Cover's universal portfolio and stochastic portfolio theory

Ting-Kam Leonard Wong University of Southern California

joint with Christa Cuchiero and Walter Schachermayer

WCMF 2017

Robust portfolio selection

Estimation error

- Changing parameters
- Model uncertainty

Approaches we study

- Universal portfolio: Cover (1991), Cover and Ordentlich (1996)
- ► Functionally generated portfolio: Fernholz (1998, 2002)
- ▶ Log-optimal portfolio: Kelly (1956), Breiman (1962), Long (1990)

This work

- Theoretical results that connect the three kinds of portfolios.
- 2. To work in the SPT set up, we use the market portfolio as the numeraire:

```
\mbox{relative value of portfolio} = \frac{\mbox{portfolio value}}{\mbox{market portfolio value}}
```

3. Portfolio performance is measured in terms of *asymptotic* growth rate (relative to the market portfolio).

Market weight

We consider a stock market with $n \ge 2$ assets:

$$X_i(t)$$
 = market cap of stock i
 $\mu_i(t)$ = $\frac{X_i(t)}{X_1(t) + \dots + X_n(t)}$

The market weight vector $\mu(t)$ takes values in the simplex Δ_n .

Portfolio relative value

▶ Having observed $\{\mu(s)\}_{0 \le s \le t}$, the investor picks $\pi(t) \in \overline{\Delta}_n$:

- ► The portfolio is all-long, fully invested and self-financed.
- ▶ In discrete time, portfolio relative value $V_{\pi}(t)$ satisfies

$$\frac{V_{\pi}(t+1)}{V_{\pi}(t)} = \sum_{i=1}^{n} \pi_{i}(t) \frac{\mu_{i}(t+1)}{\mu_{i}(t)}.$$

Cover's universal portfolio

The portfolio is constant-weighted, or constant-rebalanced, if

$$\pi(t) \equiv b$$
 for some fixed $b \in \overline{\Delta}_n$.

- ▶ Kelly (1956), Merton (1971), Cover (1991)
- ▶ Volatility harvesting: Fernholz and Shay (1982), Luenberger (1997), ...

Cover's (1991) problem:

▶ Find a portfolio strategy $\{\pi(t)\}$ such that

$$rac{1}{t}\lograc{V_{\pi}(t)}{\max_{b\in\overline{\Delta}_{n}}V_{b}(t)}
ightarrow0$$

for all sequences $\{\mu(t)\}_{t=0}^{\infty}$.

▶ $\pi(t) = F_t(\{\mu(s)\}_{0 \le s \le t})$ for some 'universal' functions F_t .

Cover's universal portfolio

▶ Take a 'prior' probability distribution ν_0 on Δ_n and consider the 'posterior' distribution

$$u_t(db) := \frac{V_b(t)}{\int V(t) d\nu_0} d\nu_0(b).$$

▶ Cover's universal portfolio $\hat{\pi}(t)$ is the posterior mean:

$$\hat{\pi}(t) = \int b d
u_t(b), \quad \hat{V}(t) = \int V_b(t) d
u_t(b).$$

Functionally generated portfolio \mathcal{FG}

Portfolio map:

$$\pi(t) = oldsymbol{\pi}(\mu(t)), \quad ext{for some } oldsymbol{\pi}: \Delta_n
ightarrow \overline{\Delta}_n$$

- ▶ Functionally generated portfolio: $\pi(\cdot)$ is given in terms of the gradient of a generating function $\varphi: \Delta_n \to \mathbb{R}$.
 - Relative arbitrage (i.e., beating the market portfolio w.p.1) under conditions on market stability and volatility
 - Lyapunov function: Karatzas and Ruf (2016)
 - Optimal transport and information geometry: Pal and Wong (2015, 2016)
 - More recent papers: Wong (2015), Vervuurt and Karatzas (2016), Vervuurt and Samo (2016), Pal (2016)
- $ightharpoonup \mathcal{FG}$ is convex and contains all constant-weighted portfolios.
 - Brod and Ichiba (2014): Cover's portfolio is 'functionally generated' (answering a question in Fernholz and Karatzas (2009))

UP, FGP and large deviation

Theorem (W. (2016))

Under suitable conditions on $\{\mu(t)\}_{t=0}^{\infty} \subset \Delta_n$ and ν_0 on \mathcal{FG} :

- (i) The sequence $\{\nu_t\}_{t=0}^{\infty}$ of wealth distributions on \mathcal{FG} satisfies a pathwise large deviation principle as $t \to \infty$.
- (ii) Cover's portfolio can be extended to \mathcal{FG} :

$$\hat{\pi}(t) = \int_{\mathcal{F}\mathcal{G}} m{\pi}(\mu(t)) d
u_t(m{\pi})$$

and the following universality property holds:

$$\lim_{t\to\infty}\frac{1}{t}\log\frac{V(t)}{\max_{\boldsymbol{\pi}\in\mathcal{FG}}V_{\boldsymbol{\pi}}(t)}=0.$$

Log-optimal/numeraire portfolio

- ▶ A stochastic model for $\{\mu(t)\}$ is required.
- ▶ In the SPT set-up (relative to the market):

$$\pi_{\mathsf{num}}(t) := rg\max_{b \in \overline{\Delta}_n} \mathbb{E}\left[\log\left(b \cdot rac{\mu(t+1)}{\mu(t)}
ight) \middle| \mathcal{F}_t
ight]$$

- Al-Aradia and Jaimungal (2017): explicit solutions using stochastic control techniques
- ▶ If $\{\mu(t)\}$ is a time homogeneous Markov chain, π_{num} can be realized by a portfolio map $\pi_{\text{num}}: \Delta_n \to \overline{\Delta}_n$.
 - Györfi, Lugosi and Udina (2006): universal portfolios assuming stock returns are stationary and ergodic over time

UP for Lipschitz portfolio maps

- For each M > 0, let \mathcal{L}^M be the family of M-Lipschitz portfolio maps (with some boundary conditions).
- ▶ With topology of uniform convergence, \mathcal{L}^{M} is compact. Let

$$V^{*,M}(t) := \max_{oldsymbol{\pi} \in \mathcal{L}^M} V_{oldsymbol{\pi}}(t).$$

▶ Consider Cover's portfolio \hat{V}^M over \mathcal{L}^M .

Theorem (Cuchiero, Schachermayer and W. (2016))

Assume ν_0 has full support on \mathcal{L}^M . Then for every individual sequence $\{\mu(t)\}_{t=0}^{\infty}$ in Δ_n we have

$$\lim_{t\to\infty}\frac{1}{t}\left(\log V^{*,M}(t)-\log \hat{V}^M(t)\right)=0.$$

Approximating π_{num} by Lipschitz portfolio maps

Now let $\{\mu(t)\}_{t=0}^{\infty}$ be a time homogeneous ergodic Markov chain on Δ_n with a unique variant measure ρ , such that

$$L := \mathbb{E}_
ho \log rac{V_{oldsymbol{\pi}_{\mathsf{num}}}(1)}{V_{oldsymbol{\pi}_{\mathsf{num}}}(0)} < \infty.$$

▶ We may construct Cover's portfolio $\hat{V}(t)$ on $\bigcup_{M=1}^{\infty} \mathcal{L}^{M}$ by splitting the prior over each \mathcal{L}^{M} .

Theorem (Cuchiero, Schachermayer and W. (2016)) *It holds almost surely that*

$$\lim_{M\to\infty}\lim_{t\to\infty}\frac{1}{t}\log V^{*,M}(t)=\lim_{t\to\infty}\frac{1}{t}\log \hat{V}(t)=\lim_{t\to\infty}\frac{1}{t}\log V_{\pi_{num}}(t)=L.$$

A continuous time analogue

In continuous time, we let $\{\mu(t)\}_{t\geq 0}$ be a continuous semimartingale in Δ_n . For a portfolio process $\{\pi(t)\}_{t\geq 0}$,

$$\frac{dV_{\pi}(t)}{V_{\pi}(t)} = \sum_{i=1}^{n} \pi_i(t) \frac{d\mu_i(t)}{\mu_i(t)}.$$

- The previous theorem cannot be generalized directly because of stochastic integrals.
- ▶ We will restrict to functionally generated portfolios where a pathwise decomposition for $V_{\pi}(t)$ exists.
- ▶ To compare with π_{num} , $\{\mu(t)\}_{t\geq 0}$ needs to be a Markov diffusion process with a special structure.

Decomposition for functionally generated portfolio

Assume π is generated by a positive C^2 concave function $\Phi = e^{\varphi}$ on Δ_n . In fact

$$\pi_i(x) = x_i \left(D_i \varphi(x) + 1 - \sum_{j=1}^n x_j D_j \varphi(x) \right).$$

Fernholz's pathwise decomposition:

$$V_{\pi}(t) = V_{\pi}(0) \frac{\Phi(\mu(t))}{\Phi(\mu(0))} e^{\Theta(t)},$$

where
$$d\Theta(t) = -\frac{1}{2\Phi(\mu(t))} \sum_{i,j} D_{ij} \Phi(\mu(t)) d[\mu_i, \mu_j]_t$$
.

► The decomposition can be formulated using Föllmer's Itô calculus (Schied, Speiser and Voloshehenko (2016)).

Analytical considerations

- ▶ Analogous to \mathcal{L}^M , we define a *compact* Hölder space $\mathcal{FG}^{M,\alpha}$ for M > 0 and $0 \le \alpha \le 1$.
- Using the pathwise formulation in Schied et al (2016), we can define

$$V^{*,M,lpha}(t) := \max_{oldsymbol{\pi} \in \mathcal{FG}^{M,lpha}} V_{oldsymbol{\pi}}(t)$$

and prove the existence of a maximizer, for any continuous path $\{\mu(t)\}_{t\geq 0}\subset \Delta_n$ whose quadratic variation exists.

▶ Cover's portfolio $\hat{V}^{M,\alpha}(t)$ can be generalized, in continuous time, to $\mathcal{FG}^{M,\alpha}$, and asymptotic universality holds under suitable conditions.

Conditions on the diffusion

We consider diffusions of the form

$$d\mu(t) = c(\mu(t))\lambda(\mu(t))dt + c^{1/2}(\mu(t))dW(t)$$
, where

- (i) c(x) is positive definite,
- (ii) $c(x)\mathbf{1} \equiv \mathbf{0}$,
- (iii) $\sum_{i,j} c_{i,j}(x) \lambda_j(x) dx = 0$.

The log-optimal portfolio π_{num} maximizes the instantaneous drift of log $V_{\pi}(t)$.

Proposition

The log-optimal portfolio π_{num} is functionally generated if

$$\lambda(x) = \nabla \log \Phi(x)$$
 for some function Φ .

Continuous time result

Theorem (Cuchiero, Schachermayer and W. (2016))

Suppose $\{\mu(t)\}_{t\geq 0}$ has the above form (with $\lambda=\nabla\log\Phi$), is ergodic with a unique invariant measure, and the coefficients satisfy some integrability conditions. Then the universal portfolio $\hat{V}(t)$ can be constructed on $\bigcup_{M=1}^{\infty}\mathcal{FG}^{M,1/M}$, such that almost surely

$$\lim_{t\to\infty}\frac{1}{t}\log\hat{V}(t)=\lim_{M\to\infty}\lim_{t\to\infty}\frac{1}{t}\log V^{*,M,1/M}(t)=\lim_{t\to\infty}\frac{1}{t}\log V_{\pi_{num}}(t).$$

Conclusion

Under suitable conditions, we proved asymptotic equivalence of the following portfolios:

- Best retrospectively chosen portfolio map/FGP
- Generalizations of Cover's universal portfolio
- Log-optimal portfolio

Further problems:

- Going beyond FGP in continuous time.
- ▶ Computation of these portfolios. Choice of the prior ν_0 . Rank-based universal portfolio?
- ▶ Other performance measures, e.g. risk-adjusted return.
- Connections with machine learning approaches.

References

- ► T.-K. L. Wong, Universal portfolios in stochastic portfolio theory, arXiv:1510.02808
- C. Cuchiero, W. Schachermayer and T.-K. L. Wong, Cover's universal portfolio, stochastic portfolio theory and the numeraire portfolio, arXiv:1611.09631