Beyond Janus & Epimetheus: Momentum Trading Among Co-Orbiting Satellite Groups

DOUG BALCOM

UNIVERSITY OF WASHINGTON
APPLIED MATHEMATICS

Special Thanks to...

Sasha Malinsky

Janus and Epimetheus: Momentum Trade in Orbit Around Saturn

MS Final Presentation

Winter 2011 MS Symposium

Applied Mathematics Department

University of Washington

Topics

- The Players
 - > The Phenomenon
 - > The Questions
 - The Mathematics
 - > The Model
 - The Experiments
 - > The Conclusions
 - The Next Steps
 - References

The Players:

Saturn

Mass:	$5.6846 \times 10^{26} \text{ kg}$
Equatorial radius:	60268 km

The Players:

Janus

Mass:	$1.8975 \times 10^{18} \text{ kg}$
Mean diameter:	179 km
Semi-major axis (outer orbit):	151472 km
Semi-major axis (inner orbit):	151450 km

The Players:

Epimetheus

Mass:	$5.266 \times 10^{17} \text{ kg}$
Mean diameter:	113 km
Semi-major axis (outer orbit):	151500 km
Semi-major axis (inner orbit):	151422 km

The Phenomenon:

Momentum Exchange

The Phenomenon:

Horseshoe Orbits

The Questions:

Could this work with 3+ moons?

If 3 or more satellite bodies shared an orbit & exchanged momentum in this manner:

- Could such a system remain stable over time? Or would the dynamics cause bodies to escape the momentum exchange pattern?
- ➤ How would the relationships between initial orbits, and between masses of the bodies, affect the stability of the system?
- ➤ If such a system began with axial or radial symmetries, would these symmetries be preserved over time? How would such symmetries affect the stability of the system?

Assumptions

- Each body is a point mass
- Neglect the following:
 - Drag
 - Relativistic effects
 - Gravity of other bodies (besides the ones being modeled)
- Saturn's position fixed as center of our coordinate frame
- Neglect the miniscule perturbations of Saturn's position caused by the satellites

Equations of Motion

From Newton's second law of motion:

$$\frac{d^{2}\vec{r}_{J}}{dt^{2}} = -\frac{\mu}{\|\vec{r}_{J}\|^{3}}\vec{r}_{J} + \frac{Gm_{E}}{\|\vec{r}_{je}\|^{3}}\vec{r}_{je}$$

$$\frac{d^{2}\vec{r}_{E}}{dt^{2}} = -\frac{\mu}{\|\vec{r}_{E}\|^{3}}\vec{r}_{E} + \frac{Gm_{J}}{\|\vec{r}_{ej}\|^{3}}\vec{r}_{ej}$$

- $\vec{r}_I \& \vec{r}_E$ = spatial vectors from Saturn to each satellite
- \vec{r}_{je} & \vec{r}_{ej} = spatial vectors from Janus to Epimetheus and vice versa
- m_J & m_E = masses of the two satellites
- G = gravitational constant $\approx 6.67428 \times 10^{-11} \frac{m^3}{kg \cdot sec^2}$
- $\mu = GM_s$, where M_s is the mass of Saturn.

Conversion to 1st-order ODEs

$$\frac{d\vec{r}_J}{dt} = \vec{v}_J$$

$$\frac{d\vec{v}_J}{dt} = -\frac{\mu}{\|\vec{r}_J\|^3} \vec{r}_J + \frac{Gm_E}{\|\vec{r}_{je}\|^3} \vec{r}_{je}$$

$$\frac{d\vec{r}_E}{dt} = \vec{v}_E$$

$$\frac{d\vec{v}_E}{dt} = -\frac{\mu}{\|\vec{r}_E\|^3} \vec{r}_E + \frac{Gm_J}{\|\vec{r}_{ej}\|^3} \vec{r}_{ej}$$

Extension to *n* satellites

For each satellite body b_i (j = 1, ..., n):

$$\frac{d\vec{r}_{b_j}}{dt} = \vec{v}_{b_j}$$

$$\frac{d\vec{v}_{b_j}}{dt} = -\frac{\mu}{\left\|\vec{r}_{b_j}\right\|^3} \vec{r}_{b_j} + \sum_{\substack{k=1, \\ k \neq j}}^n \frac{Gm_{b_k}}{\left\|\vec{r}_{b_j b_k}\right\|^3} \vec{r}_{b_j b_k}$$

2-body Analog

To evaluate solver accuracy, consider the case with 1 satellite:

$$\frac{d\vec{r}}{dt} = \vec{v}$$

$$\frac{d\vec{v}}{dt} = -\frac{\mu}{\|\vec{r}\|^3}\vec{r}$$

Keplerian 2-body Solution

Kepler's analytical solution to the 2-body case:

Path:
$$r(\theta) = \frac{a(1 - e^2)}{1 + e \cos \theta}$$

Speed:
$$v = \sqrt{\mu \left(\frac{2}{r} - \frac{1}{a}\right)}$$

Period:
$$T = \sqrt{\frac{4\pi^2 a^3}{\mu}}$$

- r = distance from Saturn to satellite
- θ = angle from periapsis direction to the Saturn-satellite vector
- a = semi-major axis of the orbital ellipse
- e = eccentricity of the orbital ellipse
- v = magnitude of the satellite's velocity
- T = orbital period

The Model: Simplifying Assumptions

- > All orbits are **coplanar** (zero inclination)
- All orbits start out circular (zero initial eccentricity)

Both of the above are *close* to reality for Janus & Epimetheus

The Model:

Solver Evaluation Phase (1 Satellite)

Approach:

- > Janus only
- > Initial conditions:
 - Position: $\theta = 0$; $r = r_I$ (standard low-orbit Janus altitude)
 - Velocity: Keplerian v_J , angular direction $\frac{\pi}{2}$ (orthogonal to radial vector)
- Integrate forward an integer number of Keplerian periods
- \succ Evaluate errors in final position (r_f, θ_f) and velocity magnitude v_f :
 - Final angular error = θ_f (exact: $\theta_f = 0$)
 - Final radial error = $r_f r_J$ (exact: $r_f = r_J$)
 - Maximum radial error = maximum $|r r_J|$ (exact: $r = r_J$ throughout)
 - Final velocity magnitude error = $v_f v_J$ (exact: $v_f = v_J$)

The Model:

Solver Evaluation Results

- > Evaluated ode23, ode45, ode113, ode15s
- \triangleright Relative tolerance (RelTol) setting: minimum allowed (2.3 \times 10⁻¹⁴)
- Results:
 - ode23: very good accuracy, way too slow
 - ode15s: not accurate enough
 - ode45: very good accuracy, too slow
 - ode113: good accuracy, fast enough The winner!
- ➤ By tweaking AbsTol & MaxStep settings as well, achieved the following accuracy in 1000-year integration (run time < 3 hours):
 - Radial errors: Final error < 0.002 m; maximum error < 0.014 m (!)
 - Final angular error: $< 6.5 \times 10^{-5}$ radians
 - Final overall position error: < 1 km (nearly all from angular error)
 - Final velocity magnitude error: ~ 1 m/sec (≈ 0.0065 %)

The Model:

Experiment Phase (2+ Satellites)

Approach:

- Multiple satellites (masses of Janus, Epimetheus & others)
- Initial conditions:
 - Radial positions r: standard altitudes for Janus & Epimetheus (or other experimental ones); corresponding altitudes for other satellites
 - Angular positions θ : distributed around Saturn
 - Velocities: determined by Keplerian equations (for circular orbit case)
- ➤ Integrate forward ~ 1000 years (using ode113, with tolerance & step size settings determined during Solver Evaluation phase)
- Process & plot results

Data Analysis Notes

- When plotting orbital distance r, orbital eccentricities show up as high-frequency oscillations with a period \sim 16.7 hours (the mean orbital period in the Janus-Epimetheus neighborhood)
- To cleanly analyze changes in r, I employed a 4th-order Butterworth filter with a cutoff frequency corresponding to a period of 2 \times 16.7 hrs. This produces:
 - High-pass dataset consisting of eccentricity-based oscillations about a local mean
 - Low-pass dataset showing longer period variations without the eccentricity "noise"
- ➤ Fourier analysis on these datasets yields power spectra & autocorrelations to help discern dominant cycles at these scales
- Local min-max extraction: helps expose trends in the limits & amplitudes of these cycles

Janus & Epimetheus

➤ Goal: Verify the model by recreating the actual Janus-Epimetheus system

- Initial conditions:
 - Janus in low orbit
 - Epimetheus in high orbit
 - Angular spacing: π radians
- Results:
 - One repeated momentum exchange pattern with an 8-year cycle (as expected), regular as clockwork
 - Exceedingly stable

Janus & Epimetheus

Low-pass filtered orbital altitudes, with local extrema

Janus × 2

Goal: See how the model treats the symmetry of 2 identical moons,

before moving on to 3 or more

- Initial conditions:
 - Janus1 in standard low orbit
 - Janus2 in standard high orbit
 - Angular spacing: π radians
- Results:
 - One repeated momentum exchange pattern with an 18-year cycle
 - Totally symmetric trajectories
 - Exceedingly stable

Janus × 2

Janus × 3

➤ Goal: Examine the stability of a system of 3 identical moons, initialized to

Janus' upper & lower orbits

- Initial conditions:
 - Janus1 & Janus2 in standard low orbit
 - Janus3 in standard high orbit
 - Angular spacing: $\frac{2\pi}{3}$ radians
- Results:
 - Momentum exchange dynamics get more complex, due to influence of 3rd moon from a distance
 - Orbital height extrema take on a range of values, but within strict bounds
 - Eccentricities consistently near zero
 - Still very stable

Janus × 3

Janus × 3

Janus × 3

Janus × 3

- ➤ Goal: Explore how the dynamics and stability of the *Janus* × 3 system changes when the initial altitude difference is raised from 31.7 km to 50
- Initial conditions:
 - Janus1 & Janus2 in mean orbit 25 km
 - Janus3 in mean orbit + 25 km
 - Angular spacing: $\frac{2\pi}{3}$ radians
- Results:
 - Similarly complex orbital dynamics, but with more frequent orbit swaps and different resonant cycles
 - Orbital heights still vary within strict bounds, similar to before
 - Eccentricities still flat, near zero
 - Still very stable

Janus \times 3, $\Delta r = 50$ km

Janus \times 3, $\Delta r = 50$ km

Janus \times 3, $\Delta r = 50$ km

- Goal: Continue to explore the Janus × 3 system, doubling the initial
 - altitude difference this time to 100 km
- Initial conditions:
 - Janus1 & Janus2 in mean orbit 50 km
 - Janus3 in mean orbit + 50 km
 - Angular spacing: $\frac{2\pi}{3}$ radians
- Results:
 - Orbit swap cycles continue to accelerate
 - Orbital heights still vary within strict bounds, similar to before
 - Eccentricities just as low, but barely starting to creep in different directions
 - Still very stable, but with tiny seeds of instability

Janus \times 3, $\Delta r = 100$ km

Janus \times 3, $\Delta r = 100$ km

Janus \times 3, $\Delta r = 150$ km

 \triangleright Goal: Continue to explore the *Janus* \times 3 system, increasing the initial

altitude difference 150 km

- Initial conditions:
 - Janus1 & Janus2 in mean orbit 75 km
 - Janus3 in mean orbit + 75 km
 - Angular spacing: $\frac{2\pi}{3}$ radians
- Results:
 - Orbit swap cycles continue to accelerate
 - Orbital heights still vary within strict bounds, tighter on the maxima side
 - Eccentricities are suddenly getting periodically lively, though still bounded
 - Still reasonably stable

Janus \times 3, $\Delta r = 150$ km

- Goal: Continue to test the limits of the *Janus* × 3 system, increasing
 - the initial altitude difference to 200 km
- > Initial conditions:
 - Janus1 & Janus2 in mean orbit 100 km
 - Janus3 in mean orbit + 100 km
 - Angular spacing: $\frac{2\pi}{3}$ radians
- Results:
 - Orbit swap cycle down to 1.4 years now
 - High & low orbit ranges now beginning to slowly diverge

- Eccentricities have grown substantial now, trending upward over time
- Dubious stability, likely to degrade over additional millennia

Janus \times 3, $\Delta r = 200 \text{ km}$

Janus \times 3, $\Delta r = 225$ km

Goal: Tiptoe into instability in the *Janus* × 3 system, increasing the initial

altitude difference to 225 km

- Initial conditions:
 - Janus1, Janus2 in mean orbit 112.5 km
 - Janus3 in mean orbit + 112.5 km
 - Angular spacing: $\frac{2\pi}{3}$ radians
- Results:
 - After first 50 years, satellites escape into separate orbital levels, only fully swapping positions on rare and irregular occasions thereafter

- Eccentricities blow up concurrently with the orbital breakup, reaching thousands of km as well
- Highly unstable

Janus \times 3, $\Delta r = 225$ km

Low-pass filtered orbital altitudes, with local extrema

Janus \times 3, $\Delta r = 225$ km

Low-pass filtered orbital altitudes, with local extrema

- Goal: Continue to stretch the Janus × 3 system to the limit, increasing
 - the initial altitude difference to 250 km
- Initial conditions:
 - Janus1, Janus2 in mean orbit 125 km
 - Janus3 in mean orbit + 125 km
 - Angular spacing: $\frac{2\pi}{3}$ radians
- Results:
 - Orbits diverge almost immediately (~ 4 yrs)
 - Similar erratic divergence pattern to the previous case
 - Eccentricities blow up as well
 - Highly unstable could not integrate to 1000 years because solver crashed (could not meet tolerance)

Janus \times 3, $\Delta r = 250$ km

Low-pass filtered orbital altitudes, with local extrema

Janus × 3, symmetric orbits

- ➤ Goal: See if symmetry & stability can be preserved when Janus × 3 are initialized in a pattern designed for symmetry
- Initial conditions:
 - Janus1 in standard upper orbit, $\theta = \frac{\pi}{2}$
 - Janus2 in mean orbit, $\theta = 0$
 - Janus3 in standard lower orbit, $\theta = -\frac{\pi}{2}$
- Results:
 - Symmetry keeps Janus2 stationary in corotating frame, at first
 - Once Janus2 starts seriously oscillating, Janus3 dampens and takes a turn being the stationary one, then Janus 1

- Eccentricities remain near zero, although growing slightly over time
- System remains quite stable over the 1000-year time frame

Janus × 3, symmetric orbits

Low-pass filtered orbital altitudes, with local extrema

Janus × 3, symmetric orbits

Janus, Epimetheus & Douglas

- ➤ Goal: Explore dynamics & stability when a 3rd moon of intermediate mass is injected into the Janus-Epimetheus system
- Initial conditions:
 - Janus in standard upper orbit
 - Epimetheus in standard lower orbit
 - Douglas in an upper orbit commensurate with its mass
 - Angular spacing: $\frac{2\pi}{3}$ radians
- Results:
 - Differing masses produce interesting momentum-exchange curves
 - System evolves through variety of different orbit-swap patterns

System remains stable over 1000-year span

Janus, Epimetheus & Douglas

Janus, Epimetheus & Douglas

Janus, Epimetheus & Prometheus

- ➤ Goal: Explore dynamics & stability when a 3rd moon significantly smaller than Epimetheus is injected into the Janus-Epimetheus system
- Initial conditions:
 - Janus in standard upper orbit
 - Epimetheus in standard lower orbit
 - Prometheus in an upper orbit commensurate with its mass
 - Angular spacing: $\frac{\pi}{2}$ radians
- Results:
 - Prometheus breaks out of orbital swap pattern very quickly (~ 4 yrs)
 - After ~ 11 years, all bodies have diverged, and rarely swap orbits again
 - Eccentricities blow up along with the orbital divergence
 - Highly unstable could not integrate to 1000 years because solver crashed (could not meet tolerance)

Janus, Epimetheus & Prometheus

Low-pass filtered orbital altitudes, with local extrema

Janus, Epimetheus & Prometheus

Janus & Epimetheus, × 2

- ➤ Goal: See if symmetry & stability are preserved in a system with 2 Janussized moons & 2 Epimetheus-sized ones, set up for radial symmetry
- Initial conditions:
 - Janus 1 & 2 in standard upper orbits
 - Epimetheus 1 & 2 in standard lower orbits, alternating with the Januses
 - Angular spacing: $\frac{\pi}{2}$ radians
- Results:
 - Radial symmetry is well preserved
 - Orbit swap patterns remain perfectly consistent & symmetric
 - Eccentricities stay flat, near zero
 - System is exceedingly stable

Janus & Epimetheus, × 2

Low-pass filtered orbital altitudes, with local extrema

Janus & Epimetheus, × 2

Janus & Epimetheus, × 2

Janus, Epimetheus & 2 Friends

- Goal: Explore dynamics & stability of a 4-satellite co-orbital system: Janus, Epimetheus, Hyperion & Douglas
- Initial conditions:
 - Janus & Epimetheus in standard orbits
 - Hyperion (larger than Janus) & Douglas (intermediate mass between J & E) in orbits commensurate with their masses
 - Angular spacing: $\frac{\pi}{2}$ radians
- Results:
 - Differing masses produce interesting momentum-exchange curves
 - System evolves through variety of different orbit-swap patterns
 - Eccentricities evolve differently over time, but remain very low
 - System remains stable over 1000-year span

Janus, Epimetheus & 2 Friends

Low-pass filtered orbital altitudes, with local extrema

Janus, Epimetheus & 2 Friends

Janus, Epimetheus & 2 Friends

Janus, Epimetheus & 3 Friends

- ➤ Goal: Explore dynamics & stability of a 5-satellite co-orbital system: Janus, Epimetheus, Hyperion, Galatea & Douglas
- Initial conditions:
 - Janus & Epimetheus in standard orbits
 - Hyperion & Galatea (larger than Janus) & Douglas (intermediate mass betw. J & E) in orbits commensurate with their masses
 - Angular spacing: $\frac{2\pi}{5}$ radians
- Results (40-year integration):
 - Differing masses produce interesting momentum-exchange curves

- Eccentricities different for each body, but remain consistently low
- System remains stable over this short integration span

Janus, Epimetheus & 3 Friends

Low-pass filtered orbital altitudes, with local extrema

Janus, Epimetheus & 3 Friends

Conclusions

- Co-orbital systems of 3 or more moons <u>can</u> remain stable over time, provided the range of orbits occupied starts out sufficiently narrow (relative to the masses of the moons)
- When the range of orbits is wide enough to threaten instability, orbital eccentricities begin to rise <u>prior</u> to orbital breakout
- > Radial symmetries can be preserved outright, at least over 1000 years
- Axial symmetries can migrate through the system over time, to be progressively centered on different satellites in turn
- Celestial mechanics animations are cool

Next Steps

- ➤ Run selected stable simulations much longer (on faster hardware), to see if stability & symmetries hold up over longer time frames
- \triangleright Run series of simulations with finer granularity changes in Δr , to determine the actual nature of the functional relationship between Δr and time of orbital breakaway, for a given set of satellite masses
- Write up findings & publish

References

Malinsky S. 2011. Janus and Epimetheus: Momentum Trade in Orbit Around Saturn [presentation]. MS Symposium; Winter 2011; Seattle, WA. Seattle (WA): University of Washington, Department of Applied Mathematics.

NASA Cassini Solstice Mission [Internet]. c2004-2013 [cited 2013 Feb 18]. Available from: http://saturn.jpl.nasa.gov

Thomas PC. 2010. Sizes, shapes, and derived properties of the saturnian satellites after the Cassini nominal mission. Icarus 208 (1): 395–401.

van Deukeren H. 2005. JanusEpimetheus.gif [diagram]. Wikimedia Commons [Internet]. c2005 [cited 2013 Feb 18]. Available from: http://commons.wikimedia.org/wiki/File:JanusEpimetheus.gif

Jrkenti. 2009. Epimetheus-Janus Orbit.png [diagram]. Wikipedia [Internet]. c2009 [cited 2013 Feb 18]. Available from: http://en.wikipedia.org/wiki/File:Epimetheus-Janus Orbit.png

References

Yoder CF, Colombo G, Synnott SP, Yoder KA. 1983. Theory of Motion of Saturn's Coorbiting Satellites. Icarus 53: 431-443.

Namouni F. 1999. Secular Interactions of Coorbiting Objects. Icarus 137, 293-314.