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Robust portfolio selection
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Approaches we study

model L , . . model
independent ° ° ' "7 specific
universal functionally log-optimal/
portfolio generated numeraire portfolio

portfolio (SPT)

» Universal portfolio: Cover (1991), Cover and Ordentlich (1996)
» Functionally generated portfolio: Fernholz (1998, 2002)
» Log-optimal portfolio: Kelly (1956), Breiman (1962), Long (1990)
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This work

1. Theoretical results that connect the three kinds of
portfolios.

2. To work in the SPT set up, we use the market portfolio as
the numeraire:

portfolio value

relati I f portfolio = .
elative value of portiolio market portfolio value

3. Portfolio performance is measured in terms of asymptotic
growth rate (relative to the market portfolio).
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Market weight

We consider a stock market
with n > 2 assets:

Xi(t) = market cap of stock i

Xi(t)
will) Xi(t) + -+ Xn(t)

The market weight vector p(t)
takes values in the simplex A,

o X(t)
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Portfolio relative value

» Having observed {u(s)}o<s<t, the investor picks 7(t) € Ap:

\ 7(t)
l( [ ]
%
w(t+1)
market weight portfolio weight

» The portfolio is all-long, fully invested and self-financed.
» In discrete time, portfolio relative value V. (t) satisfies

Ve(t+1) u,(t+1)
Va(0) _,21: o



Cover’s universal portfolio

The portfolio is constant-weighted, or constant-rebalanced, if
m(t)= b for some fixed b € A,

> Kelly (1956), Merton (1971), Cover (1991)

» Volatility harvesting: Fernholz and Shay (1982), Luenberger (1997), ...

Cover’s (1991) problem:
» Find a portfolio strategy {=(¢)} such that

1 Ve ()

clog ——— =
9 maX,.x, V(1)

; —0

for all sequences {u(t)},.
» m(t) = Ft({1(S)}o<s<t) for some ‘universal’ functions F;.



Cover’s universal portfolio

» Take a ‘prior’ probability distribution vy on A, and consider
the ‘posterior’ distribution
__W%()
vi(db) = TV.(0)dve dvg(b).

stock2 stock2
100

» Cover’s universal portfolio 7(t) is the posterior mean:

(1) = / bdui(b), V(1) = / V(t)du(b).
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Functionally generated portfolio G
» Portfolio map:
7(t) = w(u(t)), forsomew:A,— A,

» Functionally generated portfolio: «(-) is given in terms of
the gradient of a generating function ¢ : A, — R.

» Relative arbitrage (i.e., beating the market portfolio w.p.1) under
conditions on market stability and volatility

» Lyapunov function: Karatzas and Ruf (2016)

» Optimal transport and information geometry: Pal and Wong (2015,
2016)

» More recent papers: Wong (2015), Vervuurt and Karatzas (2016),
Vervuurt and Samo (2016), Pal (2016)

» FG is convex and contains all constant-weighted portfolios.

» Brod and Ichiba (2014): Cover’s portfolio is ‘functionally generated’

(answering a question in Fernholz and Karatzas (2009))
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UP, FGP and large deviation

Theorem (W. (2016))
Under suitable conditions on {u(t)}2, C Ap andvg on FG:

(i) The sequence {v:}3°, of wealth distributions on FG
satisfies a pathwise large deviation principle as t — oc.

(i) Cover’s portfolio can be extended to FG:

(1) = /f RCOLIC

and the following universality property holds:

1 v
lim - lo (1)

t—oo t 9 MaXycrg V() =0
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Log-optimal/numeraire portfolio

» A stochastic model for {u(t)} is required.
» In the SPT set-up (relative to the market):

Trum(t) := argmaxE [Iog (b (t+1> ‘}“t}

bEKn

» Al-Aradia and Jaimungal (2017): explicit solutions using stochastic
control techniques
» If {u(t)} is a time homogeneous Markov chain, mhym can
be realized by a portfolio map wpum : Ap — Ap.
» Gyodrfi, Lugosi and Udina (2006): universal portfolios assuming
stock returns are stationary and ergodic over time
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UP for Lipschitz portfolio maps

» For each M > 0, let £M be the family of M-Lipschitz
portfolio maps (with some boundary conditions).

» With topology of uniform convergence, £M is compact. Let

VEM(t) .= max Vi(t).

neLM
» Consider Cover’s portfolio VM over £M.

Theorem (Cuchiero, Schachermayer and W. (2016))

Assume vy has full support on £M. Then for every individual
sequence {u(t)}2, in A, we have

. 1 M o (/M _
Jim — (log v*M(1) — log V(1)) = 0.
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Approximating wnym by Lipschitz portfolio maps

» Now let {u(1)}32, be a time homogeneous ergodic Markov
chain on A, with a unique variant measure p, such that

V1|'num ( 1 )
V1|'num (O)

L:=E,log < 00

» We may construct Cover’s portfolio V(t) on s_, £V by
splitting the prior over each £M.

Theorem (Cuchiero, Schachermayer and W. (2016))
It holds almost surely that

« 1
lim lim 1 log V*M(t) = lim 1 log V(t) = lim —log Vp,,.(t) = L.
t t—oo t—oo

M— o0 t—00
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A continuous time analogue

In continuous time, we let {u(t)}+~0 be a continuous
semimartingale in A,. For a portfolio process {7 (t)}>o,

AVa(t) <~ dpi(t)
= it .
v~ 200
» The previous theorem cannot be generalized directly
because of stochastic integrals.

» We will restrict to functionally generated portfolios where a
pathwise decomposition for Vi (t) exists.

» To compare with myym, {u(t)}+>0 Needs to be a Markov
diffusion process with a special structure.
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Decomposition for functionally generated portfolio

» Assume 7 is generated by a positive C? concave function
® = e¥ on Aj. In fact

n
mi(X) = X; (DI‘P(X) +1- ZX;’DM(X)) :
j=1
» Fernholz’s pathwise decomposition:

Vp(t) = v,,(O)l’((Z(((;))))e@(”,

where dO() = — gy iy Di®((t)dlui, )l
» The decomposition can be formulated using Félimer’s It6
calculus (Schied, Speiser and Voloshehenko (2016)).
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Analytical considerations

» Analogous to £M, we define a compact Holder space
FGMefor M >0and0 < a < 1.

» Using the pathwise formulation in Schied et al (2016), we
can define
VeMa(t) .= max Vi(t)
weFgha
and prove the existence of a maximizer, for any continuous
path {u(t)}+>0 C Ap whose quadratic variation exists.

» Cover’s portfolio VM2(t) can be generalized, in continuous
time, to FGM*, and asymptotic universality holds under
suitable conditions.
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Conditions on the diffusion
We consider diffusions of the form
du(t) = c(u()M(w(t)at + /2 (u(t))dW(t), where

(i) c(x) is positive definite,
(i) e(x)1 =0,
(III) Zi,j C,']j(X))\j(X)dX =0.

The log-optimal portfolio wnym maximizes the instantaneous
drift of log Vx(?).

Proposition
The log-optimal portfolio & num is functionally generated if

A(x) = Vlog ®(x) for some function ®.
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Continuous time result

Theorem (Cuchiero, Schachermayer and W. (2016))

Suppose {u(t)} >0 has the above form (with A = Vlog ®), is
ergodic with a unique invariant measure, and the coefficients
satisfy some integrability conditions. Then the universal
portfolio V(t) can be constructed on | J5y_, FGM /M, such that
almost surely

Jim 1?Iog V() = Jim _ fim ?Iog vEMAIM 4y = Jim flog Vatnum ().
—00

M— o0 t—o00

model , . N model
independent ™~ T v T 7 specific
universal FGP log-optimal/

portfolio portfolio
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Conclusion

Under suitable conditions, we proved asymptotic equivalence of
the following portfolios:

» Best retrospectively chosen portfolio map/FGP
» Generalizations of Cover’s universal portfolio
» Log-optimal portfolio

Further problems:
» Going beyond FGP in continuous time.

» Computation of these portfolios. Choice of the prior vj.
Rank-based universal portfolio?

» Other performance measures, e.g. risk-adjusted return.
» Connections with machine learning approaches.
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