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Introduction

The swinging spring, or elastic pendulum, is a simple mechanical
system in which many different types of motion can occur. The
system is comprised of a heavy mass, attached to an essentially
massless spring which does not deform. The system moves under
the force of gravity and in accordance with Hooke’s Law.
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The Basics

We can write down the equations of motion by finding the
Lagrangian of the system and using the Euler-Lagrange equations.
The Lagrangian, L is given by

L = T − V

where T is the kinetic energy of the system and V is the potential
energy.
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The Basics

In Cartesian coordinates, the kinetic energy is given by the
following:

T =
1

2
m(ẋ2 + ẏ2 + ż2)

and the potential is given by the sum of gravitational potential and
the spring potential:

V = mgz +
1

2
k(r − l0)2

where m is the mass, g is the gravitational constant, k the spring
constant, r the stretched length of the spring (

√
x2 + y2 + z2),

and l0 the unstretched length of the spring.
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The Basics

The equations of motion are then given by:

ẍ = − k

m

(
r − l0
r

)
x

ÿ = − k

m

(
r − l0
r

)
y

z̈ = − k

m

(
r − l0
r

)
z − g
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The Basics

This system has two fixed points: one linear center where the bob
is hanging straight down (x , y , z) = (0, 0,−l) and one saddle-type
fixed point where the bob is poised just above where it is attached.

Saddle
Point

Center-like
Fixed Point

This talk will not consider the saddle-type fixed point.
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The Basics

There are two constants of motion, the total energy E of the
system, and the total angular momentum, h:

E = T + V

h = xẏ − y ẋ

With only two first integrals and three spacial coordinates, the
system is not integrable.

Leah Ganis The Swinging Spring: Regular and Chaotic Motion



References

Linear Modes

I Consider very small amplitude motion about the fixed point.
Linearizing about the fixed point (0, 0,−l) (i.e. r ≈ l), we
obtain the equations for small oscillations:

ẍ = −g

l
x , ÿ = −g

l
y z̈ = − k

m
z

I All three equations are easily solved and are simply sums of
sines and cosines. The x and y components trace out an

ellipse and have frequency ωR =
√

g
l which is the same as a

rigid pendulum.

I The vertical height varies sinusoidally with frequency

ωZ =
√

k
m which is that of a spring oscillating in one

dimension.
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Linear Modes

I If the ratio ε = ωR
ωZ

is an integer or rational number, the
motion will be periodic.

I Example: ε = 2, the bob will rotate around twice in the x − y
projection before returning to the initial position. For ε
irrational, the motion will be quasi-periodic.

I Since the equations are completely decoupled in this
approximation, we can expect no exchange of energy between
swinging and springing modes. In other words, swinging does
not induce springing and vice versa.
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Elliptical Motion

Assuming small amplitude motion and dropping all terms of third
order order or higher, the equations of motion become the
following:

ẍ + ω2
Rx = λxz

ÿ + ω2
Ry = λyz

z̈ + 4ω2
Rz =

1

2
λ(x2 + y2)

where λ = l0ω
2
Z/l and it is assumed ωZ = 2ωR .
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Elliptical Motion

Seek solutions which at lowest order are periodic and elliptical in
the x − y projection:

x = ε(A cosωt) + ε2x2 + · · ·
y = ε(B cosωt) + ε2y2 + · · ·
z = ε(C cos 2ωt) + ε2z2 + · · ·

where ε is a small parameter, A, B, C constants, and
ω = ω0 + εω1 + · · ·
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Elliptical Motion

I For A = 0 or B = 0, the solutions will be approximately cup
shaped or cap shaped.

I For C = 0, we will have at lowest order that the elastic
pendulum sweeps out a cone shape with the height of the bob
approximately constant.

I There are no solutions to the case where A,B,C 6= 0. Instead
change to a rotating coordinate frame to analyze.
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The Progressing Ellipse

Using rotating coordinates α, β, and γ, with Θ varying with time
and assuming the α− β axis rotating with constant angular
velocity Θ̇ = Ω we have:αβ

γ

 =

 cos Θ sin Θ 0
− sin Θ cos Θ 0

0 0 1

xy
z

 .
Denoting the rotation matrix as R, ~α = (α, β, γ)T and
~x = (x , y , z)T , we have that ~̈α = R~̈x + 2Ṙ~̇x + R̈~x .
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The Progressing Ellipse

Differentiating as required above, we get the following set of
equations.

α̈ + (ω2
R − Ω2)α− 2Ωβ̇ = λαγ

β̈ + (ω2
R − Ω2)β + 2Ωα̇ = λβγ

γ̈ + 4ω2
Rγ =

1

2
λ(α2 + β2)

Again, seek solutions of the form:

α = ε(A cosωt) + ε2α2 + · · ·
β = ε(B cosωt) + ε2β2 + · · ·
γ = ε(C cos 2ωt) + ε2γ2 + · · ·
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The Progressing Ellipse

I Assuming small rotation, i.e. Ω = εΩ1 and plugging the form
of the solution into the differential equations, and requiring
growing terms in the second order equations of ε to go to zero
(and after a lot of algebra), a set of algebraic equations for
Ω1, ω1,A,B, and C is obtained.

I For fixed values of A and B, the equations can be solved
explicitly for Ω1, ω1 and C , with two possible solutions.
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Simulating the Progressing Ellipse

Parameter values used are the same as used by Lynch (2002) and
are as follows:

I mass: m = 1kg

I equilibrium stretched length: l = 1m

I gravitational constant: g = π2 m s−2

I spring constant: k = 4π2 kg s−1

All simulations were done in MATLAB using ode45 with an
absolute error tolerance of 10−6.
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Simulating the Progressing Ellipse

Initial values used are as follows:

I A = 0.01

I B = 0.005

I C ≈ 0.0237 is given by the following formula derived by
Lynch(2002):

C = ± A2 − B2

2
√

2(A2 + B2)

I ω = ωR + ω1 where ω1 is given by:

ω1 = ∓
3
√

2(A2 + B2)

16l
ωR
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Simulating the Progressing Ellipse

The initial position was set to be ~x = (A, 0,C − l)T and the initial
velocity was set to be ~̇x = (0, ωB, 0)T . The 3-D image of the
movement through 211 seconds (corresponding to 90◦ of
precession) is shown:
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Simulating the Retrogressing Ellipse
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Simulating the Progressing Ellipse

−0.01 −0.008 −0.006 −0.004 −0.002 0 0.002 0.004 0.006 0.008 0.01
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

X position

Y 
po

si
tio

n
X−Y Projection of Progressing Ellipse

Student Version of MATLAB

Leah Ganis The Swinging Spring: Regular and Chaotic Motion



References

Simulating the Progressing Ellipse
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Another Type of Motion?

I Question: Can we have any other types of motion?

I Answer: Why, yes, yes we can!
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Precession of the Swing Plane

I If the bob is started with almost entirely vertical oscillations,
gradually the vertical oscillations subside and a swinging
motion occurs.

I Swinging motion subsides and is replaced by a springing
motion as before, and the process repeats.

I The motion appears planar (but is really elliptical).

I The “swing plane” rotates each time we return to swinging
motion.
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Simulating Precession of the Swing Plane

Initial conditions used leading to a precessing swing plane are as
follows:

I x0 = 0.04m, y0 = 0

I z0 = −l + 0.08m, note this corresponds to 8cm of
compression.

I ẋ0 = 0, ẏ0 = 0.03427m/s, and ż0 = 0.

For the complete derivation, see Lynch (2002).
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Precession of Swing Plane
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Precession of Swing Plane
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Chaotic Motion

Can we find chaotic motion in this system? (Yes of course, else this would not be a

very interesting system.)

Main characteristics of chaotic motion:

I Sensitive dependence on initial conditions - nearby trajectories
diverge exponentially fast - i.e. positive Lyapunov exponent.

I Aperiodic long-term behavior - not all trajectories settle down
to fixed points, or periodic/quasi periodic orbits.

I Trajectories densely fill the space.
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Chaos in 2 Space Dimensions

Let’s consider a simpler version of our original equations - restrict
the motion to be planar.

Hamiltonian in dimensionless coordinates after rescaling length,
time, and energy:

H =
1

2
(p2

1 + p2
2) + fq2 +

1

2

(
1− f −

√
q2

1 + (1− q2
2)

)2

where f =
(
ωR
ωZ

)2
.
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Chaos in 2 Space Dimensions
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Figure : Graph of maximal Lyapunov exponent, adapted from
Núñez-Yépez et al (1989).
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Chaos in 2 Space Dimensions

The positive Lyapunov exponent is a good indicator for sensitive
dependence on initial conditions, but what about the other
indicators of chaos?

Instead, let’s look at some Poincaré sections.

Leah Ganis The Swinging Spring: Regular and Chaotic Motion



References

Chaos in 2 Space Dimensions

Low energy:
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Chaos in 2 Space Dimensions

Slightly higher energy:
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Chaos in 2 Space Dimensions

A little higher:
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Chaos in 2 Space Dimensions

Cranked up all the way to 11:
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Chaos in 2 Space Dimensions

I For certain energy values, periodic or quasi periodic regular
motion vanishes and trajectories tend to fill a 2-D space
instead of a smooth curve.

I For very low energy, virtually all trajectories demonstrate
regular motion.

I At high energies, there also appears to be regular motion.

What do these chaotic trajectories really look like back in 3-D?
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Chaotic Motion in 3-D
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Chaotic Motion in 3-D
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Chaotic Motion in 3-D
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Chaotic Motion in 3-D
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Conclusions

I Highly complex dynamics can occur from what seems like a
very simple physical system.

I There are many qualitatively different types of regular motion.

I For certain energy values, the system demonstrates all the
hallmarks of chaos.
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