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1. The Eisenberg & Noe Local Model

Network Model with Local Interactions Only:
Eisenberg & Noe (2001)

n financial firms

Nominal liability matrix: (Lij)i,j=0,1,2,...,n

Total liabilities: p̄i =
∑n

j=0 Lij

Relative liabilities:

aij =

{

Lij

p̄i
if p̄i > 0,

0 if p̄i = 0.
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1. The Eisenberg & Noe Local Model

Network Model with Local Interactions Only:

Liquid endowment: x ∈ R
n
+

Obligations fulfilled via transfers of the liquid asset.

Equilibrium computed as fixed point: p ∈ R
n
+:

pi = p̄i ∧



xi +
n
∑

j=1

ajipj



 , i = 1, 2, ..., n

Existence: Tarski’s fixed point theorem: maximal and
minimal fixed points p− ≤ p+.
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1. The Eisenberg & Noe Local Model

Network Model with Local Interactions Only:
Uniqueness

S ⊆ {1, 2, ..., n} is a surplus set if Lij = 0 and
∑

i∈S xi > 0
for all (i, j) ∈ S × Sc

o(i) = {j ∈ {1, 2, ..., n} | ∃ directed path from i to j}

If o(i) is a surplus set for every bank i then there exists a
unique payment vector p := p+ = p− (Banach fixed point
theorem)
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2. Multilayered Financial Networks

Multilayered Network Model: Montagna & Kok (2013),
Poledna, Molina-Borboa, Martinez-Jaramillo, Leij &
Thurner (2015), Battiston, Caldarelli & D’Errico
(2016), Feinstein (2017)

Endowment: x ∈ R
n×m
+

Nominal liabilities: L ∈ R
n×n×m
+

Obligations must be fulfilled via transfers of the physical
assets.

Assets may be transferred to cover obligations or maximize
utility, but these are subject to price impact described by
the inverse demand function.

Inverse demand function: F : Rm → R
m
+ maps units of

illiquid assets being sold (positive input) or bought
(negative input) into corresponding prices in some
(possibly fictitious) numéraire.
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2. Multilayered Financial Networks

Multilayered Network Model:

Assume inverse demand function is continuous and
nonincreasing with codomain [q, q̄] ⊆ R

m
++.

Assume the network model in asset k follows the
Eisenberg & Noe (2001) model:

Total liabilities: p̄ki :=
∑n

j=1
Lk
ij

Relative liabilities: akij :=

{

Lk
ij

p̄k
i

if p̄ki > 0

0 if p̄ki = 0

Firm portfolio holdings: y ∈ R
n×m
+

Initial portfolio wealth: for firm i in asset k is

xki +

n
∑

j=1

akji[p̄
k
j ∧ ykj ].
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2. Multilayered Financial Networks

Multilayered Network Model:

Payments must be made so that positive equity only
accumulates after all obligations are paid

pi ∈ Pi(y
∗, q∗)

⊆ Eff
pi∈[0,p̄i]







pi |

m
∑

k=1

q∗kp
k
i ≤

m
∑

k=1

q∗k



xki +

n
∑

j=1

akji[p̄
k
j ∧ y∗kj ]











.

Holdings may involve futher transfers to maximize utility

yi ∈ Yi(y
∗, q∗) = argmax

ei∈R
m
+

{

ui(ei; y
∗
−i, q

∗) | ei ∈ Hi

}

Hi =

{

ei

∣

∣

∣

∣

∣

p̄i ∧ ei ∈ Pi(y
∗, q∗),

∑m
k=1 q

∗
kei =

∑m
k=1 q

∗
k

(

xki +
∑n

j=1 a
k
ji

[

p̄kj ∧ y∗kj

])
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2. Multilayered Financial Networks

Multilayered Network Model:

Prices update based on asset transfers

q(y∗, q∗) = F





n
∑

i=1



xki +
n
∑

j=1

akji[p̄
k
j ∧ y∗kj ]− y∗ki





k=1,...,m





= F

(

n
∑

i=1

(xi + [p̄i ∧ y∗i ]− y∗i )

)

Equilibrium computed as fixed point: (y, q) ∈ R
n×m
+ × [q, q̄]

(y, q) ∈

(

n
∏

i=1

Yi(y, q)

)

× {q(y, q)}
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2. Multilayered Financial Networks

Multilayered Network Model: Existence

Let Pi be given as the maximizer of a continuous
regulatory function hi which is strictly increasing and
strictly quasi-concave in the first component

Pi(y
∗, q∗) =

argmax
pi∈[0,p̄i]







hi(pi; y
∗, q∗) |

m
∑

k=1

q∗kp
k
i ≤

m
∑

k=1

q∗k



xki +

n
∑

j=1

akji[p̄
k
j ∧ y∗kj ]





Let ui be jointly continuous and quasi-concave in the first
component

There exists an equilibrium solution (via Berge maximum
theorem and Kakutani fixed point theorem)

(y, q) ∈

(

n
∏

i=1

Yi(y, q)

)

× {q(y, q)}
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2. Multilayered Financial Networks

Multilayered Network Model: Existence

Assume hi and ui satisfy a dynamic programming

principle

hi(p; y, x, p̄) = hi(p− Pi(y
′, q); y, x− Pi(y

′, q), p̄ − Pi(y
′, q))

ui(e; y, x, p̄) = ui(e− Yi(y
′, q); y, x − Yi(y

′, q), (p̄ − Yi(y
′, q))+)

For every q:

There exists a greatest and least equilibrium holdings
y↑(q) ≥ y↓(q)
Positive equity of all firms is equal for every fixed point
(y↑i (q)− p̄i)

+ = (y↓i (q)− p̄i)
+

If every bank owes positive amount to sink node (0) in
every asset, then y↑(q) = y↓(q) for every q.

This unique equilibrium y : [q, q̄] → R
n×m
+ is continuous.
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2. Multilayered Financial Networks

Multilayered Network Model: Case Study A

m = 2 assets; F1 ≡ 1

F2(z) =

{

f(z2) if z2 ≥ 0
1

f(α−1(−z2))
if z2 < 0

f(z) =
3 tan−1(−z) + 2π

2π
; α(z) = zf(z)

n = 20 firms and a society node

25% of connection of size 1 between firms in each asset
independently

All firms owe 1 in each asset to the society node

Initial endowments uniformly chosen between 0 and 20 and
split evenly between the two assets
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2. Multilayered Financial Networks

Case Study A

0.5 1 1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

3

3.5

4
Comparison of initial price q* to resultant price q(y(q*),q*)

surplus
priority
proportional
wealth maximizing

Figure: A comparison of different regulatory and utility schemes with
two assets.
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2. Multilayered Financial Networks

Multilayered Network Model: Case Study B

m = 3 assets; F1 ≡ 1

Fk(z) =
tan−1(−1.5zk) + π

tan−1(−1.5z1) + π

n = 10 firms and a society node

50% of connection of size 1 between firms in each asset
independently

All firms owe 1 in each asset to the society node

Initial endowments of 5 split between the three assets
(uniform between 10

9 and 20
9 in first asset, remainder split

evenly in 2nd and 3rd)

Z. Feinstein Financial Contagion with Multiple Illiquid Assets 16 / 24



2. Multilayered Financial Networks

Case Study B
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Figure: Proportional regulation and minimal trading utility with
three assets.
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2. Multilayered Financial Networks

Case Study B
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Figure: Proportional regulation and wealth maximizing utility with
three assets.
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2. Multilayered Financial Networks

Multilayered Network Model: Grexit Study

m = 2 assets; F1 ≡ 1

F2(z) =

{

f(z2) if z2 ≥ 0
1

f(α−1(−z2))
if z2 < 0

f(z) =
4 tan−1(−10−4z) + 3π

3π
; α(z) = zf(z)

n = 87 firms and a society node

Calibrated to EBA data with Gandy & Veraart (2016)

Under Eisenberg & Noe (2001): No failures
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2. Multilayered Financial Networks

Multilayered Network Model: Grexit Study

Initial endowments:

x1i := xEN
i −GEi, x2i := GEi ∀i ∈ N\G

x1i := 0, x2i := xEN
i ∀i ∈ G

L1
ij := LEN

ij , L2
ij := 0 ∀i ∈ N\G ∀j ∈ N ∪ {0}

L1
ij := LEN

ij , L2
ij := 0 ∀i ∈ N ∀j ∈ N\G

L1
ij := 0, L2

ij := LEN
ij ∀i ∈ G ∀j ∈ G ∪ {0}.
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2. Multilayered Financial Networks

Grexit Study
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Comparison of initial price q* to resultant price q(y(q*),q*)

q* = (1 , 0.44331)T

Total Defaults:   3
Greek Defaults: 0

Figure: Proportional regulation and minimal trading utility with two
assets.
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2. Multilayered Financial Networks

Multilayered Network Model: Time Dynamics
Capponi & Chen (2015), Ferrara, Langfield, Liu &
Ota (2016), Kusnetsov & Veraart (2016)

Consider single asset with T = m− 1 time steps

Assets can be traded through time with inverse demand
function F1(z, q

∗) = 1 and

Fk(z, q
∗) = Fk−1

[

1 ∧ fk

(

zk −
1

q∗k

[

m
∑

l=k+1

q∗l zl

]−)]

Prioritize payments prior to times before default,
proportional payments after default

Maximize wealth at the final time period for solvent firms

Default time µ(y∗, q∗) = min{k − 1 | y∗ki < p̄ki }
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2. Multilayered Financial Networks

Multilayered Network Model: Time Dynamics: Existence

If µ̄ is a continuous approximation of the default times µ
then there exists an equilibrium solution:

(y∗, q∗, µ∗) ∈

(

n
∏

i=1

Yi(y
∗, q∗, µ∗)

)

×

{

F

(

n
∑

i=1

(xi + [p̄i ∧ y∗i ]− y∗i ), q
∗

)}

× {µ̄(y∗, q∗)}

For fixed (q∗, µ∗) then obtain greatest and least clearing
holdings y↑(q∗, µ∗) ≥ y↓(q∗, µ∗) with unique positive
equities

If every bank owes positive amount to sink node (0) at
every time, then y↑(q∗, µ∗) = y↓(q∗, µ∗) for every (q∗, µ∗).

This unique equilibrium y : [q, 1] × [0,m] → R
n×m
+ is

continuous.
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Thank You!

Thank You!

Eisenberg, Noe (2001): Systemic Risk in Financial
Systems

Feinstein (2017): Obligations with physical delivery in a
multi-layered financial network
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