Peizhe Shi
Department of Applied Mathematics

HIDDEN MARKOV MODEL

Outline

- An example of gambling
- Hidden Markov model (HMM), the description
- Three basis problems of HMMs
- Viterbi path, how to infer the hidden states from observations

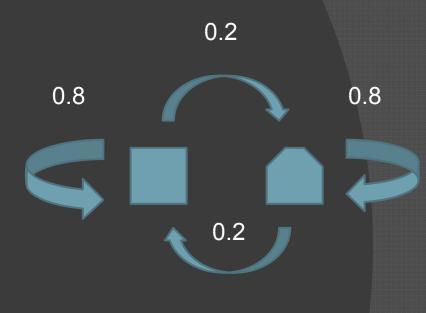
Dealer's cheating

- A simple gamble
 - The dealer tosses dice
 - The gamblers bid on 'big' or 'small'

- The dealer can cheat
 - by switching the die between a fair one and an unfair one
 - but he cannot switch dice too frequently

Dealer's cheating

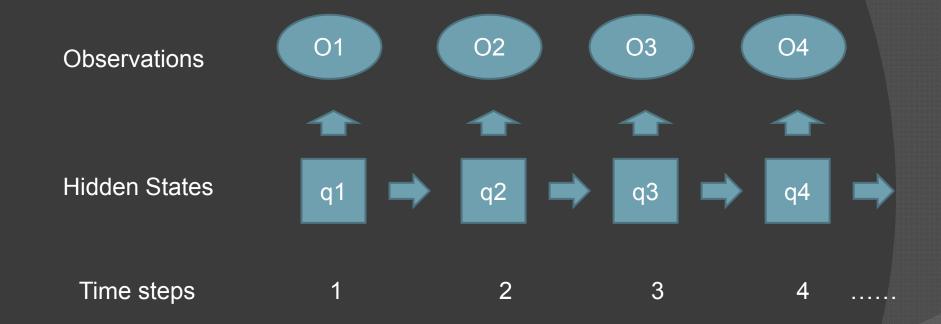
	fair	unfair
1	1/6	0
2	1/6	0
3	1/6	0
4	1/6	1/3
5	1/6	1/3
6	1/6	1/3



Transition probability between two states, fair and unfair

Observation sequence3 6 6 5 4, 6 4 4 6 6, 6 5 1 3 3, 4 1 4 5 5

Model description



Model description

- Hidden Markov Model (HMM)
 - N, the number of states, S_i
 - M, the number of observation symbols, v_k
 - $A = \{a_{ii}\}$, the state transition probability

$$a_{ij} = Pr \{ q_{t+1} = S_i | q_t = S_i \}$$

B = {b_j(k)}, the observation symbol probability distribution

$$b_{i}(k) = Pr \{ v_{k} \text{ at } t \mid q_{t} = S_{i} \}$$

- $\pi = {\pi_i}$, the initial state distribution
- Notation $\lambda = (A, B, \pi)$

Three basic problems

1. Evaluating the probability of a observation sequence

compute $P(O|\lambda)$ efficiently

- Uncover the hidden states, given the observation and the model find a states sequence to maximize P(Q|O, λ)
- Optimize the model parameters to best explain the observations

find $\lambda = (A, B, \pi)$ to maximize $P(O|\lambda)$

Viterbi Algorithm

Find the single best state sequence

```
Maximize P(Q|O,\lambda) equivalent to: Maximize P(Q, O|\lambda)
```

Scoring quantity

$$\delta_t(i) = \max_{q_1 q_2 \dots q_{t-1}} P(q_1 q_2 \dots q_t = i, O_1 O_2 \dots O_t \mid \lambda)$$

Recursive relation

$$\delta_{t+1}(j) = [\max_{i} \delta_{t}(i) \ a_{ij}] b_{j}(O_{t+1})$$

Viterbi Algorithm

$$\begin{split} & \delta_{t+1}(j) = \max_{q_1 \dots q_{t-1}, i} P(q_1 \dots q_{t-1}, q_t = i, q_{t+1} = j, O_1 \dots O_{t+1} \mid \lambda) \\ & = \max_{q_1 \dots q_{t-1}, i} P(q_1 \dots q_t = i, O_1 \dots O_t \mid \lambda) P(q_{t+1} = j, O_{t+1} \mid q_t = i, \lambda) \\ & = \max_{q_1 \dots q_{t-1}, i} P(q_1 \dots q_t = i, O_1 \dots O_t \mid \lambda) P(q_{t+1} = j \mid q_t = i, \lambda) \\ & P(O_{t+1} \mid q_{t+1} = j, \lambda) \\ & = \{ \max_{i} [\max_{q_1 \dots q_{t-1}} P(q_1 \dots q_t = i, O_1 \dots O_t \mid \lambda) a_{ij}] \} \\ & P(O_{t+1} \mid q_{t+1} = j, \lambda) \\ & = [\max \delta_t(i) a_{ii}] b_i(O_{t+1}) \end{split}$$

Viterbi Algorithm

- Dynamic programming method
 - Recursive relation

$$\delta_{t+1}(j) = [\max \delta_t(i) \ a_{ij}] b_j(O_{t+1})$$

- Score for each step, from t=1 to T
- Trace back to get the best path

Dealer's cheating problem

- \bullet N = 2, M = 6
- \bullet A, $a_{11} = a_{22} = 0.9$, $a_{12} = a_{21} = 0.1$
- B, $b_1(k) = 1/6$, k=1,2,...,6 $b_2(k) = 0$, k=1,2,3; $b_2(k) = 1/3$, k=4,5,6
- \bullet π , $\pi_1=1$, $\pi_2=0$

Dealer's cheating problem

Observation sequence

36654,64466,65133,41455

Viterbi path

3 6 6 5 4, 6 4 4 6 6, 6 5 1 3 3, 4 1 4 5 5

Pretty Good!

Thank you!