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Objective

Portfolio optimization in a time horizon [t,T ] where τ := T − t → 0.

We want to choose an investment strategy that will maximize the
expected utility of terminal wealth.

We assume a general strictly increasing, concave terminal utility
function of wealth UT (x).

Obtain closed-form approximating formulas as τ → 0 of the maximal
expected utility and optimal portfolio.

Rohini Kumar Portfolio optimization in short time horizon



Goal
Model

Approximating the Value function
Approximating the optimal investment strategy

Example and Numerics

Literature review

Some recent work where closed-form formulas are obtained in the
incomplete market case.

[LS16] “Portfolio Optimization under Local-Stochastic Volatility:
Coefficient Taylor Series Approximations & Implied Sharpe Ratio” by
Lorig and Sircar in 2016

[FSZ13] “Portfolio optimization & stochastic volatility asymptotics”
by Fouque, Sircar and Zariphopoulou.
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Incomplete market - Stochastic volatility model
Utility function

We work under the assumptions on the market model and utility function
in the 2013 paper “An approximation scheme for solution to the optimal
investment problem in incomplete markets” by Zariphopoulou and
Nadtochiy [NZ13].
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Stochastic volatility model for risky asset price

The market consists of one risky asset and one riskless bond. The risky
asset price, St satisfies

dSt = µ(Yt)Stdt + σ(Yt)StdW
(1)1t

dYt = b(Yt)dt + a(Yt)(ρdW
(1)
t +

√
1− ρ2dW (2)

t ).

where W (1) and W (2) are independent standard brownian motions,

−1 < ρ < 1. Define λ(y) := µ(y)−r
σ(y) where r is the risk-free interest rate.
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Assumptions on stochastic volatility model

Bounded continuous coefficients, volatilities bounded away from zero and
|a′|, |a′′|, |b′|, |λ|, |λ′|, |λ′′| are bounded.
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Let πs and π0
s denote the discounted amount of wealth invested in the

risky asset and risk-free asset at time s. If x denotes the initial wealth at
time t, then the wealth at time s is X t,x,π

s := πs + π0
s , which evolves as

dX t,x,π
s = σ(Ys)πs(λ(Ys)ds + dW 1

s ), X t,x,π
t = x ,

assuming self-financing strategies (πs , π
0
s ).
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Optimization problem

We wish to maximize the expected terminal utility at time T where the
terminal utility function is given by UT . We define the value function
J(t, x) as the optimal expected terminal utility:

J(t, x ,Yt) = ess sup
π∈A

E [UT (X t,x,π
T )|Ft ],

where A is the set of admissible trading strategies.

A = {Ft-adapted processes π such that E [
∫ T

t
π2
s σ

2(Ys)ds] <∞,

(X t,x,π
s )s∈[t,T ] is strictly positive and E [

∫ T

t
(X t,x,π

s )−p(1 + π2
s )ds] <∞,

for every p ≥ 0}.
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Utility function

Assumption 1: The terminal utility function UT (x) is a strictly
increasing, concave function of wealth, x , and UT ∈ C 5(R).

Assumption 2: UT (x) behaves asymptotically as x → 0 and
x →∞ as an affine transformation of some power function x1−γ ,
where γ 6= 1.

(
U′T (x)
x−γ = O(1),

U′′T (x)
x−γ−1 = O(1), ...

U
(5)
T (x)

x−γ−4 = O(1), as x → 0,∞.)
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HJB equation

The associated HJB equation for this optimization problem is:

Ut + max
π

(1

2
σ2(y)π2Uxx + π(σ(y)λ(y)Ux

+ ρσ(y)a(y)Uxy )
)

+
1

2
a2(y)Uyy + b(y)Uy = 0;

U(T , x , y) = UT (x).

The maximum is achieved at

π(t, x , y) =
−λ(y)Ux − ρa(y)Uxy

σ(y)Uxx
.
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marginal HJB equation

If U(t, x , y) is a solution to the HJB equation, then V = Ux satisfies the
following marginal HJB equation

Vt + H(y ,V ,Vx ,Vy ,Vxx ,Vxy ,Vyy ) = 0, (3)

where

H :=
1

2

(
λ(y)V + ρa(y)Vy

Vx

)2

Vxx −
λ(y)V + ρa(y)Vy

Vx
ρa(y)Vxy

+
1

2
a2(y)Vyy − λ2(y)V + (b(y)− λ(y)ρa(y))Vy
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Key results from [NZ13]

THEOREM (Nadtochiy&Zariphopoulou [NZ13])

The marginal HJB equation has a unique continuous viscosity solution V
in the class D
(Where, informally, D can be described as the class of continuous
functions f (t, x , y) such that 0 < 1

c x
−γ ≤ f (t, x , y) ≤ cx−γ .)

THEOREM (Nadtochiy&Zariphopoulou [NZ13])

Let V be the unique viscosity solution of the marginal HJB equation in
previous theorem. Define

U(t, x , y) :=

{
UT (0+) +

∫ x

0
V (t, z , y)dz , if γ ∈ (0, 1)

UT (∞)−
∫∞
x

V (t, z , y)dz , if γ > 1.

Then the value function

J(t, x , y) = U(t, x , y).
Rohini Kumar Portfolio optimization in short time horizon
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Approximating V - solution to the marginal HJB

Approximating V :

STEP 1: We construct classical sub- and super-solutions to the
marginal HJB equation.

Plug in the following formal expansion into the marginal HJB
equations:

V (t, x , y) = V0(x , y) + (T − t)V1(x , y) + (T − t)2V2(x , y) + · · · .

Comparing coefficients of powers of (T − t), we obtain the following
expressions for V0 and V1:

V0(x , y) = u(x) := U ′
T (x), V1(x , y) = K(x , y);

where K(x , y) := λ2(y)R(x) and

R(x) :=
1

2

u2(x)u′′(x)

(u′(x))2
− u(x).
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Define V (t, x , y) = u(x) + (T − t)K (x , y)− Cx−γ(T − t)2 and
V (t, x , y) = u(x) + (T − t)K (x , y) + Cx−γ(T − t)2, which for an
appropriate choice of C > 0 are sub- and super-solutions,
respectively, of the marginal HJB equation, i.e.

∂tV + H(V ) ≥ 0 and ∂tV + H(V ) ≤ 0.
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STEP 2: Prove that V ≤ V ≤ V

Define W (t, z , y) := log(V ε(t, ez , y)) + γz ,
W (t, z , y) := log(V ε(t, ez , y)) + γz , and
W (t, z , y) := log(V

ε
(t, ez , y)) + γz

If V is a solution (or sub- or super-solution) of the marginal HJB
equation, then W is the solution (or sub- or super-solution) of

Wt + ε
[
−1

2

(λ+ aρWy )2

Wz − γ

(
Wzz

Wz − γ
− 1

)
− 1

2
a2Wyy + aρ

λ+ aρWy

Wz − γ
Wzy

+
1

2
λ2 + (λaρ− b)Wy +

1

2
a2(ρ2 − 1)(Wy )2

]
= 0.

(4)

Apply Comparison principle for (4) to get W ≤ W ≤ W .
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Thus V is sandwiched between V and V i.e.

U ′T (x) + (T − t)K (x , y)− Cx−γ(T − t)2 ≤ V (t, x , y)

≤ U ′T (x) + (T − t)K (x , y)− Cx−γ(T − t)2.

This gives us

|V (t, x , y)− (U ′T (x) + (T − t)K (x , y))| ≤ Cx−γ(T − t)2.
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Approximating formulas

Approximating formula for the value function is given by

THEOREM

Define u(x) := U ′T (x),

R(x) :=
1

2

u2(x)u′′(x)

(u′(x))2
− u(x)

and K (x , y) := λ2(y)R(x).
There exists a constant C > 0 such that{
|J(t, x , y)− (UT (x) + (T − t)

∫ x

0
K (r , y)dr | ≤ C (T − t)2x1−γ if γ ∈ (0, 1),

|J(t, x , y)− (UT (x)− (T − t)
∫∞
x

K (r , y)dr | ≤ C (T − t)2x1−γ if γ > 1,

as T − t → 0.
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Approximating formulas

The approximate closed-from formula for the optimal portfolio as
T − t → 0 is given by

π̂(t, x , y) = −λ
σ

Ûx

Ûxx

− ρa

σ

Ûxy

Ûxx

, (5)

where

Û(t, x , y) =

{
UT (x) + (T − t)

∫ x

0
K (r ,Yt)dr if 0 < γ < 1

UT (x)− (T − t)
∫∞
x

K (r ,Yt)dr if γ > 1.
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Proof

Let

π̃(t, x , y) := −λ
σ

Ux

Uxx

− ρa

σ

Uxy

Uxx

(6)

where

U(t, x , y) :=

{
UT (0+) +

∫ x

0
V (t, r , y)dr if γ ∈ (0, 1)

UT (∞)−
∫∞
x

V (t, r , y)dr if γ > 1,

and let X t,x,π̃
s be the discounted wealth process associated with the

portfolio π̃.
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Then, by construction, U is a subsolution of the HJB equation:

∂tU + Lπ̃U ≥ 0,

where Lπ̃ is the generator of (X t,x,π̃,Y ) with the control π̃.

Applying
Itô’s formula to U(s,X t,x,π̃

s ,Ys) and taking conditional expectations:

E [U(T ,X t,x,π̃
T ,YT )|Ft ]︸ ︷︷ ︸

E [UT (X
t,x,π̃
T )|Ft ]

−U(t, x ,Yt)

= E

[∫ T

t

(∂sU(s,X t,x,π̃
s ,Ys) + Lπ̃U(s,X t,x,π̃

s ,Ys))ds|Ft

]
≥ 0.
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Thus,
U(t, x ,Yt) ≤ E [UT (X t,x,π̃

T )|Ft ] ≤ J(t, x ,Yt).

We know that

|J(t, x , y)− U(t, x , y)| = O((T − t)2)O(x1−γ).
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Lemma

For X t,x,π̃
s the wealth process under portfolio π̃, there exists a c > 0 such

that

|J(t, x ,Yt)− E [UT (X t,x,π̃
T )|Ft ] ≤ c(T − t)2x1−γ , as T − t → 0.
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Lemma

For π̂ and π̃ defined in (5) and (6), respectively, we have

|π̃ − π̂| = O((T − t)2)O(1 + x), as T − t → 0. (7)
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Example

We consider the example where the stochastic volatility model is

dSs = µSsds +
1√
Ys

SsdW
(1)
s

dYs = (m − Ys)ds + β
√
Ys(ρdW

(1)
t +

√
1− ρ2dW (2)

t ),

where 2m ≥ β2 and utility function UT (x) = x1−γ

1−γ .

Explicit formulas for the value function and optimal portfolio exist in this
case.

In the following graphs we have taken: µ = 0.0811, m = 27.9345,
β = 1.12, ρ = 0.5241, and γ = 3. Terminal time T = 2 and y is fixed at
27.9345.
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Value function approximation when T − t = .5

Figure: t = 1.5, T = 2; The value function is plotted against the first order
approximation UT (x) and the first order approximation with the additional
correction term. It is difficult to distinguish between the value function and the
second order approximation.
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Value function approximation when T − t = .1

Figure: t = 1.9, T = 2; When the time interval is shortened from a length of
0.5 to a length of 0.1, the approximation with correction is much closer to the
value function.
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Portfolio approxaimtion when T − t = .5

Figure: t = 1.5, T = 2; The portfolios generated by the value function and the
approximation with correction are shown in this figure to be close.
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Portfolio approximation when T − t = .1

Figure: t = 1.9, T = 2; When the time interval is shortened from a length of
0.5 to a length of 0.1, the approximating portfolio is much closer to the value
portfolio.
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Thank You!
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Lemma

For π̂ and π̃ defined in (5) and (6), respectively, we have

|π̃ − π̂| = O((T − t)2)O(1 + x), as T − t → 0. (9)
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Proof.

For some constant C̃ > 0, we have

|π̃ − π̂| =

∣∣∣∣∣−λUx − ρaUxy

σUxx

− −λÛx − ρaÛxy

σÛxx

∣∣∣∣∣
=

∣∣∣∣∣−λ(Ux Ûxx − ÛxUxx)− ρa(Uxy Ûxx − ÛxyUxx)

σUxx Ûxx

∣∣∣∣∣
=

∣∣∣∣∣ −λ (T−t)2
2 C̃ [u′(x)x−γ + (T − t)Kxx

−γ +−γu(x)x−γ−1]− ρaγC̃ (T−t)3
2 x−γ−1Kxy

σ[(u′(x))2 + 2(T − t)Kxu′(x)− γC̃ (T−t)2
2 x−γ−1u′(x) + (T − t)2K 2

x − C̃γ (T−t)3
2 x−γ−1Kx ]

∣∣∣∣∣
=

{
O((T − t)2)O(1) as x → 0

O((T − t)2)O(x) as x →∞

= O((T − t)2)O(1 + x)

where the second to last equality is by Assumption 2 and the definition of
K (x , y).
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