b - \frac{\rho}{\rho + \bar{\rho}} \Big)_+.$$

Note that

$$\mathscr{D}_b < \mathscr{D}_b^{BVW}, \quad \text{ for any } b \in (0,1).$$

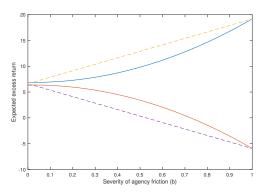


Figure: Solid lines: our result; Dashed lines: [BVW 14].

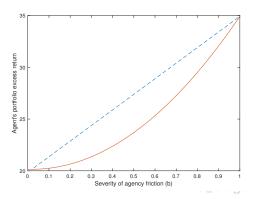
## Index and portfolio returns

Excess return of the index

$$\eta'(\mu-r)=rrac{
hoar
ho}{
ho+ar
ho}{\sf Covar}^{ heta,\eta}.$$

Excess return of Manager's portfolio

$$heta'(\mu-r)=rrac{
hoar
ho}{
ho+ar
ho} Var^{ heta}+r\mathscr{D}_{f b}\Big(Var^{ heta}-rac{( extit{Covar}^{ heta,\eta})^2}{Var^{\eta}}\Big).$$



## Optimal contract

$$dF_t = Cdt + \frac{\rho}{\rho + \bar{\rho}} dG_t + \xi (dG_t - \beta^{\theta} dI_t) + \frac{r}{2} \zeta d\langle G - \beta^{\theta} I, G^{\theta} - \beta^{\theta} I \rangle_t$$

- Optimality in a large class of contracts
- Conjecture: It is optimal in general.
- ▶ When  $b \le \frac{\rho}{\rho + \bar{\rho}}$ ,  $\xi = \zeta = 0$ , only the first two terms show up. The return of the fund is shared between investor and portfolio manager with ratio  $\frac{\rho}{\rho + \bar{\rho}}$ .
- BVW 14 contract corresponds to the two terms in the middle.
  - ► The quadratic variation term is new.
  - $ightharpoonup \langle G \beta^{\theta} I, G \beta^{\theta} I \rangle$  can be thought as asttracking gap.

Tracking gap is rewarded to motivate Manager to take the specific risk of individual stocks, and not only the systematic risk of the index.

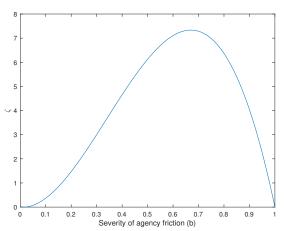


## Optimal contract

When  $b \geq \frac{\rho}{\rho + \bar{\rho}}$ ,

 $\xi$  is increasing in  $\emph{b}$ , so as to make Manager to not employ the shirking action.

Dependence of  $\zeta$  on b:



## New contract improves Investor's value

For the asset price in [BVW 14], Investor's value is improved by using the new contract.

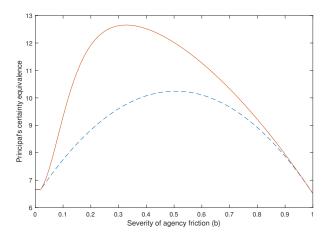


Figure: Solid line: our contract, Dashed line: [BVW 14]

## Outline

Introduction

Model [BVW 14]

Main results

**Technicalities** 

## Admissible contracts: motivation

For any Manager's admissible strategy  $\Xi = (\bar{c}, Y, m)$ , consider

$$\Xi^t = \{\hat{\Xi} \text{ admissible } | \hat{\Xi}_s = \Xi_s, s \in [0, t]\}.$$

Define Manager's continuation value process  $\bar{\mathcal{V}}(\Xi)$  as

$$ar{\mathcal{V}}_t(\Xi) = \operatorname{ess\ sup}_{\Xi^t} \mathbb{E}_t \Big[ \int_t^\infty e^{-ar{\delta}(s-t)} u_A(ar{c}_s) ds \Big], \quad t \geq 0.$$

## Admissible contracts: motivation

For any Manager's admissible strategy  $\Xi = (\bar{c}, Y, m)$ , consider

$$\Xi^t = \{\hat{\Xi} \text{ admissible } | \hat{\Xi}_s = \Xi_s, s \in [0, t] \}.$$

Define Manager's continuation value process  $\bar{\mathcal{V}}(\Xi)$  as

$$ar{\mathcal{V}}_t(\Xi) = \operatorname{ess\ sup}_{\Xi^t} \mathbb{E}_t \Big[ \int_t^\infty e^{-ar{\delta}(s-t)} u_A(ar{c}_s) ds \Big], \quad t \geq 0.$$

- (i)  $\partial_{\bar{W}_t} \bar{\mathcal{V}}_t(\Xi) = -r \bar{\rho} \bar{\mathcal{V}}_t(\Xi);$
- (ii) Transversality condition:  $\lim_{t\to\infty}\mathbb{E}\big[e^{-\bar{\delta}t}\bar{\mathcal{V}}_t(\Xi)\big]=0$ ;
- (iii) Martingale principle:

$$\tilde{\mathcal{V}}_t(\Xi) = e^{-\bar{\delta}t}\bar{\mathcal{V}}_t(\Xi) + \int_0^t e^{-\bar{\delta}s}u_A(\bar{c}_s)ds,$$

is a supermartingale for arbitrary admissible strategy  $\Xi$ , and is a martingale for the optimal strategy  $\Xi^*$ .



## Admissible contracts: definition

(Motivated by CPT (2016), (2017))

A contract F is admissible if

- 1. there exists a constant  $\bar{V}_0$ ,
- 2. for any Agent's strategy there exist  $\mathbb{F}^{G,I}$ -adapted processes  $Z, U, \Gamma^G, \Gamma^I, \Gamma^{GI}$  such that the process  $\bar{V}(\Xi)$ , defined via

$$\begin{split} d\bar{V}_t(\Xi) = & X_t \left[ (bm_t - \bar{c}_t) dt + Z_t dG_t + \frac{U_t}{U_t} dI_t \right. \\ & + \frac{1}{2} \frac{\Gamma_t^G}{t} d\langle G, G \rangle_t + \frac{1}{2} \frac{\Gamma_t^I}{t} d\langle I, I \rangle_t + \frac{\Gamma_t^{GI}}{t} d\langle G, I \rangle_t \right] \\ & + \bar{\delta} \bar{V}_t(\Xi) dt - H_t dt, \quad \bar{V}_0(\Xi) = \bar{V}_0, \end{split}$$

where  $X_t = -r\bar{\rho}\bar{V}_t(\Xi)$  and H is the Hamiltonian

$$\begin{split} H &= \sup_{\bar{c}, m \geq 0, Y} \Big\{ u_A(\bar{c}) + X \Big[ bm - \bar{c} - Zm + ZY'(\mu - r) + U\eta'(\mu - r) \\ &\quad + \tfrac{1}{2} \Gamma^G Y' \Sigma_R Y + \tfrac{1}{2} \Gamma^I \eta' \Sigma_R \eta + \Gamma^{GI} Y' \Sigma_R \eta \Big] \Big\}, \end{split}$$

satisfies  $\lim_{t\to\infty}\mathbb{E}\big[e^{-\bar{\delta}t}\,\bar{V}_t(\Xi)\big]=0.$ 



# Manager's optimal strategy

#### Lemma

Given an admissible contract with

$$X > 0$$
,  $Z \ge b$ , and  $\Gamma^G < 0$ ,

the Manager's optimal strategy is the one maximizing the Hamiltonian,

$$\bar{c}^* = (u_A')^{-1}(X), \quad m^* = 0,$$

$$Y^* + y\eta = -\frac{Z}{\Gamma^G} \Sigma_R^{-1} (\mu - r) - \frac{\Gamma^{GI}}{\Gamma^G} \eta,$$

and we have

$$\bar{V}(\Xi) = \hat{\mathcal{V}}(\Xi).$$

## Do we lose on generality?

[CPT 2016, 2016] considered the finite horizon case,

$$\begin{split} d\bar{V}_t = & X_t \Big[ b m_t dt + \frac{Z_t}{2} dG_t + \frac{U_t}{U_t} dI_t \\ & + \frac{1}{2} \Gamma_t^G d\langle G, G \rangle_t + \frac{1}{2} \Gamma_t^I d\langle I, I \rangle_t + \Gamma_t^{GI} \langle G, I \rangle_t \Big] - H_t dt. \end{split}$$

 $ar{V}_{\mathcal{T}} = \mathcal{C}$  is the lump-sum compensation paid.

They showed the set of C that can be represented as  $\bar{V}_T$  is dense in the set of all (reasonable) contracts. Hence, there is no loss of generality in their framework.

Their proof is based on the 2BSDE theory, e.g., [Soner-Touzi-Zhang 2011,12,13].

Conjecture: A similar result holds for the infinite horizon case. (Work in progress by Lin, Ren, and Touzi.)

## Representation of admissible contracts

#### Lemma

An admissible contract F can be represented as

$$\begin{split} dF_t = & Z_t dG_t + U_t dI_t + \tfrac{1}{2} \Gamma_t^G \, d\langle G, G \rangle_t + \tfrac{1}{2} \Gamma_t^I \, d\langle I, I \rangle_t + \Gamma_t^{GI} \, d\langle G, I \rangle_t \\ & + \tfrac{1}{2} r \bar{\rho} \, d\langle Z \cdot G + U \cdot I, Z \cdot G + U \cdot I \rangle_t - \left( \tfrac{\bar{\delta}}{r \bar{\rho}} + \bar{H}_t \right) dt, \end{split}$$

where  $Z \cdot G = \int_0^{\cdot} Z_s dG_s$  and

$$\begin{split} \bar{H}_t = & \frac{1}{\bar{\rho}} \log(-r\bar{\rho}\bar{V}_0) - \frac{1}{\bar{\rho}} + (Z_tY_t^* + U_t\eta)'(\mu_t - r) \\ & + \frac{1}{2}\Gamma_t^G (Y_t^*)'\Sigma_R Y_t^* + \frac{1}{2}\Gamma_t^I \eta'\Sigma_R \eta + \Gamma_t^{GI} (Y_t^*)'\Sigma_R \eta. \end{split}$$

In particular, F is adapted to  $\mathbb{F}^{G,l}$  (as it should be).

# Investor's problem

1. Guess Investor's value function

$$V(w) = Ke^{-r\rho w}$$
,

2. Treat  $Z, U, \Gamma^G, \Gamma^{GI}$  as Investor's control variables.

3. Work the with HJB equation satisfied by V.

#### Conclusion

- We find an asset pricing equilibrium with the contract optimal in a large class. (Maybe the largest.)
- Price/return distortion less sensitive to agency frictions.
- The contract based on the "tracking gap" and its quadratic variation.

#### Future work:

Square root, CIR dividend processes

# Thank you for your attention!