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Abstract— Pneumatic actuators have a number of advantages
over electric motors, including strength-to-weight ratio, tunable
compliance at the mechanism level, robustness, as well as price.
Their properties are in many ways similar to muscle properties,
which further makes them a good choice for bio-inspired robotic
designs. However they are considered harder to control, and
often avoided. Here we report results on modeling and control
of a 2-dof robot, as well as preliminary results on a state-of-
the-art 38-dof humanoid. Contrary to popular belief, we found
it surprisingly easy to work with these pneumatically-actuated
robots and obtained high tracking performance. We were also
able to achieve end-effector control of the highly redundant
arm of the humanoid. This was done by building parametric
models, fitting them to experimental data, designing model-based
feedback controllers, and optimizing their performance.

I. INTRODUCTION AND PRIOR WORK

Pneumatic systems are becoming increasingly popular
[1] due to their high speed and force capability, as well
as relatively low price and overall robustness. From the
perspective of bio-robotics, pneumatic actuators are further
desirable because they have many of the essential properties
of biological muscle at the mechanism level – which we
believe is quite different from trying to re-create those
properties using feedback control. In particular: (i) as the
joint moves in the direction of actuated force, the chamber
volume increases and thus the pressure/force drops, resulting
in stiffness; (ii) this stiffness can be tuned by activating
opposing cylinders, much like a biological limb becomes
stiffer when antagonist muscles co-contract; (iii) the actuator
has an internal activation state (air mass in the case of
pneumatics, calcium concentration in the case of muscles)
whose dynamics make the entire system 3rd-order; (iv) the
latter dynamics effectively introduce a low-pass filter between
command signals and forces, with similar time-constants for
muscles and pneumatic cylinders; (v) since the actuators are
often linear they can be mounted in a way reminiscent of
muscle attachment to the skeleton, resulting in moment arms
which vary with joint angle; (vi) the high force output makes
gears and other amplification mechanisms unnecessary, which
in turn results in uniquely compliant systems capable of
dynamic interactions with the environment. One could argue
that some of these properties are unnecessary complications.
However, if we are serious about understanding the principles
of biological control and replicating those principles in
synthetic systems, it would be a mistake to ignore the fact
that biological control has evolved in the context of the
musculo-skeletal plant and is profoundly shaped by the
unusual properties of this plant.

Fig. 1. Our 44-dof humanoid (DiegoSan) made by Kokoro Japan. The inset
shows a simpler 2-dof robot made with the same sensors and actuators. All
joints are actuated by pneumatic cylinders, with separate pressure sensors and
valves for each chamber.

Due to the highly nonlinear properties of pneumatic model-
ing and uncertainties of various parameters, the control prob-
lems become challenging for systems with high precision re-
quirement on force and position [2]. Various approaches have
been proposed to cope with these problems. Early applications
used a linearized state space model to develop an optimal
regulator for a fixed operating point [1], [3]. Later, adaptive
control was used for actuating an air power robot [4]. Other
works on adaptive control include [5], [6], [7]. A literature also
exist on applying PID control to pneumatic actuators [8], [9].
However it has been claimed that conventional PID feedback



controllers do not yield sufficiently effective performance
for control purposes because pneumatic systems have quite
complex pressure dynamics. Ref. [10] developed a robust
controller using sliding mode techniques to drive the output
tracking error to zero in finite time. Ref. [11] proposed proxy-
based sliding mode control of a 2-dof planar manipulator
actuated by pleated pneumatic artificial muscles, and obtained
better tracking results compared with PID control. Additional
sliding-mode controllers and other non-linear approaches can
be found in [12], [13]. Thus far the literature on pneumatic
control has focused on low-dimensional systems (1 or 2 dofs),
and scaling to more complex robots remains an open question.

II. ROBOTIC PLATFORMS

We recently acquired the humanoid shown in Figure 1,
made by Kokoro in Japan. It has 44 pneumatically-actuated
dofs; 6 of them are in the hands which were removed for the
purposes of this paper, so here we are controlling "only" 38
dofs. Our long-term goal is to be able to make this humanoid
perform various life-like movements. Before attempting such
a challenging task, however, it makes sense to study a simpler
system and find out what methodologies might work. The
simpler system is the 2-dof robot arm shown in the inset in
Figure 1. It is made by the same manufacturer using the same
components. We now describe these robotic platforms in more
detail.

Each joint is driven by either a linear or a rotary pneumatic
cylinder. The drive is direct, without any gears, belts or cables
(except for a couple of joints in the humanoid). This makes
the system both more compliant and more robust – indeed
the robot has been hitting its joint limits at high speeds
during the system identification tests, without any damage.
Each cylinder has two chambers fitted with solid-state pressure
sensors. Each chamber is connected to a proportional valve,
which can be open towards the compressor (supplying 7 bar
pressure) or towards the room (where the atmospheric pressure
is 1 bar) or can be closed. The joint angles are measured
by potentiometers. Thus the 2-dof robot has 6 sensors and 4
controls. The humanoid has 114 sensors and 76 controls.

We are using National Instruments boards for both robots.
The valves have 100Hz bandwidth, thus the control loop runs
at 100Hz. The pressure sensors and potentiometers are analog
devices that can be sampled at arbitrary rates. In the 2-dof
robot we are sampling all sensors at 50KHz and averaging
every 500 samples in order to obtain a 100Hz sensory-motor
loop. In the humanoid we had to reduce this to 20KHz and
200 samples respectively, still yielding a 100Hz sensorimotor
loop. Such averaging is beneficial because the sensor noise
is essentially white. The software system consists of the
NIDAQmx drivers, a mex function which reads the driver
buffers and returns averaged sensor data, and Matlab scripts for
everything else. To our pleasant surprise, we found that Matlab
running under Windows (without any real-time extensions)
results in a perfectly reliable real-time control loop – which
we verified against the internal clock of the DAQ card.

III. COMPLEXITIES OF PNEUMATIC ACTUATION

Here we illustrate some of the unusual properties of pneu-
matic actuators using the 2-dof system. Unlike motor-actuated
robots where the torque is proportional to the control signal,
here the torque is proportional to the difference in pressure
between the two chambers of the cylinder. What the control
signal does is affect the rate of change of pressure. The way
this happens will be discussed in detail later, but for now it
is important to note that the pressure dynamics are inherently
unstable: the pressure changes towards the maximum or the
minimum value depending on which way the valve is open.
Figure 2A shows the asymptotic pressures reached for different
control signals (the valve controls are between 0V and 10V,
with 5V being the closed position). If the valves were to
operate as specified, the blue curve in the figure would be
a step function. It turns out however that the valves operate
slightly differently: for control signals near 5V, they are
not completely closed but instead are somewhat open both
towards the compressor and towards the room. As a result
we observe asymptotic pressures at intermediate values. These
asymptotes take much longer to reach (red curve), but can
nevertheless be very useful because they introduce an element
of proportionality in an otherwise all-or-nothing system. When
designing linear feedback controllers in particular, we may
want to operate in this regime.

Another effect of (almost) closing the valves is that the
system becomes stiff at the mechanism level. It is easy to see
why. Perturbing the arm changes the volume of the chambers.
If the valves are closed, the perturbation causes a change
in pressure which in turn generates a force opposing the
perturbation. If the valves are open, the air can move in
and out (usually faster than the mechanical perturbation) thus
we have little stiffness. So the stiffness of the system can
be controlled; high stiffness is obtained in the intermediate
regime discussed above. This stiffness is rather complex, and
involves what looks like an elasto-plastic phenomenon shown
in Figure 2B. In this experiment all valves are closed (control
= 5V). If the experimenter hits the robot arm (narrow pulses)
it returns to its previous position in a slightly under-damped
fashion. If however the experimenter moves the robot arm to
a new position and holds it there for a couple of seconds, the
equilibrium shifts to the new position. This happens because
the valves are not completely closed.

Finally we illustrate the speed capabilities of the robot.
Figure 2C shows the results of two experiments, in which
the robot is oriented so that the second link moves in the
horizontal plane. At time 0 the agonist (i.e. pushing in the
movement direction) control changes from 0V to 10V. If the
antagonist control is 0V, we observe a very rapid movement
reaching peak velocity of 1450 deg/sec.

Note that towards the end of the movement the pressure in
the antagonist chamber rises substantially. This is because the
chamber volume is decreasing faster than the air can get out
of it (even though the valve is fully open towards the room).
The result is a non-linear viscosity effect present only at high
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Fig. 2. A– Asymptotic pressure, recorded 5 seconds after setting the valve
control to the value shown on the horizontal axis. The curve is the same
regardless of the initial pressure. The time it takes to reach 90% of the
asymptotic pressure is also shown (in red). B– Illustration of plasto-elasticity.
The pulses correspond to the experimenter hitting the robot – which quickly
returns to its previous equilibrium position. The equilibrium however can be
changed by holding the robot for a few seconds in a different position. C–
Response to a step control input to one of the valves. When the opposing
valve is open we see a rapid movement. When the opposing valve is closed,
we see a complex response ref1ecting the air dynamics.

velocities. If we now repeat the experiment (bottom row) with
the antagonist control set to 5V, the result is very different: the
arm begins to move rapidly, then comes to almost a complete
stop, and then continues at a slow and somewhat oscillating
velocity. This behavior is the result of constant control signals;
all the complexity comes from the air dynamics.

IV. MODELING AND SYSTEM IDENTIFICATION

In this section we construct a physical model of the 2-dof
robot and fit its parameters in a system identification phase.
The model is later used for control purposes. The model has
two parts. One is the dynamics of the 2-link mechanism, and
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Fig. 3. A– typical example of measured and predicted pressure differences
over a 10 sec time window taken from a 60 sec trajectory (normal speed, no
self perturbtations). Overall the 2 for the model fit is 087. B– The values
of the 8 model parameters estimated from 9 different datasets. The first three
parameters (encoding the inertia matrix) are scaled by 10 to be more visible.

relates joints positions, velocities and torques. The other is the
dynamics of the pressures inside the chambers. We will use
the following notation:

 ∈ {1 2} joint number: 1-shoulder, 2-elbow
 ̇ ̈ joint angle, velocity, acceleration
+  

−
 pressures in the two chambers of cylinder 

  actuator torque acting on joint 
 = + − − pressure difference (proportional to  )
+  

−
 control signals to the valves of cylinder 

Thus the state vector is x =
£
1 2 ̇1 ̇2 

+
1  

−
1  

+
2  

−
2

¤T
and the control vector is u =

£
+1  

−
1  

+
2  

−
2

¤T
. The quanti-

ties    are derived from the state variables.

A. Two-link arm dynamics

The equations of motion of a two-link arm are fairly
standard, as derived below. The unusual aspect of our model
is that we seek a minimal parameterization so as to make the



subsequent system identification more reliable. As a result,
multiple physical quantities are lumped together into model
parameters () which do not have intuitive meaning.

The configuration-dependent inertia matrix  of this sys-
tem is in the form

 (q) =

∙
1 + 2 cos (22) 0

0 3

¸
(1)

The off-diagonal terms are zero because the joint axes are
orthogonal. The Christoffel symbols of  yield the Coriolis
and centripetal torques n:

n (q q̇) = 2

∙ −2 sin (22) ̇1̇2
sin (22) ̇1̇1

¸
(2)

The gravitational torques g can be computed using the fact that
the elevation of the center of mass of link 2 is proportional
to cos (1) cos (2). Note that 1 = 2 = 0 is defined as the
vertical configuration shown in Figure 1. Using the gradient
of the elevation, we have

g (q) = 4

∙
sin (1) cos (2)

cos (1) sin (2)

¸
(3)

We also include viscous forces b of the form

b (q̇) =

∙
5̇1
6̇2

¸
(4)

Finally, we allow for an offset between the pressure differences
 and torques  , which can account for sensor calibration
issues. A scaling factor is not needed because the above model
is already scalable. Thus the overall model isb1 = (1 + 2 cos (22)) ̈1 − 22 sin (22) ̇1̇2

+4 sin (1) cos (2) + 5̇1 + 7b2 = 3̈2 + 2 sin (22) ̇1̇2
+4 cos (1) sin (2) + 6̇2 + 8

(5)

This is an inverse dynamics model, predicting the pressure dif-
ferences given the joint positions, velocities and accelerations.
It has eight free parameters.

All parameters affect the model predictions linearly, which
is a major advantage because we can find the globally-
optimal parameter estimates using linear regression. As a
sanity check, we constructed a model of our robot in the
Matlab robotics toolbox (setting  =  and excluding the
pneumatics), generated data for randomly chosen positions,
velocities and accelerations, and then fit our model to it. Since
we are using lumped parameters it is not easy to see what the
correct estimates should be, however the model fit produced
zero error – which validates the above equations. We then
proceeded to fit the model to actual data obtained from the
robot. The data were collected while the robot was driven by
a PID controller tracking a reference trajectory (see below).
We collected nine dataset: three reference trajectories (each 60
seconds long), executed at normal speed, 2 times faster speed,
and normal speed with self-generated control perturbations.
The measured and predicted pressure differences are compared
in Figure 3A over a 10 sec time window. Note the close
correspondence. Overall the predicted values of  explained

87% of the variance of the measured values (i.e. 2 = 087).
We also tested if the estimated model parameters are similar
over the nine datasets. This was indeed the case as shown
in Figure 3B. Using the dataset-specific parameters instead of
the average parameters improved the model fit only by 1%
variance explained (2 = 088 averaged over the datasets).
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Fig. 4. A. Example of measured and predicted pressure velocities ̇, for
the two chambers of cylinder 1. B. Example of reference (blue) and model-
predicted (red) pressure differences  for both actuators.

B. Air dynamics

A pneumatic cylinder is a device with two chambers sepa-
rated by a piston. In a double acting cylinder, each chamber has
an orifice controlled by a valve, which connects the chamber
to the compressor or the room. When the orifice is open to the
compressor, compressed air enters into the chamber. Similarly,
when the orifice is open to the room, chamber air exhausts to
the atmosphere. Increasing or decreasing pressure can force
the piston to move in the desired direction.

1) Mass Flow Model: The key part of the cylinder model
is to control air f1ow that causes chamber pressure difference.
According to isentropic f1ow assumptions, the mass f1ow rate
going into a chamber of cylinder  is defined as

̇ =  () ( )−  () ( ) (6)

where   are the orifice areas connecting the chamber
to the compressor and room respectively, and   are the
(constant) pressures in the compressor and room.

The nonlinear function ( ) is given by

( ) = 

sµ




¶ 2


−
µ




¶+1


(7)

for  ≤ , and otherwise



( ) =  (8)

2) Chamber Pressure Dynamics: Air charging and dis-
charging processes into the cylinder’s chambers cause the
pressure change. Using the law of conservation of energy, and
assuming a constant temperature  and no heat exchange, the
velocity of the chamber pressure can be derived as follows

̇ = − ̇

 + 




̇ (9)

where  is volume of the chamber and ̇ is the volume
velocity. These equations depend on a number of constants
which are inferred from the data.

3) Calibration of Orifice Open Area: In our two dimen-
sional pneumatic system, there are two cylinders and four
chambers. Each chamber has an orifice connecting to compres-
sor or room, which is controlled by a valve. To calibrate the
orifice area for each valve control signal, we keep the chamber
volumes static, set initial chamber pressure to atmospheric
pressure or compressor pressure, provide constant valve signal
for 5 seconds, and then record the pressure. Since the chamber
volume is static, the volume velocity is 0 and we have

̇ = 



̇ = 




( () ( )− () ( ))

(10)
As , ,  are known constants, ̇(), ( ()) and
(() ) can be calculated at each time step , we are able
to estimate the unknown constants  and  by linear
regression for each voltage , with notations () and
() . As (10) and (0) are known, we can calibrate
other () and () by using

() = (10)
()

(10)
(11)

() = (0)
()

(0)
(12)

The resulting model was able to fit the experimental data quite
well – see Figure 4A.

4) Model-predictive control: Given a reference pressure-
difference trajectory  ()   (+∆)  · · ·  (+ ∆) over a
short time horizon  with time step ∆, we can now use our
model of air dynamics to compute valve commands which will
instantiate the reference pressure differences. This approach is
superior to using instantaneous pressure feedback (see below)
because the valve commands have their largest effect a couple
of time steps into the future. Note that there is a redundancy
issue here: the reference trajectory only specifies the pressure
differences/forces (because it is computed by some higher-
level controller which ignores the air dynamics) and not the
actual pressures. We resolve this redundancy by introducing
a control cost on the valve commands – namely a quadratic
centered at 5V. We then formulate a non-linear optimal control
problem subject to control constraints, and solve it using

our iterative LQG method [15]. This is done in real-time at
every step of the control loop. Figure 4B shows the refer-
ence trajectory (blue) plotted at  (+∆), and the trajectory
(red) predicted by our air dynamics model given the controls
computed by iLQG. The two are indistinguishable, meaning
that at least according to the model we can achieve the
desired pressure differences perfectly, by taking into account
a few time steps into the future (currently  = 2). We are
currently experimenting with applying this control scheme to
the physical robot.
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Fig. 5. A– One of the three reference trajectories recorded by the exper-
imenter. It contains reaching movements that stop abruptly, circles, figure
eights, and a variety of other movements. B– Tracking performance of the
best controller we have designed so far for this robot (PIDF+model).

V. 2-DOF TRAJECTORY CONTROL

Here we focus on the task of tracking a reference trajectory
in joint space. While many interesting control problems are not
in this form, trajectory tracking is a basic control objective that
one should be able to accomplish before moving on to more
challenging problems. Three long reference trajectories (1
minute each) were recorded by the experimenter, who held the
endpoint of the robot and moved it around while the computer
recorded the joint angles. One of these trajectories is shown
in Figure 5A. Each trajectory was used at the recorded speed
(which was already quite fast), as well as a two times faster
speed (referred to as "fast trajectories"). The experimenter
attempted to generate as diverse a set of movements as
possible. The data were scaled to fit the joint range minus
a small safety margin. Cubic spline smoothing was used to
clean up the position data (which was not really necessary)
but also to compute reference velocities and accelerations.



Multiple controllers were designed as described next. The
tracking performance of the best controller is illustrated in
Figure 5B.

As we describe the different controllers below, we will
repeatedly refer to Figure 6 which compares their performance.
Figure 6A illustrates the typical tracking performance of the
different controllers on a portion of one of the fast reference
trajectories (performance at normal speed is much better which
makes it hard to distinguish between the different controllers).
Figure 6B shows a systematic performance analysis. For each
speed (normal and fast) and each controller, we compared
the reference and actual trajectories at different latencies, and
computed the mean absolute error. The reason for analyzing
different latencies is because we noticed that our controllers
often produce trajectories very similar to the reference, but
with a delay. Fig 6C illustrates an interesting phenomenon.
Here we repeated a (shorter) reference trajectory three times.
The first repetition was discarded and the next two repetitions
were plotted in the figure. On the last repetition the exper-
imenter delivered some perturbations to the robot (marked
with arrows). The trajectories are virtually identical before the
perturbation, and quickly converge after the perturbation. This
illustrates the stability of the controller, as well as the fact that
the system is rather deterministic.

A. PID control

The simplest possible feedback control methodology is
proportional-integral-derivative (PID) control. For each joint,
we compute an error signal of the form

 () =  (
∗
 ()−  ()) +  (̇

∗
 ()− ̇ ()) (13)

+

Z 

0

(∗ ()−  ()) 

where ’*’ denotes the reference trajectory. In the case of
electric motors  () can simply be interpreted as a control
signal. Here the situation is more complicated because the
torques/pressure differences do not correspond directly to the
control signals. Nevertheless we can pretend that they do, and
define the controls as

+ () = 5 +  () (14)

− () = 5−  ()

This will generally have the effect of increasing the pressure
difference when   0, and decreasing it otherwise.

The resulting control scheme had plausible performance
at normal speeds, however it was far from the reference
trajectories at high speeds. See Figure 6A,B.

B. PID control with force feedback

Here we consider a simple extension to the above PID
control scheme. Instead of treating the PID error signal 
as a control, we treat it as what it really is, namely a desired
pressure difference. Since we are measuring the actual pressure
difference  in real time, we can create a low-level feedback
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Fig. 6. A– Typical behavior of the three controllers on fast trajectories. In the
illustrated time segment, the excursion of the reference velocity is around 1000
deg/sec. B– Mean absolute tracking error (averaged over the two joints) for
each controller, trajectory speed, and time lag. The results are averaged over
the three reference trajectories. C– Illustration of the repeatability of the PIDF
controller. The two traces are two executions of the same reference trajectory.
The arrows denote times when the experimenter perturbed the robot.

loop aiming to match the desired and actual pressures. The
resulting control law is

+ () = 5 +  ()−  () (15)

− () = 5−  () +  ()

We will call this PIDF control, where the "F" stands for
"force". The reason for using the term "force" rather than
"pressure" is because we believe this scheme is more general,
and can be used for other third-order systems even if the actu-
ation mechanism is not pneumatic. One particularly interesting
case is biological motor control, where Golgi tendon organs
provide fast force feedback to the spinal cord, and muscles
have activation states similar to pneumatic actuators.



While PID and PIDF control are conceptually very similar,
the latter turns out to be a much better control scheme.
The quantitative comparisons can be found in Figure 6A,B.
Another difference is that PIDF control can use larger gains –
which is to be expected if it achieves smaller errors, although
the argument is somewhat circular. We established this empir-
ically by optimizing the gains of both controllers. The opti-
mization was done automatically as follows. We implemented
a Matlab function whose arguments specify the feedback
gains. This function applies the corresponding control law
to the physical robot (on a 10 second trajectory), measures
the tracking error, and returns it to the calling function. We
then used a numerical optimization procedure (the nonlinear
simplex method) to minimize the resulting error. The reason
for using the simplex method rather than a finite-difference-
based gradient descent method is because the former evaluates
the function at points that are spaced further apart. Given that
the function evaluation is somewhat noisy, finite differences
will produce unreliable results. Overall we found that the
automatic gain tuning always finds somewhat better gains than
our manual tuning, although there seemed to be plenty of local
minima. In order to make this automated procedure safe, the
evaluation function returned a large error whenever the robot
hit any of the joint limits at high speed (which it did when
the minimizer attempted to use large gains).

C. Model-based PIDF control

We designed a controller taking advantage of our model of
the robot. The current version uses only the 2-link dynamics
model and not the air dynamics model (the latter was used
above in the model-predictive control setting but only in
simulation for now). As in PIDF control, we compute a desired
pressure difference at each point in time. However we now
take the model predictions into account:

 () =  () + b () (16)

The feedback gains are the same as in the PIDF controller.
Note that if tracking is perfect we will have  = 0, in which
case the PID and PIDF controllers will generate zero output
and thereby cause an error. The model-based controller can
at least in principle track perfectly, modulo model errors of
course. The control signals now have the form

+ () = 5 +  ()−  () (17)

− () = 5−  () +  ()

This model-based controller had markedly better perfor-
mance, especially on fast trajectories. It was actually better
in two (possibly related) ways. First, the tracking error at zero
latency was smaller. Second, the latency at which it achieved
the best performance was smaller – around 40 msec. See
Figure 6A,B.

VI. CONTROLLING A 38-DOF HUMANOID

Here we describe results from controlling the humanoid
robot. Since we are still in the process of constructing a
dynamics model and fitting it to data (using a new physics

engine we are developing), the present results are based on
the PIDF control scheme described above. Before attempting
to control the humanoid, we collected calibration data for
every valve and cylinder, and designed (automatically) a
non-linear transformation which compensates for the unique
characteristics of every valve, resulting in a canonical sigmoid
relationship between command signals and (inferred) orifice
areas. These non-linear transformation were incorporated into
our device driver and were transparent to the rest of the control
system.

A. Trajectory tracking

We obtained a 1-minute reference trajectory by holding the
arms, legs and head of the robot and moving them around
while recording potentiometer data (it took 4 people to do
this). We then adjusted the control gains to achieve the best
tracking possible. This was done in a hierarchical manner.
First, we sent a sinusoidal signal to each joint (one at a time),
measured the resulting range of motion, and defined a joint-
specific gain scaling factor equal to the inverse of this range.
The rationale is that some joints have higher "impedance" that
others (lumping multiple effects into a single number) and thus
need larger control gains. We then tuned the master gains by
hand.

Tracking was surprisingly good – see Figure 7. The median
absolute error over all 38 dofs was 3.4% of the corresponding
joint ranges. Most of this error was due to a timelag –
which was aroound 100 msec. Note that the actuators of the
humanoid have longer time constants compared to the 2-dof
system, because of the longer air tubes connecting the (off-
board) valves to the cylinders.

Similar to the 2-dof case, we found that the trajectories
resulting from the PIDF controller were very repeatable as
well as stable in the presence of perturbations. Comparing two
repetitions of the experiment, we found that the difference
is 0.03% of the joint range, or 100 times smaller than the
differences shown in Figure 7. This is encouraging because it
implies that a better model-based controller could in principle
achieve almost perfect performance.

B. End-effector control

Finally, we developed a hierarchical control scheme capable
of moving the robot’s hand to a spatial target held by the
experimenter. Let  =  () denote the mapping from arm
joint coordinates  ∈ R7 to hand Cartesian coordinates  ∈
R3,  () the Jacobian of this mapping, and ∗ ∈ R3 the
current target position. Here  and ∗ are obtained from optical
motion capture, while  is obtained from the potentiometers.
We compute the instantaneous spatial error ∗ () −  (),
interpret it as a desired force acting on the hand, and map it
to desired joint torques as  () =  ( ())

T
(∗ ()−  ()).

Then  () is treated in the same way as the quantity  ()

generated by the PIDF controller, and converted into valve
command signals. This control scheme alone is problematic
because the arm can gradually reach some of the joint limits.
To avoid this problem, we further define a default posture



1 minute of tracking

Fig. 7. Reference (black) and measured (red) trajectories for 20 out of the
38 dofs of the humanoid.

 in the middle of the joint range, and generate additional
torques Null ( ( ())) ( ()−  ()) in the null space of the
Jacobian, pushing the arm towards the default posture in
a way which does not interfere with target tracking. This
resulted in a very responsive controller which tracked the
target well, and resolved the redundancy of the arm auto-
matically. We used a somewhat inaccurate kinematic model
(since we do not yet have the CAD files for the robot),
and furthermore two of the joints involved had more friction
than what a linear feedback controller could handle well. So
there is room for improvement here, but the initial results are
encouraging. Movies of both robots in action can be found
at www.cs.washington.edu/homes/todorov, under
Papers.

Fig. 8. End-effector control to spatial targets specified in real-time by the
experimenter. The robot "sees" its hand and the target using off-board infrared
motion capture (PhaseSpace system).

VII. CONCLUSION

We presented results on modeling, identification and feed-
back control of a 2-dof pneumatic robot and a 38-dof hu-
manoid. We were able to obtain good tracking performance
and end-effector control using relatively simple techniques.
Our model of air dynamics has not yet been used in the control
loop, but we plan to do that soon. We are also hopeful that the
model-predictive approach based on iLQG can be extended
to handle the entire control problem and not just reference
pressure tracking. Modeling and system identification of the
humanoid is another interesting problem which remains to be
addressed. This will be done in future work.
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