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Original Paper

This presentation for our AMATH 507 class and the Master’s Symposium is
based on the paper of M.A. Zwieniecki, H.A. Stone, A. Leigh, C. K. Boyce,
N.M. Holbrook, (2006) Hydraulic design of pine needles: one-dimensional
optimization for single-vein leaves. Plant, Cell and Environment 29, 803-809.
The outline of this talk will be very similar to that of the paper, except that I
supplemented math details about the second variation to justify that their
solution is indeed a minimal to the optimization problem.
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Water: the necessity of Life

- Why hydraulic design?

- Why pine needles?

Figure: The complex venation of a leaf.
Photograph taken by Flickr user Surajram
Kumaravel and found by Google Image Search.
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Pine Needles: Single Vein Leaves

Figure: Cross section of a pine needle:
sketch picture found by Google Image
Search on the course page of BIO 1020
Spring 2009 in Volunteer State
Community College
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Why is pressure important?

- Pressure and turgor

- Stomata and
transpiration

Figure: Photo of closed and open stomata
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Pressure Distribution Model: Boundary Conditions

- Take a needle as in
Figure 1 and set up
cylindrical coordinates,
calling our axial
variable z.

- Assume the pressure at
the needle base is
p = pbase. We assume
that all water flowing
into this single leaf has
evaporated after
traveling through
distance l, meaning
there is no fluid flux in
the axial direction at the
leaf tip, so we can
prescribe that at z = l,
u = 0, thus dp

dz
= 0 by

the Darcy’s Law.
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Initial Development

As an initial development, let the cross-sectional area of the tracheid lumens
be a constant A. Denote the evaporation rate(per vein length) to be q, the
water velocity(as a function of z) to be u. If we examine a section between z
and z + ∆z, the mass balance can be written as

A[u(z)− u(z + ∆z)]− q∆z = 0

Dividing both sides by ∆z and let ∆z approach 0, we obtain

du

dz
= − q

A

Let p(z) be the hydrostatic pressure, then Darcy’s law gives the relationship
between u and p:

dp

dz
= −µu

k

where k is the xylem permeability and µ is the viscosity of the liquid.
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Initial Development

Combining the two equations to eliminate u, assuming that q, A, µ and k are
all constants, we obtain a differential equation about p: x

d2p

dz2
=

µq

kA

Integrating twice gives

p(z) =
µq

2kA
z2 + c1z + c2

Applying boundary conditions, we obtain

p(z) = pbase +
µql2

2kA
[(

z

l
)2 − 2

z

l
]
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Generalized Model

We now allow for axial variation in cross-sectional area A of the xylem, so A
is now A = A(z). The evaporation rate (per needle length) q is still assumed
to be a constant along the length of the needle. It would also be nice to
variate the permeability parameter k, but the authors chose to assume that
tracheid dimensions are uniform along the needle, meaning k remains a
constant.
The mass balance equation now becomes

d

dz
[A(z)u(z)] = −q

Integrating once gives

A(z)u(z) = −qz + c3

Applying the same boundary conditions in the initial development, we obtain

A(z)u(z) = q(l − z)

or

u(z) =
q(l − z)

A(z)
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Generalized Model

Substituting into the equation of Darcy’s Law, we have

dp

dz
= −µq(l − z)

kA(z)

Integrating both sides give us the pressure drop along the needle

∆p = pbase − ptip = µq

Z 1

0

(l − z)

kA(z)
dz

Since we have assumed tracheid dimensions are uniform, the cross-section
area A(z) is proportional to the number of tracheids at position z along the
needle.
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Optimal Strategy

The optimal hydraulic ”design” of the pine needle we are studying translates
to the function N(z), denoting the distribution of tracheids, that minimizes
the pressure drop along the needle, given a fixed total number of tracheids.
In Math language, if we peel off some constants from the expression of
pressure drop, the functional we are minimizing isZ 1

0

1− (s)

N(s)
ds

where s = z/l translates to the relative distance from the needle tip, and the
constraint is Z 1

0

N(s)ds = constant = c0

The boundary condition is N(1) = 0.
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Calculus of Variations: Type of Problem

- It is a degenerate problem: both the integral and the isoperimetric
constraint integrand are independent of N

′
(s).

- It is a problem with loose-end boundary conditions: the s = 0 end for
N(s) is not fixed.

- It is a ”singular” problem: at s = 1 the boundary condition implies the
functional is an improper integral.

- It has isoperimetric constraints: we might have trouble verifying that our
extremal is indeed a minimal.
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Calculus of Variations: Euler-Lagrange Equation

- As shown in George’s talk, the extremal of loose-end problems actually
belong to the same family of solutions to the Euler-Lagrange equation
for fixed-end problems.

- Using a constant Lagrange multiplier λ, let F = 1−(s)
N(s)

− λN(s), then we
have our Euler-Lagrange Equation

∂

∂N
(
1− (s)

N(s)
− λN(s)) = 0

- Solving this algebraic equation, we obtain

N(s) = (
1− s

−λ
)1/2

- Substituting into the isoperimetric constraint, we obtain

λ = − 4

9(c0)2

- The extremal candidate we obtain is

N(s) =
3c0

2
(1− s)1/2
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Is this candidate really qualified?

- As we mentioned, we need to check if the boundary condition is
satisfied. In this case, N(1) = 0 is satisfied.

- We then check if the candidate allows the target functional to be
well-defined. In this case, we are relieved to see that the functional is
convergent.
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Is this really a minimal?

- First of all, it is not a maximal: comparison with uniformly distributing
tracheids along the needle shows the amount of improvement.

- The pressure drop for the uniform distribution Nuniform = c0 is

∆puniform =
µql2

cNuniform

Z 1

0

(1− s)ds =
µql2

2cc0

where c is the constant proportion between number of tracheids N(s)
and cross-section area A(s)

- The pressure drop for the minimal candidate distribution is

∆pmin =
2µql2

3cc0

Z 1

0

(1− s)1/2ds =
4µql2

9cc0
=

8

9
∆puniform

- So we have reduced the pressure drop by about 10 percent.
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Is this really a minimal?

- Recall the way we attacked the isoperimetric constraints for a first
variation: to find an extremum of the functional

J [y] =

Z b

a

f(x, y, y
′
)dx

subject to restriction

K[y] =

Z b

a

g(x, y, y
′
)dx = l

we introduced in class two small variation terms

y(x) = ŷ(x) + ε1η1(x) + ε2η2(x)

- In our class we let I = J − λK, F = f − λg where λ is a Lagrange
multiplier, and transformed the functional problem into a
finite-dimensional calculus problem of optimizing I(ε1, ε2) and letting

∂I

∂ε1
=

∂I

∂ε2
= 0

to obtain our Euler-Lagrange equation as a first variation result.
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Is this really a minimal?

- In the same finite-dimensional calculus framework, we notice that if we
can prove

A =
∂2I

∂(ε1)2
(1)

=

Z b

a

(
∂2F

∂y2
(η1)

2 + 2
∂2F

∂y∂y′ η1(η1)
′
+

∂2F

∂y′2
(η1)

′2)dx (2)

B =
∂2I

∂ε1∂ε2
(3)

(4)

=

Z b

a

(
∂2F

∂y2
η1η2 +

∂2F

∂y∂y′ η1(η2)
′
+

∂2F

∂y∂y′ η2(η1)
′
+

∂2F

∂y′2
(η1)

′
(η2)

′
)dx

(5)

C =
∂2I

∂(ε2)2
(6)

=

Z b

a

(
∂2F

∂y2
(η2)

2 + 2
∂2F

∂y∂y′ η2(η2)
′
+

∂2F

∂y′2
(η2)

′2)dx (7)

satisfy A > 0 and AC −B2 > 0, then our solution of the
Euler-Lagrange equation is garanteed to be a minimal.
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Is this really a minimal?

- Notice that we did not use any fixed boundary condition in writing out A,
B and C.

- In our degenerate case:

A =

Z b

a

∂2F

∂y2
(η1)

2dx (8)

B =

Z b

a

∂2F

∂y2
η1η2dx (9)

C =

Z b

a

∂2F

∂y2
(η2)

2dx (10)

- Substituting in the specific functions we have

A =

Z 1

0

2(1− s)

N3
(η1)

2ds (11)

=

Z 1−ε

0

2(1− s)

N3
(η1)

2ds +

Z 1

1−ε

2(1− s)

N3
(η1)

2ds > 0 (12)

This also justifies that at least our minimal candidate is not a maximal.
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Is this really a minimal?

- Proposition: In our case, AC −B2 > 0 for any η1, η2 in the Hilbert
space L2[0, 1].

- Proof: Given any f , g in L2[0, 1], define an inner product
(f, g) =

R 1

0
F0fgds where F0 = 2(1−s)

N3 .

- Check that this is indeed an inner product:

(i)(αf, g) =

Z 1

0

F0αfgds = α(f, g)

(ii)(f + g, h) =

Z 1

0

F0(f + g)hds =

Z 1

0

(F0fh + F0gh)ds

= (f, h) + (g, h)

(iii)(f, g) =

Z 1

0

F0fgds = (g, f)

(iv)(f, f) =

Z 1

0

F0f
2ds > 0

The last inequalify holds because of nonnegativity of F0 and similar
argument to A > 0.
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Is this really a minimal?

- After defining this inner product, the inequality

0 ≤ AC −B2

follows from the Cauchy-Schwartz inequality

(f, g)2 ≤ (f, f)(g, g)

But the equality in Cauchy-Schwartz inequality only holds when

f = g

and in our case η1 cannot equal η2 because they were designed as
correction terms to each other so as to fit the isoperimetric constraint.
Thus we get our positivity.

- Since C[0, 1] is contained in L2[0, 1], and we are only considering weak
variations, the solution to the Euler-Lagrange equation in this case is
indeed a minimal.
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Mother Nature thinks so too

- The minimal distribution allows the needle to be longer if the pressure
drop along the needle length is fixed:

∆p =
µq(luniform)2

2cc0

∆p =
4µq(lmax)2

9cc0

lmax

luniform
= (

9

8
)1/2

- This result gives an optimal length increase of about 6 percent, allowing
precious space for photosynthesis.
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Mother Nature thinks so too

P.Palustris,
Greenwood
Plantation,
Thomasville, GA,
USA.

Figure: P.Palustris, or
Long-leaf Pine

Pinus Ponderosa,
Arnold Arboretum,
Harvard University,
Jamaica Plain,
Boston, MA, USA.

Figure: Pinus
Ponderosa

P.rigida, Arnold Arboretum,
Harvard University, Jamaica
Plain, Boston, MA, USA.

Figure: P.rigida, or Pitch-Pine
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Mother Nature thinks so too, sometimes
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Summary

- The authors used calculus of variations to derive a model describing
the investment strategy of water permeability along pine needles

- Based on their analysis of necessary conditions of an extremal, I
discussed the justification of the solution being a minimal in a restricted
function space

- The theoretical solution was compared with field study, and obtained
amazingly good results
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Thank you!

Please cherish water.

Figure: Google logo on the World Water Day
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