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Introduction Fractional Stochastic Volatility under Power Utility General Utility

Portfolio Optimization: Merton’s Problem

An investor manages her portfolio by investing on a riskless asset Bt and
one risky asset St (single asset for simplicity){

dBt = rBt dt
dSt = µSt dt+ σSt dWt

πt – amount of wealth invested in the risky asset at time t

Xπ
t – the wealth process associated to π

dXπ
t = (rXπ

t + πt(µ− r)) dt+ πtσ dWt, Xπ
0 = x

Objective:
M(t, x;λ) := sup

π∈A(x,t)
E [U(Xπ

T )|Xπ
t = x]

where A(x) contains all admissible π and U(x) is a utility function on R+
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Stochastic Volatility

In Merton’s work, µ and σ are constant, complete market

Empirical studies reveals that σ exhibits “random” variation

Implied volatility skew or smile

Stochastic volatility model: µ(Yt), σ(Yt)→ incomplete market

Rough Fractional Stochastic volatility:

Gatheral, Jaisson and Rosenbaum ’14
Jaisson, Rosenbaum ’16
Omar, Masaaki, Rosenbaum ’16

We work with the following slowly varying fractional stochastic factor1

Zδ,Ht := δH
∫ t

−∞
e−δa(t−s) dW (H)

s , H ∈ (0, 1)

1Garnier Solna ’15: for linear problem of option pricing
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Fractional BM and Fractional OU

A fractional Brownian motion W
(H)
t , H ∈ (0, 1)

a continuous Gaussian process

zero mean

E
[
W

(H)
t W

(H)
s

]
=

σ2
H
2

(
|t|2H + |s|2H − |t− s|2H

)
H < 1/2: short-range correlation; H > 1/2: long-range correlation

Consider the Langevin equation driven by fractional Brownian motion

dZHt = −aZHt dt+ dW
(H)
t

stationary solution ZHt =
∫ t
−∞ e

−a(t−s) dW
(H)
s =

∫ t
−∞K(t− s) dWZ

s

correlated with risky asset d
〈
W,WZ

〉
t

= ρdt

Gaussian process with zero mean and constant variance
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Our Study Gives....

Under the slowly varying fSV model and power utility{
dSt = St

[
µ(Zδ,Ht ) dt+ σ(Zδ,Ht ) dWt

]
,

Zδ,Ht =
∫ t
−∞K

δ(t− s) dWZ
s ,

d
〈
W,WZ

〉
t

= ρ dt.

The value process V δ
t := supπ∈Aδt

E [U(Xπ
T )| Ft]

The corresponding optimal strategy π∗

First order approximations to V δ
t and π∗

A practical strategy to generate this approximated value process

Zδ,Ht is not Markovian nor a semi-martingale ⇒ HJB PDE is not available
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A General Non-Markovian Model

Dynamics of the risky asset St{
dSt = St [µ(Yt) dt+ σ(Yt) dWt] ,

Yt: a general stochastic process, Gt := σ
{(
W Y

)
0≤u≤t

}
-adapted,

with d
〈
W,W Y

〉
t

= ρdt.

Dynamics of the wealth process Xt (assume r = 0 for simplicity):

dXπ
t = πtµ(Yt) dt+ πtσ(Yt) dWt

Define the value process Vt by

Vt := sup
π∈At

E [U(Xπ
T )| Ft]

where U(x) is of power type U(x) = x1−γ

1−γ .
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Proposition: Martingale Distortion Transformation2

The value process Vt is given by

Vt =
X1−γ
t

1− γ

[
Ẽ
(
e

1−γ
2qγ

∫ T
t λ2(Ys) ds

∣∣∣Gt)]q
under P̃, W̃ Y

t := W Y
t +

∫ t
0 as ds is a BM.

The optimal strategy π∗ is

π∗t =

[
λ(Yt)

γσ(Yt)
+

ρqξt
γσ(Yt)

]
Xt

where ξt is given by the martingale representation dMt = Mtξt dW̃ Y
t

and Mt is

Mt = Ẽ
[
e

1−γ
2qγ

∫ T
0 λ2(Ys) ds

∣∣∣Gt]
2Tehranchi ’04: different utility function, proof and assumptions
Ruimeng Hu (UCSB) Optimal Portfolio under Fractional Environment March 24, 2017 7 / 19



Introduction Fractional Stochastic Volatility under Power Utility General Utility

Remarks

only works for one factor model

assumptions: integrability conditions of ξt, X
π
t and πt

γ = 1→ case of log utility, can be treated separately

degenerate case λ(y) = λ0, Mt is a constant martingale, ξt = 0

Vt =
X1−γ
t

1− γ
e

1−γ
2γ

λ20(T−t), π∗t =
λ0

γσ(Yt)
Xt.

uncorrelated case ρ = 0, the problem is “linear” since q = 1

Vt =
X1−γ
t

1− γ
E
[
e

1−γ
2γ

∫ T
t λ2(Ys) ds

∣∣∣Gt] , π∗t =
λ(Yt)

γσ(Yt)
Xt.
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Sketch of Proof (Verification)

Vt is a supermartingale for any admissible control π

Vt is a true martingale following π∗

π∗ is admissible

Define αt = πt/Xt, then

dVt = VtDt(αt) dt+ d Martingale

with the drift factor Dt(αt)

Dt(αt) := αtµ−
γ

2
α2
tσ

2 − λ2

2γ
+

q

1− γ
atξt +

q(q − 1)

2(1− γ)
ξ2t + ρqαtσξt.

⇒ α∗t and Dt(α
∗
t ) = 0 with the right choice of at and q:

at = −ρ
(

1− γ
γ

)
λ(Yt), q =

γ

γ + (1− γ)ρ2
.
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Relation to the Distortion Transformation 3

In the Markovian setup, Yt is a diffusion process

dYt = k(Yt) dt+ h(Yt) dW Y
t ,

and distortion transformation is given by

V (t, x, y) =
x1−γ

1− γ
Ψ(t, y)q.

It solves the linear PDE

Ψt +

(
1

2
h2(y)∂yy + k(y)∂y +

1− γ
γ

λ(y)ρh(y)∂y

)
Ψ +

1− γ
2qγ

λ2(y)Ψ = 0,

and has the probabilistic representation

Ψ(t, y) = Ẽ
[
e

1−γ
2qγ

∫ T
t λ2(Ys) ds

∣∣∣Yt = y
]
.

3Zariphopoulou ’99 : Yt is a diffusion process
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Merton Problem under Slowly Varying Fractional SV

Consider a rescaled stationary fOU process Zδ,Ht

Zδ,Ht = δH
∫ t

−∞
e−δa(t−s) dW (H)

s =

∫ t

−∞
Kδ(t− s) dWZ

s

together with the risky asset

dSt = St

[
µ(Zδ,Ht ) dt+ σ(Zδ,Ht ) dWt

]
,

Apply the martingale distortion transformation with Yt = Zδ,Ht gives

V δ
t =

X1−γ
t

1− γ

[
Ẽ
(
e

1−γ
2qγ

∫ T
t λ2(Zδ,Hs ) ds

∣∣∣Gt)]q .
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Approximation to the Value Process

Theorem (Fouque-H. ’17)

For fixed t ∈ [0, T ), Xt = x and the observed value Zδ,H0 , the value
process V δ

t takes the form

V δ
t =

X1−γ
t

1− γ
e

1−γ
2γ

λ2(Zδ,H0 )(T−t)
+
X1−γ
t

γ
λ(Zδ,H0 )λ′(Zδ,H0 )φδt

+ δHρ
X1−γ
t

1− γ
e

1−γ
2γ

λ2(Zδ,H0 )(T−t)
λ2(Zδ,H0 )λ′(Zδ,H0 )

(
1− γ
γ

)2 (T − t)H+ 3
2

Γ(H + 5
2)

+O(δ2H),

where φδt is the random component of order δH

φδt = E
[∫ T

t

(
Zδ,Hs − Zδ,H0

)
ds

∣∣∣∣Gt] .
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Approximation to the Optimal Strategy

Recall that

π∗t =

[
λ(Zδ,Ht )

γσ(Zδ,Ht )
+

ρqξt

γσ(Zδ,Ht )

]
Xt

and ξt is from the martingale rep. of Mt = Ẽ
[
e

1−γ
2qγ

∫ T
0 λ2(Zδ,Hs ) ds

∣∣∣Gt].
Theorem (Fouque-H., ’17)

The optimal strategy π∗t is approximated by

π∗t =

[
λ(Zδ,Ht )

γσ(Zδ,Ht )
+ δH

ρ(1− γ)

γ2σ(Zδ,Ht )

(T − t)H+1/2

Γ(H + 3
2)

λ(Zδ,H0 )λ′(Zδ,H0 )

]
Xt

+O(δ2H)

:= π
(0)
t + δHπ

(1)
t +O(δ2H).
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[
e

1−γ
2qγ

∫ T
0 λ2(Zδ,Hs ) ds

∣∣∣Gt].
Theorem (Fouque-H., ’17)

The optimal strategy π∗t is approximated by

π∗t =

[
λ(Zδ,Ht )

γσ(Zδ,Ht )
+ δH

ρ(1− γ)

γ2σ(Zδ,Ht )

(T − t)H+1/2

Γ(H + 3
2)

λ(Zδ,H0 )λ′(Zδ,H0 )

]
Xt

+O(δ2H)

:= π
(0)
t + δHπ

(1)
t +O(δ2H).

Ruimeng Hu (UCSB) Optimal Portfolio under Fractional Environment March 24, 2017 13 / 19



Introduction Fractional Stochastic Volatility under Power Utility General Utility

How Good is the Approximation?

Corollary

In the case of power utility U(x) = x1−γ

1−γ , π(0) =
λ(Zδ,Ht )

γσ(Zδ,Ht )
generates the

approximation of V δ
t up to order δH (leading order + two correction terms

of order δH), thus asymptotically optimal in Aδt .

H = 1
2 , Zδ,Ht becomes the Markovian OU process, both approximation

coincides with results in [Fouque Sircar Zariphopoulou ’13]. The corollary
recovers [Fouque -H. ’16]

Sketch of proofs: Apply Taylor expansion to λ(z) at the point Zδ,H0 , and

then control the moments Zδ,Ht − Zδ,H0 .
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Denote by v(0)(t, x, z) the value function at frozen Sharpe-ratio λ(z), we
define π(0) by

π(0)(t, x, z) = −λ(z)

σ(z)

v
(0)
x (t, x, z)

v
(0)
xx (t, x, z)

and the associated value process V π(0),δ

V π(0),δ
t := E

[
U(Xπ(0)

T )|Ft
]
.

A first order approximation to V π(0),δ

obtained by epsilon-martingale decomposition45

Optimality of π(0) in a smaller class of controls of feedback form

4Fouque Papanicolaou Sircar ’01
5Garnier Solna ’15
Ruimeng Hu (UCSB) Optimal Portfolio under Fractional Environment March 24, 2017 15 / 19
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Epsilon-Martingale Decomposition

To find Qπ
(0),δ such that Qπ

(0),δ
T = V π(0),δ

T = U(Xπ(0)

T ), and that can be
decomposed as

Qπ
(0),δ
t = M δ

t +Rδt ,

where M δ
t is a martingale and Rδt is of order δ2H . Then

V π(0),δ
t = E

[
Qπ

(0),δ
T |Ft

]
= M δ

t + E
[
RδT |Ft

]
= Qπ

(0),δ
t + E

[
RδT |Ft

]
−Rδt ,

and Qπ
(0),δ
t is the approximation to V π(0),δ.
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First order approximation to V π(0),δ

Proposition

For fixed t ∈ [0, T ), Xπ(0)

t = x, and the observed value Zδ,H0 , the

Ft-measurable value process V π(0),δ
t is of the form

V π(0),δ
t = Qπ

(0),δ
t (Xπ(0)

t , Zδ,H0 ) +O(δ2H),

where Qπ
(0),δ
t (x, z) is given by:

Qπ
(0),δ
t (x, z) =v(0)(t, x, z) + λ(z)λ′(z)D1v

(0)(t, x, z)φδt

+ δHρλ2(z)λ′(z)D2
1v

(0)(t, x, z)
(T − t)H+3/2

Γ(H + 5
2)

.

For power utility, Qπ,δt coincides with the approximation of V δ
t

For the Markovian case H = 1
2 , recovers the results in [Fouque-H. ’16]
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Asymptotically Optimality of π(0)

Theorem (Fouque-H. ’17)

The trading strategy π(0)(t, x, z) = −λ(z)
σ(z)

v
(0)
x (t,x,z)

v
(0)
xx (t,x,z)

is asymptotically

optimal in the following class:

Ãδt [π̃0, π̃1, α] :=
{
π = π̃0 + δαπ̃1 : π ∈ Aδt , α > 0, 0 < δ ≤ 1

}
.
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Thank you !
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Stochastic Volatility with Fast Factor Yt

St is modeled by: {
dSt = µ(Yt)St dt+ σ(Yt)St dWt,
dYt = 1

ε b(Yt) dt+ 1√
ε
a(Yt) dW Y

t ,

with correlation dWtW
Y
t = ρdt.

Theorem (Fouque-H., in prep.)

Under appropriate assumptions, for fixed (t, x, y) and any family of trading
strategies A0(t, x, y)

[
π̃0, π̃1, α

]
, the following limit exists and satisfies

` := lim
ε→0

Ṽ ε(t, x, y)− V π(0),ε(t, x, y)√
ε

≤ 0.
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Theorem (Fouque-H., in prep.)

The residual function E(t, x, y) := V π(0),ε(t, x)− v(0)(t, x)−
√
εv(1)(t, x)

is of order ε, where in this case, v(0) solves

v
(0)
t −

1

2
λ
2

(
v
(0)
x

)2
v
(0)
xx

= 0,

and v(1) = −1
2(T − t)ρ1BD2

1v
(0)(t, x).
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