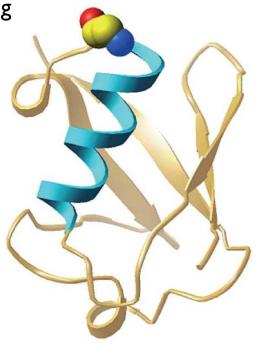
Minimizing Energy Functionals to Model Helical Structures

Samuel Stapleton

0

Motivation

- Modeling helices has generated much research from physics, biology, chemistry, and engineering
- Misfolding proteins is a major cause of many illnesses including Alzheimer's, mad cow, and Creutzfeldt-Jakob diseases
- Some helical models include the structure of nucleic acids and proteins, polymers, and the morphologies of calcites and silica-barium carbonate



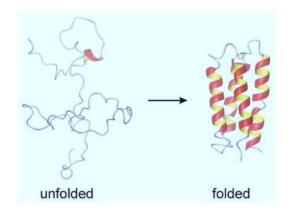
Energy Density Functions

Proteins fold into minimum-energy structures

> Let us consider energy densities depending on curvature κ , torsion τ and their derivatives with respect to arc length, κ' and τ'

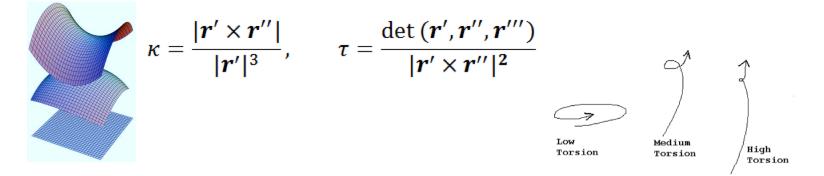
> We want to minimize the energy functional of the form

$$\int_{a}^{b} \mathcal{F}(\kappa,\tau,\kappa',\tau') |\boldsymbol{r}'| ds$$



Curvature and Torsion

> Curvature and torsion are mathematically defined as



- Encodes all geometric info for a 3-D curve up to rotations and translations.
- Frenet-Serret formulae describe how unit tangent, normal, and binormal vectors move along a curve:

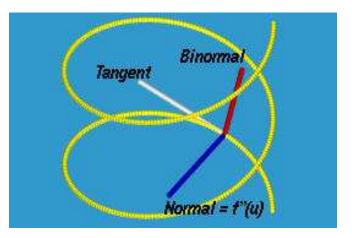
$$T' = \kappa N$$
, $N' = -\kappa T + \tau B$, $B' = -\tau N$

Variations to the Curve

> Consider a variation to the curve of the form:

 $\tilde{\boldsymbol{r}}(s) = \boldsymbol{r}(s) + \varepsilon_1 \eta_1(s) \boldsymbol{T}(s) + \varepsilon_2 \eta_2(s) \boldsymbol{N}(s) + \varepsilon_3 \eta_3(s) \boldsymbol{B}(s)$

> Variations in tangential direction does not result in information about $\mathcal{F}(\kappa,\tau,\kappa',\tau')$ but variations in the normal and binormal directions gives us the Euler-Lagrange equations



Euler-Lagrange Equations

$$> (a) \qquad \frac{d^2}{ds^2} \left[\frac{\partial \mathcal{F}}{\partial \kappa} - \frac{d}{ds} \left(\frac{\partial \mathcal{F}}{\partial \kappa'} \right) \right] + \frac{2\tau}{\kappa} \frac{d^2}{ds^2} \left[\frac{\partial \mathcal{F}}{\partial \tau} - \frac{d}{ds} \left(\frac{\partial \mathcal{F}}{\partial \tau'} \right) \right] + \left(\frac{\tau'}{\kappa} - \frac{2\kappa'\tau}{\kappa^2} \right) \frac{d}{ds} \left[\frac{\partial \mathcal{F}}{\partial \tau} - \frac{d}{ds} \left(\frac{\partial \mathcal{F}}{\partial \tau'} \right) \right] + (\kappa^2 - \tau^2) \left[\frac{\partial \mathcal{F}}{\partial \kappa} - \frac{d}{ds} \left(\frac{\partial \mathcal{F}}{\partial \kappa'} \right) \right] + 2\kappa\tau \left[\frac{\partial \mathcal{F}}{\partial \tau} - \frac{d}{ds} \left(\frac{\partial \mathcal{F}}{\partial \tau'} \right) \right] + \kappa \left(\kappa' \frac{\partial \mathcal{F}}{\partial \kappa'} + \tau' \frac{\partial \mathcal{F}}{\partial \tau'} - \mathcal{F} \right) = 0$$

$$> (b) \qquad -\frac{1}{\kappa} \frac{d^3}{ds^3} \left[\frac{\partial \mathcal{F}}{\partial \tau} - \frac{d}{ds} \left(\frac{\partial \mathcal{F}}{\partial \tau'} \right) \right] + \frac{2\kappa'}{\kappa^2} \frac{d^2}{ds^2} \left[\frac{\partial \mathcal{F}}{\partial \tau} - \frac{d}{ds} \left(\frac{\partial \mathcal{F}}{\partial \tau'} \right) \right] + 2\tau \frac{d}{ds} \left[\frac{\partial \mathcal{F}}{\partial \kappa} - \frac{d}{ds} \left(\frac{\partial \mathcal{F}}{\partial \kappa'} \right) \right] + \left(\frac{\tau^2}{\kappa} + \frac{\kappa''}{\kappa^2} - \frac{2\kappa'^2}{\kappa^3} - \kappa \right) \frac{d}{ds} \left[\frac{\partial \mathcal{F}}{\partial \tau} - \frac{d}{ds} \left(\frac{\partial \mathcal{F}}{\partial \tau'} \right) \right] + \tau' \left[\frac{\partial \mathcal{F}}{\partial \kappa} - \frac{d}{ds} \left(\frac{\partial \mathcal{F}}{\partial \kappa'} \right) \right] - \kappa' \left[\frac{\partial \mathcal{F}}{\partial \tau} - \frac{d}{ds} \left(\frac{\partial \mathcal{F}}{\partial \tau'} \right) \right] = 0$$

Simplifying the Equations

> Consider energy densities of the following forms:

- (1) $\mathcal{F}(\kappa)$
- (2) $\mathcal{F}(\kappa,\tau)$
- (3) $\mathcal{F}(\kappa,\kappa')$

Energy Densities $\mathcal{F}(\kappa)$

Euler-Lagrange equations reduce to

(1a)
$$\frac{d^2}{ds^2}\left(\frac{d\mathcal{F}}{d\kappa}\right) + (\kappa^2 - \tau^2)\frac{d\mathcal{F}}{d\kappa} - \kappa\mathcal{F} = 0$$

(1b)
$$\tau' \frac{d\mathcal{F}}{d\kappa} + 2\tau \frac{d}{ds} \left(\frac{d\mathcal{F}}{d\kappa} \right) = 0$$

> Consider the case $\tau = \tau_0 \neq 0$

eqn. (1b) becomes
$$\frac{d}{ds}\left(\frac{d\mathcal{F}}{d\kappa}\right) = k'\frac{d^2\mathcal{F}}{d\kappa^2} = 0$$

(i)
$$\kappa = \kappa_0 \text{ or}$$

(ii) $\mathcal{F}(\kappa) = \alpha + \beta \kappa$

> Consider the case $\frac{\tau}{\kappa} = C$

Case (i) $\kappa = \kappa_0, \tau = \tau_0$

> Eqn. (1a) becomes $(\kappa_0^2 - \tau_0^2) \frac{d\mathcal{F}}{d\kappa} - \kappa_0 \mathcal{F} = 0$

> Defines a class of energy densities of the form $\mathcal{F}(\kappa) = C_0 e^{\frac{\kappa_0 \kappa}{(\kappa_0^2 - \tau_0^2)}}$

> Circular helices are solutions and can be parameterized by arc length as

$$\mathbf{r}(s) = a \cos\left(\frac{s}{c}\right)\hat{\mathbf{i}} + a \sin\left(\frac{s}{c}\right)\hat{\mathbf{j}} + \frac{bs}{c}\hat{\mathbf{k}}, \qquad a^2 + b^2 = c^2$$

for which $\kappa_0 = \frac{a}{c^2}$, $\tau_0 = \frac{b}{c^2}$

> For protein structures, practical values of the helix radius a, and the pitch $2\pi b$, are $a \approx 2.5$ Å and $2\pi b \approx 5.4$ Å

Case (ii) $\mathcal{F}(\kappa) = \alpha + \beta \kappa$

> Eqn. (1b) can be integrated to find that $\tau = \frac{C_1}{\left(\frac{d\mathcal{F}}{d\kappa}\right)^2}$ and therefore $\tau = \frac{C_1}{\beta^2}$

> Plug the result for torsion into eqn. (1a) to find that $\kappa = -\frac{C_1^2}{\alpha \beta^3}$

> Note that for a positive curvature, alpha and beta must have opposite signs. Also, C_1 determines the sign of the torsion which indicates whether the helix is right-handed (+) or left-handed (-).

Generalized Helices with $\frac{\tau}{\kappa} = C$

> If we let $\tau = C_2 \kappa$ and plug that into the integrated solution for torsion in case (ii), then we can solve for the energy density:

$$\mathcal{F}(\kappa) = \pm 2 \sqrt{\frac{C_1 \kappa}{C_2}} + C_0$$

> We may then rewrite eqn. (1a) as

$$\kappa'' - \frac{3}{2} \frac{(\kappa')^2}{\kappa} + 2(1 + C_2^2)\kappa^3 \pm 2C_0 \sqrt{\frac{C_2}{C_1}} \kappa^{\frac{5}{2}} = 0$$

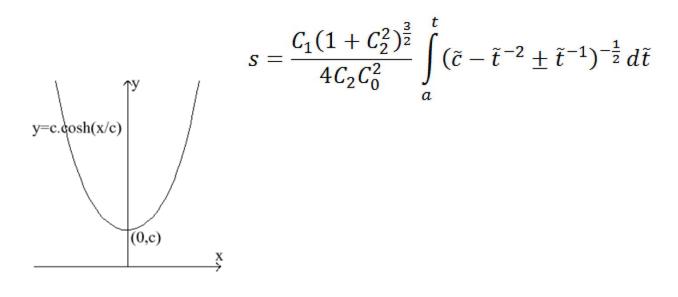
> If we let $\kappa = \kappa_0$, then we recover our circular helices where

$$\kappa = \frac{C_0^2 C_2}{C_1 (1 + C_2^2)^2}, \qquad \tau = \frac{C_0^2 C_2^2}{C_1 (1 + C_2^2)^2}$$

- > However, if we look for conical helices and let $\kappa = \frac{\kappa_0}{s}$, $\tau = \frac{\tau_0}{s}$, then we see that such solutions are not permitted.
- The general solution is fairly complicated and basically describes a helix on the surface of a catenary cylinder:

$$\kappa = \frac{4C_0^2 C_2}{C_1 (1 + C_2^2)^2} t^{-2}, \qquad \tau = \frac{4C_0^2 C_2^2}{C_1 (1 + C_2^2)^2} t^{-2}$$

where t is related to arc length by



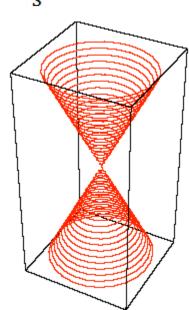
Energy Densities $\mathcal{F}(\kappa,\tau)$

Consider the cases

(i)
$$\mathcal{F}(\kappa,\tau) = \alpha + \beta \kappa + \gamma \tau$$

(ii) Conical helices:
$$\kappa(s) = \frac{\kappa_0}{s}$$
, $\tau(s) = \frac{\tau_0}{s}$

10

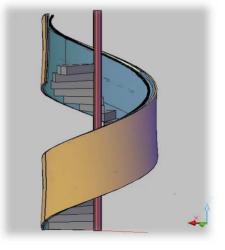


Case (i) $\mathcal{F}(\kappa,\tau) = \alpha + \beta \kappa + \gamma \tau$

Euler-Lagrange equations become

(2a)
$$-\alpha\kappa + \gamma\kappa\tau - \beta\tau^2 = 0$$

(2b) $\beta \tau' - \gamma \kappa' = 0$



> Unique Solution:
$$\kappa = \frac{-C_0^2 \beta}{\alpha + C_0 \gamma}, \quad \tau = \frac{\alpha C_0}{\alpha + C_0 \gamma}$$

> Substituting $\kappa = \kappa_0$, $\tau = \tau_0$ for more general circular helices yields a weak condition on the energy density

$$(\kappa_0^2 - \tau_0^2)\frac{\partial \mathcal{F}}{\partial \kappa} + 2\kappa_0\tau_0\frac{\partial \mathcal{F}}{\partial \tau} - \kappa_0\mathcal{F} = 0$$

Case (ii)
$$\kappa(s) = \frac{\kappa_0}{s}, \quad \tau(s) = \frac{\tau_0}{s}$$

> Consider a conical helix with the parameterization of

 $\mathbf{r}(t) = \alpha t \, Cos(\beta \log t)\hat{\mathbf{i}} + \alpha t \, Sin(\beta \log t)\hat{\mathbf{j}} + \gamma t \hat{\mathbf{k}}$

$$t = \frac{s}{\sqrt{\alpha^2(1+\beta^2)+\gamma^2}}$$

> The definitions of curvature and torsion tell us

$$\kappa_0 = \frac{\alpha\beta\sqrt{1+\beta^2}}{\sqrt{\alpha^2(1+\beta^2)+\gamma^2}}, \qquad \tau_0 = \frac{\beta\gamma}{\sqrt{\alpha^2(1+\beta^2)+\gamma^2}}$$

> Energy densities associated with this conical helix are of the form

$$\mathcal{F}(\kappa,\tau) = f_0\left(\frac{\tau}{\kappa}\right) + f_1\left(\frac{\tau}{\kappa}\right) Sin(\beta\log\kappa) + f_2\left(\frac{\tau}{\kappa}\right) Cos(\beta\log\kappa) + \kappa f_3\left(\frac{\tau}{\kappa}\right)$$

Energy Densities $\mathcal{F}(\kappa,\kappa')$

Euler-Lagrange equations reduce to

(3a)
$$\frac{d^2}{ds^2} \left[\frac{\partial \mathcal{F}}{\partial \kappa} - \frac{d}{ds} \left(\frac{\partial \mathcal{F}}{\partial \kappa'} \right) \right] + (\kappa^2 - \tau^2) \left[\frac{\partial \mathcal{F}}{\partial \kappa} - \frac{d}{ds} \left(\frac{\partial \mathcal{F}}{\partial \kappa'} \right) \right] \\ + \kappa \left(\kappa' \frac{\partial \mathcal{F}}{\partial \kappa'} - \mathcal{F} \right) = 0$$

(3b)
$$2\tau \frac{d}{ds} \left[\frac{\partial \mathcal{F}}{\partial \kappa} - \frac{d}{ds} \left(\frac{\partial \mathcal{F}}{\partial \kappa'} \right) \right] + \tau' \left[\frac{\partial \mathcal{F}}{\partial \kappa} - \frac{d}{ds} \left(\frac{\partial \mathcal{F}}{\partial \kappa'} \right) \right] = 0$$

Consider the cases

(i) Circular helices: $\kappa = \kappa_0, \tau = \tau_0$

(ii)
$$\mathcal{F}(\kappa,\kappa') = \alpha + \beta \kappa + \gamma \kappa'$$

(iii) Conical helices:
$$\kappa(s) = \frac{\kappa_0}{s}$$
, $\tau(s) = \frac{\tau_0}{s}$

Case (i) $\kappa = \kappa_0, \tau = \tau_0$

> Eqn. (3b) vanishes and eqn. (3a) becomes

$$(\kappa_0^2 - \tau_0^2) \frac{\partial \mathcal{F}}{\partial \kappa} - \kappa_0 \mathcal{F} = 0$$

> Defines a class of energy densities of the form

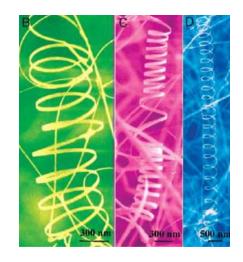
$$\mathcal{F}(\kappa,\kappa') = \psi(\kappa')e^{\frac{\kappa_0\kappa}{(\kappa_0^2 - \tau_0^2)}}$$

Case (ii)
$$\mathcal{F}(\kappa,\kappa') = \alpha + \beta \kappa + \gamma \kappa'$$

> Eqn. (3b) can be integrated to find that $\tau = \frac{C_1}{\left[\frac{\partial \mathcal{F}}{\partial \kappa} - \frac{d}{ds}\left(\frac{\partial \mathcal{F}}{\partial \kappa'}\right)\right]^2}$ and therefore $\tau = \frac{C_1}{\beta^2}$

> Plug the result for torsion into eqn. (3a) to find that $\kappa = -\frac{C_1^2}{\alpha\beta^3}$

> Same results as $\mathcal{F}(\kappa) = \alpha + \beta \kappa$



Case (iii)
$$\kappa(s) = \frac{\kappa_0}{s}, \qquad \tau(s) = \frac{\tau_0}{s}$$

> From the integrated solution for torsion in case (ii) we know

$$\frac{\partial \mathcal{F}}{\partial \kappa} - \frac{d}{ds} \left(\frac{\partial \mathcal{F}}{\partial \kappa'} \right) = \pm \sqrt{\frac{C_1}{\tau}}$$

> Therefore eqn. (3a) can be rewritten as

$$\frac{d^2}{ds^2} \sqrt{\frac{C_1}{\tau}} + (\kappa^2 - \tau^2) \sqrt{\frac{C_1}{\tau}} \pm \kappa \left(\kappa' \frac{\partial \mathcal{F}}{\partial \kappa'} - \mathcal{F}\right) = 0$$

> Plugging in $\kappa = \frac{\kappa_0}{s}$, $\tau = \frac{\tau_0}{s}$ allows us to further rewrite eqn. (3a) as

$$\left(\kappa_0^2 - \tau_0^2 - \frac{1}{4}\right) \sqrt{\frac{C_1}{\tau_0}} s^{-\frac{3}{2}} \pm \frac{\kappa_0}{s} \left(\kappa' \frac{\partial \mathcal{F}}{\partial \kappa'} - \mathcal{F}\right) = 0$$

- > A sufficient condition is $\kappa' \frac{\partial \mathcal{F}}{\partial \kappa'} \mathcal{F} = C_2 s^{-\frac{1}{2}} = C_2 \kappa^{\alpha} (-\kappa')^{\beta}$ and $\alpha + 2\beta = \frac{1}{2}$
- Solving the PDE from the condition above tells us $\mathcal{F}(\kappa,\kappa') = \frac{C_2}{\beta - 1} \kappa^{\alpha} (-\kappa')^{\beta} + \kappa' \psi(\kappa), \qquad \beta \neq 1$ and for $\beta = 1$ the result is $\mathcal{F}(\kappa,\kappa') = C_2 \kappa^{-\frac{3}{2}} \kappa' log(-\kappa') + \kappa' \psi(\kappa)$
- > Substituting back into eqn. (3a) we get a condition for C_2 :

$$\left(\kappa_0^2 - \tau_0^2 - \frac{1}{4}\right) \sqrt{\frac{C_1}{\tau_0}} + \kappa_0^{\alpha+\beta+1} C_2 = 0 =$$

$$C_1 = \frac{\kappa_0^{2(\alpha+\beta+1)} \tau_0 C_2^2}{\left(\kappa_0^2 - \tau_0^2 - \frac{1}{4}\right)^2}$$

Conclusions

- > For energy densities $\mathcal{F}(\kappa)$ we found solutions that yield circular helices and complicated generalized helices but not conical helices.
- > For energy densities $\mathcal{F}(\kappa,\tau)$ we found solutions that yield circular helices and conical helices.
- > In a similar manner to the previous two classes of energy densities we found circular and conical helix solutions for energy densities $\mathcal{F}(\kappa, \kappa')$.

General classes of energy densities that yield helical extremal curves could be of use in modeling protein structures and other helical objects.

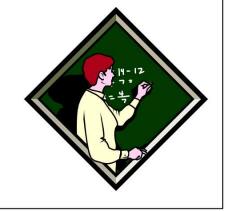
References

James McCoy

"Helices for Mathematical Modelling of Proteins, Nucleic Acids and Polymers"

Journal of Mathematical Analysis and Applications

Volume: 347 Pages: 255-265 2008



Ngamta Thamwattana, James A. McCoy, James M. Hill

"Energy Density Functions for Protein Structures"

Quarterly Journal of Mechanics and Applied Mathematics

Volume: 61 Pages: 431-451 2008

