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E
xtracting reach information from brain signals is of great interest to the fields of brain-
computer interfaces (BCIs) and human motor control. To date, most work in this area
has focused on invasive intracranial recordings; however, successful decoding of reach
targets from noninvasive electroencephalogram (EEG) signals would be of great inter-
est. In this article, we show that EEG signals contain sufficient information to decode

target location during a reach (Experiment 1) and during the planning period before a reach
(Experiment 2). We discuss the application of independent component analysis and dipole fitting
for removing movement artifacts. With this technique we get similar classification accuracy for
classifying EEG signals during a reach (Experiment 1) and during the planning period before a
reach (Experiment 2). To the best of our knowledge, this is the first demonstration of decoding
(planned) reach targets from EEG. These results lay the foundation for future EEG-based BCIs
based on decoding of planned reaches.

[Paul S. Hammon, Scott Makeig, Howard Poizner, Emanuel Todorov, and Virginia R. de Sa]

Predicting Reaching
Targets from 
Human EEG

[Laying the foundation]
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INTRODUCTION
BCIs are being developed for a variety of applications ranging
from assistive technologies for patients with motor disabilities
to entertainment devices. Across the wide range of applications,
all BCI systems share the same set of underlying components,
which can be broken down into
three main segments: brain signal
acquisition, brain state decoding,
and computer-mediated perform-
ance of a task. Some BCIs decode
the brain state into a set of dis-
crete classes such as yes/no com-
mands, while other BCIs decode
continuous data such as a reach-
ing trajectory.

One goal of BCI research is to
develop systems capable of decoding neural representations of
natural movement planning and execution. The large number of
degrees of freedom, high complexity, and speed of natural move-
ment pose particular challenges to building BCI systems of this
type. In order to deal with these constraints, researchers typical-
ly use arrays of intracranial electrodes. There are several types of
intracranial electrodes ranging from intracortical electrodes
which measure the firing patterns of a small number of neurons
(single- or multi- unit recordings) to subdural or epidural elec-
trodes measuring the local field potentials generated by dendrit-
ic currents in large numbers of nearby neurons
(electrocorticography, or ECoG). Relative to less-invasive
recording methods, intracranial electrodes allow for higher spa-
tial resolutions but suffer from increased costs and risks associ-
ated with surgical implantation and maintenance of the
electrode array. To date, the vast majority of research in this area
has focused on intracranial recordings in nonhuman primates;
however, noninvasive recording techniques such as the EEG
offer benefits like improved safety and lower cost.

In this article, we analyze human EEG signals recorded from
two different reaching tasks. We begin with data from a natural
reaching task and show that reaching targets can be decoded
from EEG. The promising results from this initial experiment
led us to perform a second experiment based on a delayed reach-
ing task. Results from this second experiment confirmed the
findings from the first experiment and show that human EEG
contains sufficient information to classify reaching targets even
before movement has begun.

RECORDING BRAIN SIGNALS DURING REACHING
There is a large body of BCI research using signals from intracra-
nial electrodes in monkeys during reaching tasks. For example,
in [16] Serruya et al. demonstrate that intracortical single unit
recordings from a small number of primary motor cortex neu-
rons can be used to reconstruct movement trajectories without
extensive subject training. Another study demonstrates that
recordings from the parietal reach region can be used to detect
high-level movement goals [11]. Furthermore, the BCI system
with the highest information transfer rate to date [15] is based

on implanted electrodes in macaques. Recent work with ECoG
data recorded during human reaching tasks [14] indicates that
reaching data can be decoded from cortical activity at lower spa-
tial resolutions than in single unit recordings.

However, there is little work in this area using EEG data.
There are two main reasons why
EEG data is rarely used for reach-
ing tasks. The first and perhaps
most significant reason is due to
contamination from artifacts.
EEG electrodes sense all electri-
cal activity at the scalp and there-
fore record not only electrical
signals generated by brain activi-
ty but also electrical activity gen-
erated by eye movements and

contraction of head and neck muscles. Therefore, experiments
using EEG are typically designed to minimize any movement. In
order to use EEG data during a task which involves movement,
it is important to isolate and remove artifacts.

A second drawback of EEG is that it records the aggregate
activity of large numbers of neurons. Thus, it is generally
thought that EEG does not extract sufficiently detailed informa-
tion to reconstruct complex movements.

Our goal is to show that—with appropriate artifact removal,
signal processing, and machine learning—human EEG carries
sufficient information about reach intention to decode reaching
targets from the EEG signal during movement planning and
execution.

EXPERIMENT 1
EEG and three-dimensional (3-D) movement data were simul-
taneously recorded during a cued reaching task in a darkened
room. EEG data were sampled at 256 Hz using a 256-channel
Biosemi ActiveTwo system with sintered Ag-AgCl active elec-
trodes. Movement data were recorded using a Northern Digital,
Inc. Optrack Certus 3-D tracking system. Three-dimensional
locations of the hand, wrist, elbow, shoulder, and the three tar-
get LEDs were sampled at 250 Hz.

Subjects (four male, average age 44, all right-handed) sat in a
comfortable chair and used their right index finger to reach for
one of three target LEDs situated to the left (L), center (C), and
right (R) of the subject’s sternum. The LED targets differed in
height and distance from the sternum and were positioned such
that each subject could reach them without resorting to a full arm
extension. Two different starting postures of the arm were used:
one with the right forearm horizontal and the upper arm vertical
(H), and the other with the right arm fully flexed with the forearm
vertical (V). An individual trial began with LED illumination.
Subjects were instructed to make an immediate and natural reach
to the target. The LED stayed on until the target was touched, or
for 2,500 ms in case of target miss. After touching the target, sub-
jects were instructed to pause briefly and then return to the start-
ing position. Target touch (or time out) was followed by a random
interval of 800–1,200 ms before the next target appeared.

ONE GOAL OF BCI RESEARCH IS 
TO DEVELOP SYSTEMS CAPABLE 

OF DECODING NEURAL
REPRESENTATIONS OF NATURAL

MOVEMENT PLANNING AND
EXECUTION.
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Starting pose was blocked, with subjects randomly assigned
the starting pose for the first half (either H or V), with the
remaining pose used for the second half (either V or H). There
were four different sequences of 20 pseudo-random reaching
targets each. Each sequence was run four times per starting
pose condition, for a total of 320 trials per starting pose, and 640
trials overall.

EXPERIMENT 1 DATA PREPROCESSING
The first step of data analysis was to reduce the dimensionality by
cutting down the number of channels from 256 to 140 or 150.
Channels with poor coupling or other problems were removed
first, followed by channels located low on the head or neck, as
these tend to have poor connections and large movement arti-
facts. Next channels were removed one at a time based on closest
physical proximity to other electrodes until the desired number
of channels (150 channels for S1, S3, and S4; 140 channels for
S2) was met. Channel removal is a reasonable form of dimen-
sionality reduction for high-density EEG because nearby chan-
nels are highly correlated, and thus little information is lost.

The EEG and movement data were aligned by re-sampling
the movement data from 250 Hz to 256 Hz. The movement data
were divided into two different segments: a planning segment
(plan) from LED illumination until movement was detected, and
a movement segment (move) consisting of forward movement
to the target. Movement initiation was defined as the point at
which the fingertip sensor reached 5% of the peak velocity dur-
ing the initial acceleration phase. Termination of forward move-
ment was defined as the point at which movement was at or
near a minimum velocity and shifted direction, corresponding
to the point in time at which the arm reversed direction and
began returning to the starting position. Arm trajectories were
visually inspected, and trials revealing data collection errors due
to factors such as a subject starting a trial early or occluded
LEDs were excluded from further analysis [13]. 

Movement data for the four subjects is summarized in
Table 1 broken down by the three different reaching targets.
Average times for both movement planning and execution are
listed in ms. An average of 612 trials was analyzed for each of
the four subjects. 

EEG ARTIFACT DETECTION AND REMOVAL
EEG data recorded during eye or other muscle movement typi-
cally contain movement artifacts. Artifacts associated with eye
movement occur because the eye has an uneven charge distri-
bution and therefore acts as an electric dipole. Eye blinks and
other movements generate a varying electrical field that propa-

gates throughout the head and is picked up by scalp electrodes.
Muscles generate electrical activity when they contract. Muscle
tension in scalp, face, and neck muscles generates signals which
also propagate throughout the scalp adding electromyographic
(EMG) activity to electrodes near the muscle insertion.

The standard approach to handling artifacts in EEG research
is to avoid them by developing experiments which restrict
movement as much as possible, and then discarding trials which
contain movement artifacts. This approach, however, is imprac-
tical for natural reaching tasks, in which eye and muscle move-
ment are generally unavoidable. 

Because reach data is especially susceptible to contamination
from EEG artifacts that could potentially lead to erroneous clas-
sification rates, we employ an especially conservative artifact
removal procedure, which is described in the following sections.

INDEPENDENT COMPONENT ANALYSIS
The first step of our artifact removal approach is to run inde-
pendent component analysis (ICA) on the EEG data. ICA is a sta-
tistical technique which takes recordings from an array of
sensors and determines a set of source signals which are maxi-
mally independent according to a specified measure of statistical
independence. ICA posits a data model X = AS, where X are
stacked row vectors of data recorded from individual sensors, A
is a matrix of mixing weights, and S are the stacked row vectors
of statistically independent source vectors. Given only the data
X , the ICA algorithm returns estimates for both A and
S : Ŝ = Â−1 X . The vectors in Ŝ are termed “independent com-
ponents” (ICs). The columns of Â−1 indicate how to construct
an individual IC as a weighted combination of channels of X.
Thus, we can visualize the distribution of an IC over the scalp by
plotting the values from a column of Â−1 at each electrode loca-
tion on the scalp to generate IC scalp maps (see Figure 1).

The ICA model assumes linear mixing of the sources as rep-
resented by the matrix A. Given a set of electrical sources in the
brain, this linear mixing assumption holds because the net elec-
trical potential between any two scalp electrodes is simply the
superposition of the potentials resulting from each source.

There are a variety of ICA algorithms which primarily differ
in the independence measure used. For artifact removal, we use
InfoMax ICA [1], [9], which aims to minimize mutual informa-
tion between sources by maximizing entropy. For ICA calcula-
tions and component visualization, we use EEGLAB [2].

ICA DIPOLE-BASED ARTIFACT REMOVAL
Once ICA components have been recovered, we attempt to fit
dipoles to the IC scalp maps using the DIPFIT plug-in for

RIGHT CENTER LEFT

SUBJECT PLAN MOVE TRIALS PLAN MOVE TRIALS PLAN MOVE TRIALS

S1 362 675 203 342 629 207 346 664 202
S2 297 443 205 267 394 214 283 416 196
S3 252 523 206 242 472 214 240 485 212
S4 303 721 183 288 645 192 256 642 207

[TABLE 1]  EXPERIMENT 1 SUBJECT MOVEMENT DATA (RELATIVE TO LED ONSET).
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EEGLAB. This software package uses a four-shell spherical
model (the brain, pial surface, skull, and scalp) and attempts to
find either a single dipole or a pair of symmetric dipoles which
best fit the IC scalp map. See [12] for details.

Each ICA component gets a dipole fit, but we only consider
dipoles which are good fits (<15% residual variance between
the IC scalp map and the fitting dipole scalp map). The location
of the “good fit” dipoles are then checked against the head
model, and only those dipoles
which reside within the brain vol-
ume of the model are retained. 

All ICA components which do
not meet our diple requirements
are removed. The i th ICA compo-
nent can be removed by first zero-
ing out column i of the mixing
matrix Â to form a new matrix Âi.
Then the cleaned EEG data con-
sisting of all but the removed
component can be reconstructed
as Xi = ÂiS.

The EEG data generated by back-projecting only the good fit
ICA components with equivalent dipoles located within the
brain will be referred to as cleaned EEG. The scalp maps of the
retained components for each of the four Experiment 1 subjects
are shown in Figure 1.

FEATURE EXTRACTION
From the cleaned EEG data we extract a set of eight different
feature vectors which were useful for classification in previous
BCI work [4]. 

FEATURE 1: AUTOREGRESSIVE MODELING
An autoregressive (AR) system can be described by the difference
equation y(t) = −∑

k aky(t − k ) + w(t) , where w(t) is a
white-noise random process and ak are the autoregressive coef-
ficients. Thus, an AR system can be thought of as white noise
passed through an all-pole filter. AR models give a decent first-
order approximation of real EEG spectra but require far less
data than high-resolution FFTs [17]. We use a 3rd order model

and compute AR coefficients using the Burg method [10],
parameters which we found to work well in previous analysis
[4]. This results in a feature vector with three feature values per
channel.

FEATURE 2: POWER ESTIMATES USING A FILTER BANK
A different approach to generating spectral estimates is to use a
bank of filters to determine power estimates over frequency

ranges corresponding to the indi-
vidual filters. This approach has
added flexibility over direct FFT
approaches and allows for shorter
filters where lower resolution is
sufficient. We create a bank of 9th
order finite impulse response (FIR)
filters over the following frequency
bands: delta (1–3 Hz), theta (4–7
Hz), alpha/mu (8–13 Hz), beta
(14–25 Hz), and gamma (26–40
Hz). To generate the power esti-
mate over a single frequency band,

we filter the data, perform a point-wise squaring of the filtered
signal, and finally compute the mean. This yields five feature
values per channel.

FEATURE 3: CLEANED EEG DATA
The cleaned EEG data is the starting point for all features and
thus contains all available (artifact-rejected) information about
the user’s brain state; however, the dimensionality of the data is
too high. In order to reduce dimensionality, we re-sample the
data to a fixed length of ten samples per channel.

FEATURE 4: DISCRETE WAVELET TRANSFORM
The discrete wavelet transform (DWT) offers a middle ground
between frequency-based and time-based representations. We
include a Symlet-based three-level DWT decomposition, which
is applied to the data and then re-sampled to a total of 10 sam-
ples per channel. 

FEATURES 5–8: ICA TRANSFORMS
Features 5–8 are generated by performing an ICA decomposi-
tion of the cleaned EEG data and then applying features 1–4,
respectively. Feature 7 was resampled to eight rather than
the intended ten points. Subsequent analysis with ten point
resampling yielded results very similar to those reported
here. Although InfoMax ICA was run on the complete dataset
for artifact removal, we did not use these ICA components for
our feature vectors because they are computed using the
complete dataset, and for the classification stage we want to
predict performance on future data not in our training
dataset. Because of this, we built a separate ICA decomposi-
tion into our classification cross-validation loops and trained
only on the current training segment. Computation speed is
important for classifier training, so features 5–8 use a
FastICA [5] decomposition because it can be computed more

[FIG1] Scalp maps of the retained ICA components for all four
Experiment 1 subjects. The hemispherical electrode locations are
mapped to a flat disc, and thus electrodes further down on the
head appear beyond the borders of the head outline.
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S2

S3

S4
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rapidly [6] than InfoMax ICA, which was used in the artifact
removal stage. Due to the reduced rank of the cleaned EEG
data, this application of ICA yields the same number of ICA
components as were retained in artifact removal—eight for
S1 and S3, and ten for S2 and S4.

CLASSIFICATION APPROACH
Our classification approach involves creating individual
classifiers based on each of the eight different feature vec-
tors, and then combining these individual classifiers into a
meta-classifier [4]. Classifier training takes place in a nest-
ed cross-validation scheme. An outer four-fold cross-valida-
tion loop segments the data into training (75%) and test
(25%) sets. This outer loop runs four times such that each
sample is a member of the test set exactly once. Eight indi-
vidual classifiers are trained inside this loop. Within each
outer cross validation loop, there is a two-fold inner cross-
validation loop in which the (outer) training data is once
again segmented into (inner) training (50%) and test
(50%) data. This inner cross validation loop is used to
select classifier regularization parameters (described later).
The individual classifiers are combined into a meta-classifi-
er which is then tested on the test data. This procedure is
outlined below.

1) outer cross-validation loop i = 1 : 4
a) loop over features j = 1 : 8

i) extract feature j
ii) inner cross-validation loop k = 1 : 2

A) loop over regularization parameters k = 1 : 7
iii) select best regularization parameter λ
iv) train classifier on feature j with regularization
parameter λ

b) combine individual classifiers to create meta-classifier i
c) compute classification rate on test data i

2) compute average cross-validation classification rate.

MULTINOMIAL LOGISTIC CLASSIFICATION
There are a variety of different classification approaches current-
ly in use with BCI data. It is becoming increasingly clear that
many different classifiers perform well given a sufficiently rich
feature set [4]. This particular application has high-dimensional
multiclass data. Thus, we would like to use a classifier with reg-
ularization to avoid over-fitting and native multiclass support to
avoid training multiple one-versus-rest classifiers. To address
these two characteristics, we use sparse multinomial logistic
regression [8].

The multinomial logistic regression classifier is: 

p(y(i ) = 1| x; w) =
exp

(
w(i )T

x
)

∑m
j=1 exp

(
w( j)Tx

) , (1)

where i indicates the class number, y(i ) is 1 for class i and 0
otherwise, x is the feature vector, w(i ) is the weight vector for
class i, and m is the number of classes.

The regularization comes from placing a sparsity-promoting
Laplacian prior on the weight vectors w(i ):

p(w(i )) ∝ exp(−λ‖w(i )‖1) , (2)

where λ is a regularization parameter and ‖ · ‖1 denotes the l1
norm. We use the inner cross-validation loop to select the best
value of λ from {0, 10−6, 10−4, 10−2, 100, 102, 104}. 

COMBINING CLASSIFIERS
Combining multiple classifiers has the potential of reducing
error rates both by reducing variance and by combining possi-
bly independent types of information [3], [4]. We combine the
output of the eight individual classifiers using an average meta-
classifier: average the predicted probabilities for each class
across all individual classifiers, and the class with the highest
average probability is selected as the predicted class output. The
average meta-classifier is robust to individual classifiers with
poor probability estimates [7], and it has no parameters, which
avoids extra steps for tuning the meta-classifier parameters.

EXPERIMENT 1 CLASSIFICATION RESULTS 
AND FEATURE ANALYSIS
We built classifiers to investigate two different aspects of the
combined movement and EEG data: two-class classifiers to
determine starting pose collapsed across target end points, and
three-class classifiers to determine target end point collapsed
across starting positions. We built separate classifiers for each of
the two different data segments, plan and move. Average cross-
validation results are summarized in Table 2.

Reaching target error rates were somewhat high for the plan
segment (ranging from 34% to 50% error) and generally lower
for the move segment (ranging from 26% to 46% error). While
these error rates may seem somewhat high, they are all well
below chance (67%), and half of the subjects tested had error
rates in the 30% error range. These relatively high error rates
may be at least partially due to the conservative artifact rejection

TARGET END POINT (THREE-CLASS) STARTING POSE (TWO-CLASS)

SUBJECT PLAN MOVE PLAN MOVE

S1 0.502 ± 0.0705 0.459 ± 0.0415 0.0572 ± 0.0222 0.0147 ± 0.00327
S2 0.369 ± 0.0421 0.380 ± 0.0314 0.163 ± 0.0325 0.125 ± 0.0243
S3 0.342 ± 0.0301 0.263 ± 0.0285 0.0158 ± 0.0121 0.0142 ± 0.0108
S4 0.433 ± 0.0448 0.378 ± 0.0361 0.0533 ± 0.0249 0.0275 ± 0.0110

[TABLE 2]  CLASSIFICATION ERROR RATES (± STANDARD DEVIATION) FOR TARGET REACHING.
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scheme that reduced the rank of the EEG data from 150 (140 for
S2) down to 8–10 ICA components. 

It is worth noting that the starting pose is more discriminable
than the three different reaching targets. This is not too surpris-
ing, as these two poses differ more than any pair of poses from
reaches to different targets. However, the error rates on the order
of 1% are somewhat suspicious. One possibility is that the high
classification rates are at least partially due to the nature of the
experimental design, in which all trials from a given starting
pose were run as a block. Thus, starting pose could act as a proxy
for first versus second half of the experiment.

To better understand what specific aspects of brain activity
were most important for target reach classification, we investi-
gated the individual classifiers. One way to do this is to analyze
trained classifier weights, which indicate the relative importance
of the corresponding features. To compare feature weights across
subjects, we constructed a reduced set of 69 channels which

matched locations across all four sub-
jects, scaled each feature vector to have
the same average length, and only ana-
lyzed the channel-based features 1–4,
which could be lined up across subjects.

To visualize the feature weights, we
took the feature weights (from the plan
stage) and averaged across cross-valida-
tion folds and subjects. For each fea-
ture, this gives three weight vectors
(one per class) which we reduced to a
single vector by computing the vari-
ance across the three different classes.
These values were then mapped onto 2-
D head images using a fixed color map
range for each feature. Results are
shown in Figure 2. Each row repre-
sents a complete feature vector, with an
average scalp map for each frequency/
time feature.

The locations of the largest fea-
ture weights vary substantially in
position across the four subjects and
the different feature vectors. One fea-
ture of note is the large weights over
left sensorimotor areas (t1 , AR1 ),
which lie near the hand area of pri-
mary motor cortex contralateral to
the reaching hand. Some features
show large weights over frontal areas
(beta, gamma, DWT7). These could be
due to frontal attention processes,
but it is also possible that these are
due to remnant eye artifacts. The
occipital and temporal weights (beta,
gamma, DWT1 , DWT10 ) could be
related to visual processing, but lie in
an area which could also suggest

neck muscle artifacts. All features showed large differences
across subjects, reinforcing the notion that tailoring classi-
fiers to each individual is crucial for good BCI performance.

EXPERIMENT 2
The results from Experiment 1 are encouraging; however, while
our artifact rejection scheme should remove most eye and mus-
cle artifacts, it is possible that some artifact information was not
successfully rejected and affected the classification results. Thus,
we developed and ran a second experiment in which we had
greater control over potential EEG artifacts.

Our second experiment is a center-out delayed reaching task
modeled after the delayed reaching task employed by
Santhanam et al. in [15]. In our variation, the subject sits back
in a comfortable chair positioned within easy reaching distance
of a 19-in LCD touch screen (Elo TouchSystems Model 1925L).
EEG data were recorded at 256 Hz using a 64-channel Biosemi

[FIG2] Scalp maps of feature importance averaged across all four Experiment 1 subjects.

AR 1

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

DWT1 DWT2 DWT3 DWT4 DWT5 DWT6 DWT7 DWT8 DWT9 DWT10

Delta Theta Alpha Beta

AR 2 AR 3

Gamma

[FIG3] A single trial from Experiment 2.

Time (ms)

Beginning of Trial Target
Displayed Delay

Period
“Go” Cue Target

Reach

500 ms
100 ms

750 ms–
1,500 ms Reach Avg.715 ms

(a)
(b)

(c)
(d)

(e)
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ActiveTwo system with sintered Ag-
AgCl active electrodes. Two subjects
were run in this new paradigm, one
who also participated in Experiment 1
(S2: male, age 58, right-handed) and
one new subject (S5: female, age 27,
right-handed).

A single trial of the experiment is diagramed in Figure 3.
Subjects are instructed to touch, hold, and fixate on a central
target [Figure 3(a)]. After a short delay, a reach target briefly
appears (100 ms) in one of the four corners of the screen
[Figure 3(b)]. All four possible targets are then shown and the
experiment begins a variable delay phase (randomly selected
between 750 ms and 1,500 ms) during which the subject main-
tains touch and fixation of the central fixation [Figure 3(c)].
After the variable delay, a “go” cue is indicated by replacing the
central rectangular target with a cross [Figure 3(d)]. At this
point, the subject performs a natural reach to the (remembered)
correct target [Figure 3(e)]. In order to keep the reach as natu-
ral as possible, the subjects were not instructed to maintain cen-
tral fixation during the actual reach. Touching the correct target
before reach timeout (3 s) results in a “ding,” while an incorrect
reach or timeout is signaled by a “buzz.”

A total of 800 trials were run for each subject with short
breaks every 25 trials. The four targets were presented in
pseudorandom order with a total of 200 trials for each target.

EXPERIMENT 2 DATA PREPROCESSING
The EEG data in this experiment were processed in exactly the
same manner as those from Experiment 1, with only a few
minor differences noted below. We used exactly the same algo-
rithms for artifact removal, feature extraction, and classification.
The differences noted below stem primarily from the different
number of channels and different time course of this experi-
ment. Scalp maps of the retained components for both
Experiment 2 subjects are shown in
Figure 4.

For Experiment 2, we only analyzed
the first 500 ms of the delay period
[Figure 3(d)]. During this period the visu-
al stimulus is identical for all trials and
visual fixation and arm position are held
fixed. This segment was selected to mini-
mize artifacts associated with eye and arm
movements and systematic posture
changes. Trials with incorrect target
selection or reach timeout were excluded.
The horizontal and vertical electrooculo-
gram (HEOG and VEOG, respectively)
were visually inspected, and any trials
showing blink or eye movements were
excluded. Before classifying the data, we
randomly selected a balanced number of
trials from each class. The numbers of tri-
als analyzed is summarized in Table 3. 

EXPERIMENT 2 RESULTS AND FEATURE ANALYSIS
Three different classifiers were constructed for each subject: a
four-class classifier for reaching target, and two-class classifiers
dividing the target space into left versus right reaches and top
versus bottom reaches. Average cross-validation results are
summarized in Table 3.

Both subjects had similar error rates in four-class target
decoding, with both well below chance (75%). The two-class
data showed an interesting pattern where classifiers for both
subjects were substantially better at discriminating left from
right targets than at discriminating top from bottom targets.
These results are encouraging and further support our find-
ing that reach targets can be successfully decoded from
human EEG.

[FIG4] Scalp maps of the retained ICA components for both
Experiment 2 subjects.

S2

S5

[FIG5] Scalp maps of feature importance averaged across Experiment 2 subjects.

AR 1

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

DWT1 DWT2 DWT3 DWT4 DWT5 DWT6 DWT7 DWT8 DWT9 DWT10

Delta Theta Alpha Beta

AR 2 AR 3

Gamma

CLASSIFICATION ERROR RATES (± STANDARD DEVIATION)

SUBJECT TRIALS 4-CLASS LEFT VERSUS RIGHT TOP VERSUS BOTTOM

S2 544 0.439 ± 0.0645 0.265 ± 0.0708 0.313 ± 0.0272
S5 536 0.414 ± 0.0325 0.142 ± 0.0305 0.326 ± 0.0347

[TABLE 3]  EXPERIMENT 2 SUBJECT DATA AND RESULTS.
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We analyzed the features from Experiment 2 exactly the
same way as in Experiment 1. The resultant feature maps are
shown in Figure 5. Once again, weights vary substantially across
subjects and features. Several features showed large weights
over left and right sensorimotor areas (delta, alpha, DWT3,4,5,8)
which would be consistent with reach planning. Note that there
is little activity over occipital/parietal regions (with the possible
exception of gamma), suggesting that any neck muscle artifacts
had little impact on classification. There are some large frontal
weights (t1, DWT1,6,10) which might correspond to frontal
attention processes. These could be eye artifacts, but this is less
likely than in Experiment 1 because all trials with apparent eye
movements were removed.

ERROR PATTERNS
One particularly interesting question about the EEG/move-
ment data is whether or not it contains an underlying struc-
ture. One way such a structure might manifest itself is
through structured errors. For example, in Experiment 1 one
might expect that misclassified L trials are more likely to be
(incorrectly) classified as C trials than R trials. To test this, we
constructed confusion matrices for target endpoints for
Experiments 1 and 2. 

The average confusion matrix for Experiment 1 is shown
in Figure 6(a), and the confusion matrix for Experiment 2 is

shown in Figure 6(b). Rows indicate
the correct class label, and columns
indicate the predicted class label.
Thus, each cell shows what fraction of
examples from the row class was pre-
dicted to belong to the column class.
For example, in Figure 6(a) row 1, col-
umn 2 (correct: L, predicted: C) shows
the fraction of L trials which the clas-
sifier predicted to belong to class C in
Experiment 1.

The structure of the Experiment 1
confusion matrix reveals that trials are
most likely to be correctly classified,
less likely to be misclassified one target
away, and least likely to be misclassified
two targets away. The Experiment 2
confusion matrix has a more complex
structure suggesting that targets are
most likely to be misclassified as nearby
targets, but targets on the left (3, 4) are
unlikely to be misclassified as targets
on the right (1, 2), and vice-versa.
These results suggest that there is an
underlying structure to the target
space, whereby targets nearby in physi-
cal space are also nearby in EEG feature
space, but this target space may have
additional complexities as it does in
Experiment 2.

CONCLUSIONS
This article represents the first steps towards developing BCIs
based on EEG recorded during reaching tasks. We described and
applied an artifact removal approach suitable for EEG recorded
during natural movements. In Experiment 1, we were able to
remove movement artifacts from EEG recorded during a natural
reaching task and use the cleaned EEG to successfully classify
reaching targets. In Experiment 2, we decoded reaching targets
using short segments of EEG from the premovement planning
stage of a delayed reaching task.

We believe that our conservative artifact removal scheme
should be sufficient to remove most movement-related EEG
artifacts. This conjecture is supported by good classification
performance on our delayed reaching task in Experiment 2,
suggesting that our classification results on the natural
reaching task in Experiment 1 are due to brain activity and
not merely motion artifacts. The fact that the cleaned EEG
data, especially in the planned reaching task, contained suffi-
cient information to interpret the planned reach targets indi-
cates that: 

1) properly cleaned EEG is a viable data source for studying
brain dynamics during reaching, and 
2) EEG-based BCIs may be able to decode and act on desired
reach commands.

[FIG6] Average confusion matrices for (a) Experiment 1 and (b) Experiment 2 . These
matrices illustrate what fraction of the data was classified as each of the possible predicted
class labels. Lighter shades indicate larger fractions. Target labels for Experiment 2 are
shown in (c).
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EYE BLINKS AND OTHER
MOVEMENTS GENERATE A VARYING
ELECTRICAL FIELD THAT PROPAGATES

THROUGHOUT THE HEAD AND IS
PICKED UP BY SCALP ELECTRODES.
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