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Consider a Hamiltonian flow

I q̇ = JDH(q)

I J = (
0 1
−1 0

)
I DH = (∂H∂x ,

∂H
∂y )

I flow is C2

I hyperbolic fixed point of
saddle type

I family of periodic curves inside
the homoclinic orbit



Now perturb that system!

I append a 2π
ω periodic function to that system.

I q̇ = JDH(q) + εg(q, t, ε)

I Melnikov: A method to determine if this system is chaotic.



Get rid of the time dependence

{
q̇ = JDH(q) + εg(q, φ, ε)

φ̇ = ω

I for ε = 0, stable and unstable
manifolds coincide to form a 2-D
surface, Γ

I γ0(t) = (p0, φ(t))
φ(t) = ωt+ φ0



A typical trajectory



A paramaterization for Γ

I Γ =
{

(q, φ) ∈ R2 × S1
∣∣

q = q0(−t0),
t0 ∈ R,
φ = φ0 ∈ (0, 2π]

}
I (q0(−t0), φ0) ∈ Γ is unique



Interpreting the parameterization

I t0 is the time of flight from a point
q0(−t) to the point q0(0) on the
homoclinic connection

I φ0 is a horizontal cross section



A vector normal to Γ

I For any point p ∈ Γ, there is a
vector normal to the surface
through p : n̂p

n̂p = (−ẏ,−ẋ, 0)
∣∣
p

= (∂H∂x ,
∂H
∂y , 0)

∣∣
p



Consider ε 6= 0

I Γ wiggles about

I Wu 6= W s

I γ0(t) becomes γε(t)

I System is non autonomous



For small ε, things are not so bad

I γε(t) is still periodic, with same
stability as unperturbed γ0(t)

I γε(t) = γ0(t) +O(ε)

I W s
loc(γε(t)) is ε close to W s

loc(γ0(t))

I Wu
loc(γε(t)) is ε close to Wu

loc(γ0(t))



Look at a horizontal slice

I Fix φ = φ0

I Σφ0 ≡
{

(p, φ) ∈ R2
∣∣φ = φ0

}



A cross section is only as good as the flow through it

Unperturbed flow

I stable manifold W s(γ0(t))

I unstable manifold Wu(γ0(t))

Perturbed flow

I stable manifold W s(γε(t))

I unstable manifold Wu(γε(t))



Look at points intersecting n̂

I {psε} ≡W s(γε(t)) ∩ n̂
I {puε} ≡Wu(γε(t)) ∩ n̂



Pick the psε closest to γε(t)

I W s(γε(t)) can intersect n̂ more than once; pick the one that
crosses n̂ last in forward time

I Wu(γε(t)) can intersect n̂ more than once; pick the one that
crosses n̂ last in backwards time



Consequences of the choice of psε

Lemma:

Take a point p̄sε that is not closest to γε(t). Let
(qsε(t), φ0) be a trajectory such that (qsε(0), φ(0)) = p̄sε.
For ε sufficiently small, (qsε(t > 0), φ0) must pass
through the ε-neighborhood N(ε0) before intersecting
again with n̂.

proof:

|(qsε(t), φ(t))− (qs0(t), φ(t))| = O(ε) for t ≥ 0.

Then, by Gronwall’s inequality:

|(qsε(t), φ(t))− (qs0(t), φ(t))| = O(ε) for t ∈ [Ts, 0].

∃t̄ > 0 such that (qsε(t̄), φ0) ∈ Ws(γε(t)) ∩ n̂.

Then for some t ∈ (0, t̄), (qsε(t), φ(t)) must have entered
N(ε0).

A similar result holds for the unstable manifold.



Introduce a distance function

let d(p0, ε) ≡ |puε − psε|

I write it (for convenience) as
(puε−p

s
ε)·(DH(q0(−t0)),0)
‖DH(q0(−t0))‖

I use the parameterization psε = (qsε , φ0)

d(t0, φ0, ε) =
DH(q0(−t0)) · (quε − qsε)
‖DH(q0(−t0))‖



Taylor expand d(t0, φ0, ε) about ε = 0

d(t0, φ0, ε) = d(t0, φ0, 0) + ε∂d∂ε (t0, φ0, 0) +O(ε2)

I d(t0, φ0, 0) = 0

I ∂d
∂ε =

DH(q0(−t0))·
(
∂quε
∂ε |ε=0−

∂qsε
∂ε |ε=0

)
‖DH(q0(−t0))‖

I We care about when d(t0, φ0, ε) = 0

define M(t0, φ0) = DH(q0(−t0)) ·
(
∂quε
∂ε
|ε=0 −

∂qsε
∂ε
|ε=0

)



Problem
As it is written, this requires knowing the solution to the perturbed
problem. Melnikov does something clever to get around this

I introduce the time dependent Melnikov function

M(t : to, φ0) = DH(q0(t− t0)) ·
(
∂quε (t)
∂ε |ε=0 − ∂qsε(t)

∂ε |ε=0

)
evolves via evolves via

unperturbed flow perturbed flow

I derive an ODE for M(t :, t0, φ0)

I + a great deal of cumbersome math + notation + solve an ODE

I the details are omitted, and in the end result in

M(t0, φ0) =

∫ ∞
−∞

DH(q0(t)) · g(q0(t), ωt− ωt0 + φ0, 0)dt



Zeros of the Melnikov function imply chaos

By either the Moser’s Theorem or the Smale-Birkhoff Homoclinic
Theorem, neither of which will be proven here, a system exhibits
chaos if there are zero’s of the Melnikov function.

Moser’s/Smale-Birkhoff rely on the flow posessing a hyperbolic
periodic point, and having the stable and unstable manifolds of this
point intersecting transversely.

If these conditions are met, then there exists an invariant Cantor set
that is topologically conjugate to a shift map... ie: the flow is chaotic.



Application: Epidemiology

Consider an SIR model:

S ≡ fraction of population who is susceptible
I ≡ fraction of population who is infected
R ≡ fraction of population who has recovered

System written as:


Ṡ = −B(I, t)S + µ− µS
İ = B(I, t)− (γ + µ)I

Ṙ = γI − µR

With:



B(I, t) = β(t)Ip

β(t) = p2p

(p−1)2p−1 µ(1 + ε2b1 + ε4b2 + ε5b3 sin(µεΩt)

2pb2 − (p− 1)b21 > 0

γ =
µ(1+ε2b1)

p−1



Application: Epidemiology

Since S(t) + I(t) + R(t) = 1, the flow can be written:

{
İ = β(t)Ip(1− I − R)− (γ + µ)I

Ṙ = γI − µR

After some tedious scaling and transformations, the equations are in the desired form for the
Melnikov method:


dq
dτ

= w

dw
dτ

= −c2 + q2 + ε

(
b1w +

2(p− 1)

p
w +

p3

2(1− p)
b3 sin(Ωτ)

)
+ O(ε

2
)

The unperturbed system has Hamiltonian

H(q, w) =
1

2
w

2
+ c

2
q −

1

3
q
3

The perturbed system has Melnikov function

∫ ∞
−∞

wh(τ)

(
b1wh(τ) +

2(p− 1)

p
qh(τ)wh(τ) +

p3

2(1− p)
b3 sin(Ω(τ + τ0))

)
dτ



Application: Epidemiology

Conclusion: Stable and unstable
manifolds in the Poincaré map intersect
transversely if |b3| > bc

bc ≈ 2(p−1)2(2c)
7
2

7πΩ2p4 sinh

(
Ωπ

(2c)
1
2

)
Poincaré map shown for 2 sets of
parameter values and initial conditions.



How tedious is tedious?

“In this comment, we show that a technical carelessness which might
lead to the unjustified result occurs when the authors in [1]
substituted the pertubed degenerate points into Eq.(8).
Unfortunately, these related inaccuracies might result in the
unjustified main results in [1].”

Huaqing Li, Xiaofeng Liao, Li Xiao. Comments on: “Melnikov

analysis of chaos in a general epidemiological model” [Nonlinear Anal.

RWA8 (2007) 20]”. Nonlinear Analysis: Real World Applications, v13

n1 (201202): 39-41



A generalization of the method

Theorem:

Consider the system

ẋ = f(x) + εg(x, t), x =

(
u

v

)
∈ R2

I f(x), g(x, t) ∈ C2

I homoclinic orbit h(t) exists to a hyperbolic fixed point when ε = 0

I g(h(t), t) is bounded

I ∂g
∂t

(h(t), t) is bounded

I ∇g(h(t), t) is bounded

Then if M(t0) =
∫∞
−∞ f(h(t− t0)) ∧ g(h(t− t0), t)dt has a simple zero at some t0, then the

flow is equal to a chaotic system for t ∈ (−T, T ), for T as large as one wants.

proof sketch:

The nonperiodic system in the time interval (−T, T ) is extended to a t-periodic vector field on

which the Melnikov theory applies. If T is choosen large enough that this new system exhibits

chaos, so in turn does the original system during the arbitrarily large time interval (−T, T ).



A generalization of the method: Gylden’s problem
Consider the system


du
dτ

= v

dv
dτ

= u− u3 + εup

(
p4θ
16
t(τ)

)

Has Melnikov function

M(τ0) =

∫ ∞
−∞
−
√

2sech(τ) tanh(τ)p

(
p4θ

16
t(τ + τ0)

)
dτ

Behaviour p(t) p(t) M(τ0)

Increase
1+tanh(t)

2

Blink 1 + e− cosh(t)

Flare (1 + e−λ cosh(t)) cos2(wt)
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